Predictive and Prognostic Value of the Tauprotein in Breast Cancer

Total Page:16

File Type:pdf, Size:1020Kb

Predictive and Prognostic Value of the Tauprotein in Breast Cancer ANTICANCER RESEARCH 35: 5179-5184 (2015) Review Predictive and Prognostic Value of the TauProtein in Breast Cancer CLAIRE BONNEAU1, ZACHARY A. GURARD-LEVIN2, FABRICE ANDRE3, LAJOS PUSZTAI4 and ROMAN ROUZIER1,5 1Department of Breast and Gynaecological Surgery, Curie Institute, Versailles-St-Quentin-en-Yvelines University, Versailles, France; 2UMR3664: “Dynamic of the cell nucleus” Unit, National Center for scientific Research (CNRS), Curie Institute, Paris, France; 3UMR 981: “Predictive biomarkers and new molecular therapeutic strategies in cancer”, Integrated Research Cancer Institute in Villejuif, Paris, France; 4Yale Cancer Center Genetics and Genomics Program, Yale School of Medicine, New Haven, CT, U.S.A.; 5EA 7285: “Clinics risks and security in women's health and perinatal health”, Versailles-St-Quentin-en-Yvelines University, Versailles, France Abstract. Background/Aim: Predictive markers for response Breast cancer is the most common malignant tumor in to chemotherapy are required in breast cancer. The Tau females (about 232,670 new cases of invasive breast cancer protein is a microtubule-associated protein variably are diagnosed per year in the United States for 2013). expressed in breast cancer. The objective of our study was to Women with localized breast cancer are usually first treated describe drug resistance induced by the tau protein, and its with locoregional surgery. When there are risk factors of predictive and prognostic value in breast cancer. Materials recurrence, they may be candidates for adjuvant systemic and Methods: Medline and PubMed databases were therapy, chemotherapy or endocrine therapy in order to searched in April 2015 for terms “tau protein”, “breast eradicate micrometastatic disease and prevent recurrence (1). cancer”, “chemotherapy sensitivity”, “biomarker” and The evaluation of risk of recurrence is clinical and “taxane resistance”. Results: In vitro, tau protein competes pathological: tumoral size, node involvement, with taxane for controlling microtubule dynamic and loss of lymphovascular invasion, nuclear grade, indicators of tau expression may render microtubules more vulnerable to proliferation (mitotic count, Ki-67 expression), expression of the effects of taxanes. High tau protein expression was hormonal receptors and amplification of human epidermal associated with better prognosis, even after adjustment for growth factor receptor-2 (HER2) (2). Women with locally grade, hormone receptor and human epidermal growth factor advanced breast cancer or with a tumor volume incompatible receptor-2 expression, nodal status. The predictive value of with conservative surgery usually undergo neoadjuvant the tau protein for sensitivity to taxane is discordant despite chemotherapy before surgery. Currently, chemotherapy is there being a trend for an association between low tau based on anthracyclines and taxanes, and is administered in expression and increased response rate. Conclusion: Tau more than half of all breast cancer cases. However, several protein expression is insufficient for identifying a subset of clinical trials also revealed that most of these patients fail to patients with carcinomas that may benefit more from benefit from chemotherapy because they present adverse chemotherapy. effects (3, 4). In this context, finding biomarkers that can predict sensitivity to chemotherapy is a priority. Tau protein was first described in Alzheimer's disease (5). Tau protein (50-64 kDa) is a product of a gene located on Correspondence to: Pr. Roman Rouzier, Institut Curie, Service de chromosome 17 (17q21). It belongs to the microtubule- Chirurgie, 35, rue Dailly 92210 Saint-Cloud, France. Tel: +33 associated protein (MAP) family. Microtubules are dynamic 0144324649/+33 0147111515, e-mail: [email protected] polymers composed of β-tubulin heterodimers and are Key Words: Microtubule-associated protein, tau protein, taxanes, essential components of the mitotic spindle and cytoskeleton. chemotherapy sensitivity, cancer treatment, breast cancer, review. Microtubules serve as scaffolds for signaling molecules, 0250-7005/2015 $2.00+.40 5179 ANTICANCER RESEARCH 35: 5179-5184 (2015) control cellular motility, cell shape, polarity, gene 17). The inverse correlation between tau protein and HER2 transcription and cell-cycle activity (6). Several proteins bind expression is interesting as the gene for tau protein is to microtubules and