Converged Networks with Fibre Channel Over Ethernet and Data Center Bridging

Total Page:16

File Type:pdf, Size:1020Kb

Converged Networks with Fibre Channel Over Ethernet and Data Center Bridging Converged networks with Fibre Channel over Ethernet and Data Center Bridging Technology brief, 3rd edition Introduction ......................................................................................................................................... 2 Traditional data center topology ............................................................................................................ 2 Early attempts at converged networks ..................................................................................................... 2 10 Gigabit Ethernet ............................................................................................................................. 3 Network convergence with FCoE ........................................................................................................... 4 Data Center Bridging ........................................................................................................................ 4 Fibre Channel over Ethernet ............................................................................................................... 4 Industry transition to converged fabrics ................................................................................................... 6 Practical strategies for moving to FCoE ................................................................................................... 8 For more information ............................................................................................................................ 9 Introduction Using separate, single-purpose networks for data, management, and storage can be more complex and costly than required for IT organizations or infrastructure deployments. Network convergence is a more economical solution: It simplifies data center infrastructure by consolidating block-based storage and traditional IP-based data communications networks onto a single converged Ethernet network. Network convergence promises to reduce the cost of qualifying, buying, powering, cooling, provisioning, maintaining, and managing network-related equipment. The challenge is determining the best adoption strategy for your business. This technology brief discusses these aspects of converged infrastructure: • Current data center topology • Limitations of previous attempts to create converged networks • Fibre Channel over Ethernet (FCoE) technology • How converged network topologies and converged network adapters (CNAs) work together to tie multiple networks into a single, converged infrastructure Traditional data center topology Traditional data center designs include separate, heterogeneous network devices for different types of data. Many data centers support three or more types of networks that serve these purposes: • Block storage data management • Remote management • Business-centric data communications Each network and device adds to the complexity, cost, and management overhead. Converged networks can simplify typical topologies by reducing the number of physical components. This convergence leads to simplified management and improvements in quality of service (QoS). Early attempts at converged networks There have been many attempts to create converged networks over the past decade. Fibre Channel Protocol (FCP) is a lightweight mapping of SCSI to the Fibre Channel (FC) layers 1 and 2 transport protocol (Figure1, yellow shaded oval). Fibre Channel carries not only FCP traffic, but also IP traffic, to create a converged network. The cost of FC and the acceptance of Ethernet as the standard for LAN communications prevented widespread FC use except for data center SANs for enterprise businesses. InfiniBand (IB) technology provides a converged network capability by transporting inter-processor communication, LAN, and storage protocols. The two most common storage protocols for IB are SCSI Remote Direct Memory Access Protocol (SRP) and iSCSI Extensions for RDMA (iSER). These protocols use the RDMA capabilities of IB. SRP builds a direct SCSI to RDMA mapping layer and protocol, and iSER copies data directly to the SCSI I/O buffers without intermediate data copies (Figure 1, green shaded oval). These protocols are lightweight but not as streamlined as FC. Widespread deployment was impractical because of the perceived high cost of IB and the complex gateway and routers needed to translate from these IB-centric protocols and networks to native FC storage devices. High Performance Computing environments that have adopted IB as the standard transport network use SRP and iSER protocols. 