A Characterization of the Galois Subbialgebras L-&(K/F)
JOURNAL OF ALGEBRA 42, 31.5-362 (1976) A Characterization of the Galois Subbialgebras l-&(K/F) MITSUHIRO TAKEUCHI Liniversity of Tsukuba, Iboraki, 300-31 Japan Communicated by N. Jacobson Received April 30, 1975 Let K/k be an extension of fields of characteristic p > 0. Sweedler [6] defines a pointed cocommutative k-bialgebra H,(K) and a k-linear map W: H,(K) @ K - K such that (i) w meaSures K to K, i.e., w(a @ I) = e(a)1 and da 0 W L C 4ah) 0 4 4w 0 4 (a) for a E H,(K), h, p E K, (ii) K is a left H,(K)-module through w. The pair (H,(K), W) is characterized by some universality. We call H,(K) the GaZoi> k-bialgebra of K/k. When H is a subbialgebra of H,(K) put KH = {A E K / w(a @ A) = E(a)& Va E H}, which is a subfield of K containing k. Conversely if K 3 F 3 k are fields, there is a unique maximal subbialgebra H = H,(K/F) such that F C KH. We call H,(K/F) the Galois subbialgebra associated with F. In order to establish the Galois correspondence between the set of inter- mediate fields K r) F 3 k and the set of subbialgebras H of H,(K): F * H,(W) and KHclH we must solve the following two kinds of problems: (i) to characterize the subfields F of the form KH, (ii) to characterize the Galois subbialgebras H = H,(K/F).
[Show full text]