LOW-DIMENSIONAL UNITARY REPRESENTATIONS of B3 1. Introduction Unitary Braid Representations Have Been Constructed in Several
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 129, Number 9, Pages 2597{2606 S 0002-9939(01)05903-2 Article electronically published on March 15, 2001 LOW-DIMENSIONAL UNITARY REPRESENTATIONS OF B3 IMRE TUBA (Communicated by Stephen D. Smith) Abstract. We characterize all simple unitarizable representations of the braid group B3 on complex vector spaces of dimension d ≤ 5. In particular, we prove that if σ1 and σ2 denote the two generating twists of B3,thenasimple representation ρ : B3 ! GL(V )(fordimV ≤ 5) is unitarizable if and only if the eigenvalues λ1,λ2;::: ;λd of ρ(σ1) are distinct, satisfy jλij =1and (d) ≤ ≤ (d) µ1i > 0for2 i d,wheretheµ1i are functions of the eigenvalues, explicitly described in this paper. 1. Introduction Unitary braid representations have been constructed in several ways using the representation theory of Kac-Moody algebras and quantum groups (see e.g. [1], [2], and [4]), and specializations of the reduced Burau and Gassner representations in [5]. Such representations easily lead to representations of PSL(2; Z)=B3=Z ,where Z is the center of B3,andPSL(2; Z)=SL(2; Z)={1g,where{1g is the center of SL(2; Z). We give a complete classification of simple unitary representations of B3 of dimension d ≤ 5 in this paper. In particular, the unitarizability of a braid rep- resentation depends only on the the eigenvalues λ1,λ2;::: ,λd of the images of the two generating twists of B3. The condition for unitarizability is a set of linear in- equalities in the logarithms of these eigenvalues. In other words, the representation is unitarizable if and only if the (arg λ1; arg λ2;::: ;arg λd) is a point inside a poly- hedron in (R=2π)d, where we give the equations of the hyperplanes that bound this polyhedron.
[Show full text]