2 Figure 1: The various attempts at converged infrastructure produced multiple protocol stacks. Fibre Channel InfiniBand FCoE/DCB Internet SCSI (iSCSI) was an attempt to bring a direct SCSI to TCP/IP mapping layer and protocol to the mass Ethernet market. Proponents of iSCSI wanted to drive down cost and to deploy SANs over existing Ethernet LAN infrastructure. iSCSI technology (Figure 1, blue shaded oval) was very appealing to the small and medium business market because of the low-cost software initiators and the ability to use any existing Ethernet LAN. However, iSCSI typically requires new iSCSI storage devices that lack the features of devices using FC interfaces. Also, iSCSI to FC gateways and routers are complex and expensive. They do not scale cost effectively for the enterprise. Most enterprise businesses have avoided iSCSI or have used it for lower tier storage applications or for departmental use. FC over IP (FCIP) and Internet FC Protocol (iFCP) map FCP and FC characteristics to LANs, MANs, and WANs. Both of these protocols map FC framing on top of the TCP/IP protocol stack (Figure 1, red shaded oval). FCIP is a SAN extension protocol to bridge FC SANs across large geographical areas. It is not for host-server or target-storage attachment. The iFCP protocol lets Ethernet-based hosts attach to FC SANs through iFCP-to-FC SAN gateways. These gateways and protocols were not widely adopted except for SAN extension because of their complexity, lack of scalability, and cost. 10 Gigabit Ethernet One obstacle to using Ethernet for converged networks has been its limited bandwidth. As 10 Gigabit Ethernet (10 GbE) technology becomes more widely used, 10 GbE network components will fulfill the combined data and storage communication needs of many applications. As Ethernet bandwidth increases, fewer physical links can carry more data (Figure 2). 3 Figure 2: Multiple traffic types can share the same link using a multifunction adapter. Network convergence with FCoE Now that 10 GbE is becoming more widespread, FCoE is the next attempt to converge block storage protocols onto Ethernet. FCoE takes advantage of 10 GbE performance and compatibility with existing Fibre Channel protocols. It relies on an Ethernet infrastructure that uses the IEEE Data Center Bridging (DCB) standards. The DCB standards can apply to any IEEE 802 network, but most often the term DCB refers to enhanced Ethernet. We use the term DCB to refer to an enhanced Ethernet infrastructure that implements at least the minimum set of DCB standards to carry FCoE protocols. Data Center Bridging An informal consortium of network vendors originally defined a set of enhancements to Ethernet to provide enhanced traffic management and lossless operation. The consortium’s proposals have become a standard from the Data Center Bridging (DCB) task group within the IEEE 802.1 Work Group. The DCB standards define four new technologies: • Priority-based Flow Control (PFC), 802.1Qbb allows the network to pause different traffic classes. • Enhanced Transmission Selection (ETS), 802.1Qaz defines the scheduling behavior of multiple traffic classes, including strict priority and minimum guaranteed bandwidth capabilities. This should enable fair sharing of the link, better performance, and metering. • Quantized Congestion Notification (QCN), 802.1Qau supports end-to-end flow control in a switched LAN infrastructure and helps eliminate sustained, heavy congestion in an Ethernet fabric. Before the network can use QCN, you must implement QCN in all components in the CEE data path (CNAs, switches, and so on). QCN networks must also use PFC to avoid dropping packets and ensure a lossless environment. • Data Center Bridging Exchange Protocol (DCBX), 802.1Qaz supports discovery and configuration of network devices that support PFC, ETS, and QCN. Fibre Channel over Ethernet In legacy Ethernet networks, dropped frames occur under collision or congestion situations. The networks rely on upper layer protocols such as TCP to provide end-to-end data recovery. FCoE is a lightweight encapsulation protocol and lacks the reliable data transport of the TCP layer. Therefore, FCoE must operate on DCB-enabled Ethernet and use lossless traffic classes to prevent Ethernet frame loss under congested network conditions. FCoE on a DCB network mimics the lightweight nature of native FC protocols and media. It does not incorporate TCP or even IP protocols. This means that FCoE is a layer 2 (non-routable) protocol just like FC. FCoE is only for short-haul communication within a data center. The main advantage of FCoE is that switch 4 vendors can easily implement logic for converting FCoE on a DCB network (FCoE/DCB) to native FC in high-performance switch silicon. FCoE encapsulates FC frames inside of Ethernet frames (Figure 3). Figure 3: The FCoE protocol embeds FC frames within Ethernet frames. The traditional data center model uses multiple HBAs and NICs in each server to communicate with various networks. In
Recommended publications
  • Ethernet Alliance Hosts Third IEEE 802.1 Data Center Bridging
    MEDIA ALERT Ethernet Alliance® Hosts Third IEEE 802.1 Data Center Bridging Interoperability Test Event Participation is Open to Both Ethernet Alliance Members and Non‐Members WHAT: The Ethernet Alliance Ethernet in the Data Center Subcommittee has announced it will host an IEEE 802.1 Data Center Bridging (DCB) interoperability test event the week of May 23 in Durham, NH at the University of New Hampshire Interoperability Lab. The Ethernet Alliance invites both members and non‐members to participate in this third DCB test event that will include both protocol and applications testing. The event targets interoperability testing of Ethernet standards being developed by IEEE 802.1 DCB task force to address network convergence issues. Testing of protocols will include projects such as IEEE P802.1Qbb Priority Flow Control (PFC), IEEE P802.1Qaz Enhanced Transmission Selection (ETS) and DCB Capability Exchange Protocol (DCBX). The test event will include testing across a broad vendor community and will exercise DCB features across multiple platforms as well as exercise higher layer protocols such as Fibre Channel over Ethernet (FCoE), iSCSI over DCB, RDMA over Converged Ethernet (RoCE) and other latency sensitive applications. WHY: These test events help vendors create interoperable, market‐ready products that interoperate to the IEEE 802.1 DCB standards. WHEN: Conference Call for Interested Participants: Friday, March 4 at 10 AM PST Event Registration Open Until: March 4, 2011 Event Dates (tentative): May 23‐27, 2011 WHERE: University of New Hampshire Interoperability Lab (UNH‐IOL) Durham, NH WHO: The DCB Interoperability Event is hosted by the Ethernet Alliance. REGISTER: To get more information, learn about participation fees and/or register for the DCB plugfest, please visit Ethernet Alliance DCB Interoperability Test Event page or contact [email protected].
    [Show full text]
  • Data Center Ethernet 2
    DataData CenterCenter EthernetEthernet Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 [email protected] These slides and audio/video recordings of this class lecture are at: http://www.cse.wustl.edu/~jain/cse570-15/ Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-15/ ©2015 Raj Jain 4-1 OverviewOverview 1. Residential vs. Data Center Ethernet 2. Review of Ethernet Addresses, devices, speeds, algorithms 3. Enhancements to Spanning Tree Protocol 4. Virtual LANs 5. Data Center Bridging Extensions Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-15/ ©2015 Raj Jain 4-2 Quiz:Quiz: TrueTrue oror False?False? Which of the following statements are generally true? T F p p Ethernet is a local area network (Local < 2km) p p Token ring, Token Bus, and CSMA/CD are the three most common LAN access methods. p p Ethernet uses CSMA/CD. p p Ethernet bridges use spanning tree for packet forwarding. p p Ethernet frames are 1518 bytes. p p Ethernet does not provide any delay guarantees. p p Ethernet has no congestion control. p p Ethernet has strict priorities. Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-15/ ©2015 Raj Jain 4-3 ResidentialResidential vs.vs. DataData CenterCenter EthernetEthernet Residential Data Center Distance: up to 200m r No limit Scale: Few MAC addresses r Millions of MAC Addresses 4096 VLANs r Millions of VLANs Q-in-Q Protection: Spanning tree r Rapid spanning tree, … (Gives 1s, need 50ms) Path determined by r Traffic engineered path spanning tree Simple service r Service Level Agreement.
    [Show full text]
  • IEEE Std 802.3™-2012 New York, NY 10016-5997 (Revision of USA IEEE Std 802.3-2008)
    IEEE Standard for Ethernet IEEE Computer Society Sponsored by the LAN/MAN Standards Committee IEEE 3 Park Avenue IEEE Std 802.3™-2012 New York, NY 10016-5997 (Revision of USA IEEE Std 802.3-2008) 28 December 2012 IEEE Std 802.3™-2012 (Revision of IEEE Std 802.3-2008) IEEE Standard for Ethernet Sponsor LAN/MAN Standards Committee of the IEEE Computer Society Approved 30 August 2012 IEEE-SA Standard Board Abstract: Ethernet local area network operation is specified for selected speeds of operation from 1 Mb/s to 100 Gb/s using a common media access control (MAC) specification and management information base (MIB). The Carrier Sense Multiple Access with Collision Detection (CSMA/CD) MAC protocol specifies shared medium (half duplex) operation, as well as full duplex operation. Speed specific Media Independent Interfaces (MIIs) allow use of selected Physical Layer devices (PHY) for operation over coaxial, twisted-pair or fiber optic cables. System considerations for multisegment shared access networks describe the use of Repeaters that are defined for operational speeds up to 1000 Mb/s. Local Area Network (LAN) operation is supported at all speeds. Other specified capabilities include various PHY types for access networks, PHYs suitable for metropolitan area network applications, and the provision of power over selected twisted-pair PHY types. Keywords: 10BASE; 100BASE; 1000BASE; 10GBASE; 40GBASE; 100GBASE; 10 Gigabit Ethernet; 40 Gigabit Ethernet; 100 Gigabit Ethernet; attachment unit interface; AUI; Auto Negotiation; Backplane Ethernet; data processing; DTE Power via the MDI; EPON; Ethernet; Ethernet in the First Mile; Ethernet passive optical network; Fast Ethernet; Gigabit Ethernet; GMII; information exchange; IEEE 802.3; local area network; management; medium dependent interface; media independent interface; MDI; MIB; MII; PHY; physical coding sublayer; Physical Layer; physical medium attachment; PMA; Power over Ethernet; repeater; type field; VLAN TAG; XGMII The Institute of Electrical and Electronics Engineers, Inc.
    [Show full text]
  • Converged Networking in the Data Center
    Converged Networking in the Data Center Peter P. Waskiewicz Jr. LAN Access Division, Intel Corp. [email protected] Abstract data center as a whole. In addition to the general power and cooling costs, other areas of focus are the physical The networking world in Linux has undergone some sig- amount of servers and their associated cabling that re- nificant changes in the past two years. With the expan- side in a typical data center. Servers very often have sion of multiqueue networking, coupled with the grow- multiple network connections to various network seg- ing abundance of multi-core computers with 10 Gigabit ments, plus they’re usually connected to a SAN: ei- Ethernet, the concept of efficiently converging different ther a Fiber Channel fabric or an iSCSI infrastructure. network flows becomes a real possibility. These multiple network and SAN connections mean large amounts of cabling being laid down to attach a This paper presents the concepts behind network con- server. Converged Networking takes a 10GbE device vergence. Using the IEEE 802.1Qaz Priority Group- that is capable of Data Center Bridging in hardware, ing and Data Center Bridging concepts to group mul- and consolidates all of those network connections and tiple traffic flows, this paper will demonstrate how dif- SAN connections into a single, physical device and ca- ferent types of traffic, such as storage and LAN traf- ble. The rest of this paper will illustrate the different fic, can efficiently coexist on the same physical connec- aspects of Data Center Bridging, which is the network- tion.
    [Show full text]
  • Network Virtualization Using Shortest Path Bridging (802.1Aq) and IP/SPB
    avaya.com Network Virtualization using Shortest Path Bridging and IP/SPB Abstract This White Paper discusses the benefits and applicability of the IEEE 802.1aq Shortest Path Bridging (SPB) protocol which is augmented with sophisticated Layer 3 routing capabilities. The use of SPB and the value to solve virtualization of today’s network connectivity in the enterprise campus as well as the data center are covered. This document is intended for any technically savvy network manager as well as network architect who are faced with: • Reducing time to service requirements • Less tolerance for network down time • Network Virtualization requirements for Layer 2 (VLAN-extensions) and Layer 3 (VRF-extensions) • Server Virtualization needs in data center deployments requiring a large set of Layer 2 connections (VLANs) • Traffic separation requirements in campus deployments for security purposes as well as robustness considerations (i.e. contractors for maintenance reasons needing access to their equipment or guest access needs) • Multi-tenant applications such as airports, governments or any other network with multiple discrete (legal) entities that require traffic separation WHITE PAPER 1 avaya.com Table of Contents 1. Introduction ........................................................................................................................ 3 2. Benefits of SPB ................................................................................................................... 4 2.1 Network Service Enablement ............................................................................................................
    [Show full text]
  • Optical Transport Networks & Technologies Standardization Work
    Optical Transport Networks & Technologies Standardization Work Plan Issue 24, February 2018 GENERAL ........................................................................................................................... 3 PART 1: STATUS REPORTS AS OF JANUARY 2018 ...................................................... 4 1 HIGHLIGHT OF ITU-T SG15 ........................................................................................ 4 2 REPORTS FROM OTHER ORGANIZATIONS ............................................................ 4 PART 2: STANDARD WORK PLAN ................................................................................... 8 1 INTRODUCTION TO PART 2 ...................................................................................... 8 2 SCOPE ......................................................................................................................... 8 3 ABBREVIATIONS ........................................................................................................ 8 4 DEFINITIONS AND DESCRIPTIONS .......................................................................... 9 4.1 Optical and other Transport Networks & Technologies (OTNT) ....................................................... 9 4.2 Optical Transport Network (OTN) (largely revised in 09/2016 reflecting B100G) ............................ 9 4.2.1 FlexE in OIF (updated in June-2017) .......................................................................................... 11 4.3 Support for mobile networks (reference to ITU-R M2375 added
    [Show full text]
  • Ethernet (IEEE 802.3)
    Computer Networking MAC Addresses, Ethernet & Wi-Fi Lecturers: Antonio Carzaniga Silvia Santini Assistants: Ali Fattaholmanan Theodore Jepsen USI Lugano, December 7, 2018 Changelog ▪ V1: December 7, 2018 ▪ V2: March 1, 2017 ▪ Changes to the «tentative schedule» of the lecture 2 Last time, on December 5, 2018… 3 What about today? ▪Link-layer addresses ▪Ethernet (IEEE 802.3) ▪Wi-Fi (IEEE 802.11) 4 Link-layer addresses 5 Image source: https://divansm.co/letter-to-santa-north-pole-address/letter-to-santa-north-pole-address-fresh-day-18-santa-s-letters/ Network adapters (aka: Network interfaces) ▪A network adapter is a piece of hardware that connects a computer to a network ▪Hosts often have multiple network adapters ▪ Type ipconfig /all on a command window to see your computer’s adapters 6 Image source: [Kurose 2013 Network adapters: Examples “A 1990s Ethernet network interface controller that connects to the motherboard via the now-obsolete ISA bus. This combination card features both a BNC connector (left) for use in (now obsolete) 10BASE2 networks and an 8P8C connector (right) for use in 10BASE-T networks.” https://en.wikipedia.org/wiki/Network_interface_controller TL-WN851ND - WLAN PCI card 802.11n/g/b 300Mbps - TP-Link https://tinyurl.com/yamo62z9 7 Network adapters: Addresses ▪Each adapter has an own link-layer address ▪ Usually burned into ROM ▪Hosts with multiple adapters have thus multiple link- layer addresses ▪A link-layer address is often referred to also as physical address, LAN address or, more commonly, MAC address 8 Format of a MAC address ▪There exist different MAC address formats, the one we consider here is the EUI-48, used in Ethernet and Wi-Fi ▪6 bytes, thus 248 possible addresses ▪ i.e., 281’474’976’710’656 ▪ i.e., 281* 1012 (trillions) Image source: By Inductiveload, modified/corrected by Kju - SVG drawing based on PNG uploaded by User:Vtraveller.
    [Show full text]
  • Converge Data Center Applications Into a Single 10Gb/S Ethernet Network
    Converge Data Center Applications Into a Single 10Gb/s Ethernet Network Explanation of Ethernet Alliance Demonstration at SC10 Contributing Companies: Amphenol, Broadcom, Brocade, CommScope, Cisco, Dell, Chelsio, Emulex, Force 10, Fulcrum, Intel, Ixia, JDSU, November 2010 Mellanox, NetApp, Panduit, Spirent, Volex 1 | Page Table of Contents 1. Executive Summary ................................................................................................................................... 3 2. Technologies in the demonstration .......................................................................................................... 3 3. Description of Demonstration Setup – Data Center Networking ............. Error! Bookmark not defined. 4. Test Results ................................................................................................ Error! Bookmark not defined. 5. Conlustion ................................................................................................................................................ 9 November 2010 2 | Page Converge Data Center Applications into a Single 10Gb/s Ethernet Network 1. Executive Summary Introduction Continuously demonstrating new technology trends in Ethernet is the top goal of Ethernet Alliance and its members. Since SC09, Ethernet technology continues evolving at a fast pace. Many new technologies have been emerging to make Ethernet faster, more reliable, power-efficient, and converged. At this year SC10 Ethernet Alliance booth, we are building a large Ethernet network
    [Show full text]
  • ETHERNET ENHANCEMENTS for STORAGE Sunil Ahluwalia, Intel
    ETHERNET ENHANCEMENTS FOR STORAGE Sunil Ahluwalia, Intel Corporation Errol Roberts, Cisco Systems Inc. SNIA Legal Notice The material contained in this tutorial is copyrighted by the SNIA. Member companies and individual members may use this material in presentations and literature under the following conditions: Any slide or slides used must be reproduced in their entirety without modification The SNIA must be acknowledged as the source of any material used in the body of any document containing material from these presentations. This presentation is a project of the SNIA Education Committee. Neither the author nor the presenter is an attorney and nothing in this presentation is intended to be, or should be construed as legal advice or an opinion of counsel. If you need legal advice or a legal opinion please contact your attorney. The information presented herein represents the author's personal opinion and current understanding of the relevant issues involved. The author, the presenter, and the SNIA do not assume any responsibility or liability for damages arising out of any reliance on or use of this information. NO WARRANTIES, EXPRESS OR IMPLIED. USE AT YOUR OWN RISK. Ethernet Enhancements for Storage 2 © 2009 Storage Networking Industry Association. All Rights Reserved. Abstract Ethernet Enhancements for Storage This session discusses the Ethernet enhancements required for storage traffic. It reviews an end-to-end view to evaluate FCoE benefits from a host and switch perspective. Ethernet Enhancements for Storage 3 © 2009 Storage Networking Industry Association. All Rights Reserved. Agenda Ethernet Everywhere! Data Center Requirements Ethernet Enhancements Data Center Bridging FCoE Deployment Ethernet Enhancements for Storage 4 © 2009 Storage Networking Industry Association.
    [Show full text]
  • Ethernet Alliance Publicly Releases Interoperability Test Findings for 40
    Ethernet Alliance® Publicly Releases Interoperability Test Findings for 40 Gigabit and 100 Gigabit Ethernet In its Role of Bringing Ethernet Standards to Life, the Ethernet Alliance Released Multiple New White Papers Including Test Results From Industry’s First Data Center Bridging Congestion Notification Interoperability Event November 15, 2010, Mountain View, CA – The Ethernet Alliance has announced the release of a collection of new white papers including two interoperability white papers. The first interoperability white paper details the test results of the Higher Speed Ethernet (HSE) subcommittee’s plugfest for products designed to support IEEE Std. 802.3baTM‐2010, 40 and 100 Gbps Ethernet. The second interoperability white paper covers the Ethernet in the Data Center subcommittee’s data center bridging (DCB) plugfest that included the first interoperability testing of IEEE Std. 802.1QauTM‐2010 Congestion Notification (QCN). Additional new white papers posted to the site include: 40 Gigabit Ethernet Market Potential; Data Center Bridging; and 10GBASE‐T for Broad 10 Gigabit Adoption in Data Centers. “The Ethernet Alliance plays an important role in the Ethernet industry by providing end users with educational opportunities and resources to help them adopt new Ethernet products quickly and easily into their infrastructures,” said Seamus Crehan, president of Crehan Research. “Through white papers, technology exploration forums, interoperability tests and public demonstrations, members of the Ethernet Alliance position themselves as leaders in developing Ethernet standards into marketable products.” Both plugfest papers provide valuable insights into the status of interoperability for these standards and have been made available in conjunction with the Ethernet Alliance’s SC10 demonstration at booth #4513 that includes 18 member organizations.
    [Show full text]
  • Data Center Bridging Consortium
    Data Center Bridging Consortium 802.1Qaz DCB Exchange Protocol Test Suite Version 1.9 Technical Document Last Updated: April 10, 2012 Data Center Bridging Consortium HTTP://WWW.IOL.UNH.EDU/CONSORTIUMS/DCB InterOperability Laboratory 121 Technology Drive, Suite 2 University of New Hampshire Durham, NH 03824 Phone: +1-603-862-0701 © 2012 University of New Hampshire InterOperability Laboratory Table of Contents Table of Contents...........................................................................................................................2 Modification Record......................................................................................................................3 Acknowledgments..........................................................................................................................4 Introduction....................................................................................................................................5 References.......................................................................................................................................7 Test Setup.......................................................................................................................................8 Group 1: ETS Configuration and Recommendation Capability...............................................9 TEST #38.1.1: TRANSMISSION OF A WELL FORMED ETS CONFIGURATION TLV.............................10 TEST #38.1.2: TRANSMISSION OF A WELL FORMED ETS RECOMMENDATION TLV.........................11
    [Show full text]
  • Data Center Bridging
    Data Center Bridging IEEE 802 Tutorial 12th November 2007 Contributors and Supporters Hugh Barrass (Cisco) Zhi Hern-Loh (Fulcrum Micro) Jan Bialkowski (Infinera) Mike Ko (IBM) Bob Brunner (Ericsson) Menu Menuchehry (Marvell) Craig Carlson (Qlogic) Joe Pelissier (Cisco) Mukund Chavan (Emulex) Renato Recio (IBM) Rao Cherukuri (Juniper Networks) Guenter Roeck (Teak Uri Cummings (Fulcrum Micro) Technologies) Norman Finn (Cisco) Ravi Shenoy (Emulex) Anoop Ghanwani (Brocade) John Terry (Brocade) Mitchell Gusat (IBM) Pat Thaler (Broadcom) Asif Hazarika (Fujitsu Manoj Wadekar (Intel) Microelectronics) Fred Worley (HP) DCB Tutorial Nov 2007 2 Agenda Introduction: Pat Thaler Background: Manoj Wadekar Gap Analysis: Anoop Ghanwani Solution Framework: Hugh Barrass Potential Challenges and Solutions: Joe Pelissier 802.1 Architecture for DCB: Norm Finn Q&A DCB Tutorial Nov 2007 3 Data Center Bridging Related Projects 802.1Qau Congestion Notification ¾In draft development 802.1Qaz Enhanced Transmission Selection ¾PAR submitted for IEEE 802 approval at this meeting Priority-Based Flow Control ¾Congestion Management task group is developing a PAR DCB Tutorial Nov 2007 4 Background: Data Center I/O Consolidation Manoj Wadekar Data Center Topology NAS transaction NAS web state content access packet processing (load balance, DB queries firewall, proxy, etc) business responses transactions SAN commits, secured data integrity open interactions client Back End requests, DAS Intra-Tier: lock mechanics, data sharing, responses web consistency
    [Show full text]