either stabilize or de-stabilize their adjacent to HER2 on the 17q12 amplicon, yet rarely appears polymerization (6). Early preclinical and clinical reports to be co-expressed in HER2-positive tumors. Tau protein suggested that expression of tau protein modulates the expression did not correlate with tumor size, nodal status or sensitivity of malignant cells to chemotherapy, especially to patient age (11, 15-17). The association of Tau protein status taxanes, which are used in breast cancer (7-9). with menopausal status is not conclusive (15, 16). This review describes the mechanisms of drug resistance induced by the tau protein, and the prognostic and predictive Characterization of Tau Protein and values of the tau protein in breast cancer. Resistance to Taxanes Materials and Methods Taxanes, paclitaxel or docetaxel, belong to the spindle poison class. While taxanes bind to tubulin, on the microtubule’s Using the terms “tau protein”, “breast cancer”, “chemotherapy inner surface, microtubule depolymerization is inhibited (7). sensitivity”, “biomarker” and “taxane resistance”, a search was Microtubules, usually dynamically unstable, consequently carried-out on PubMed and Medline in April 2015. The references become stable structures. This disables spindle division and cited in the articles from this search were also evaluated for causes cell-cycle arrest in phase G /G of mitosis (18). The inclusion. Exclusion criteria were articles not published in English 1 2 or French, articles from before 1990, case reports, letters to the cytotoxic effect of paclitaxel also results from the induction editor, and expert opinions. The articles found were divided into of apoptosis by the regulation of tumor-suppressor genes thematic groups: mechanisms of drug resistance induced by tau (p53, B-cell lymphoma-2 (BCL2) and BCL-2–associated X protein, and the prognostic and predictive values of tau protein in protein (BAX)). The efficiency of taxanes has been breast cancer. demonstrated in many types of cancers and they are widely used in breast cancer chemotherapy. Role and Regulation of Tau Protein Kinetic studies showed that tau protein binds to in Breast Epithelium microtubules differently depending on the presence or absence of paclitaxel (19). Tubulin polymerization assays Tau protein has the ability to combine with tubulin. It may revealed that microtubules pre-assembled in the presence of bind to the outer as well as the inner tubulin surface, at the tau protein bound less paclitaxel than microtubules same binding site as paclitaxel, and consequently it competes assembled without tau protein, and this reduced paclitaxel- with this drug. Tau protein is mainly expressed in the induced microtubule polymerization (10, 20). Small- neurons but is also found in normal breast epithelial cells interfering RNA experiments showed that down-regulation (10). Its role in the cancer process is likely due to the of tau protein increased the sensitivity of breast cancer cells importance of microtubules in mitosis. In a study of 1,942 to paclitaxel and docetaxel, minimally increased that to patients with breast cancer, in 43% of patients, tau protein vinorelbine but not that to epirubicin, in vitro. Conversely, expression was greater than that of normal breast epithelium induction of tau protein expression with retinoic acid (i.e. tau protein-positive) (11). increased breast cancer cell resistance to paclitaxel, Tau protein contains an imperfect estrogen-response suggesting a protective effect (9). These data support that the element upstream of its promoter and is an estrogen-induced loss of tau protein expression may render microtubules protein expressed by cultured neurons and breast cancer cell hyper-vulnerable to paclitaxel, or that tau protein, at least lines (10, 12, 13). All studies have found that tau protein partially, protects microtubules from paclitaxel binding. expression correlates closely with estrogen receptor (ER) expression in breast cancer. Tau protein expression was Prognostic Value of Tau Protein Expression significantly more frequent among patients with ER-positive cancer, 57-65% of these tumors were tau protein-positive A prognostic factor is a clinical or biological characteristic compared with 15-30% of those with ER-negative tumors that provides information on the likely outcome of cancer in (11, 14-17). Tau protein positivity was also correlated with an untreated individual. This is helpful for identifying positive progesterone receptor (PR) status, lower histological patients with cancer who are at high risk of metastatic grade and lack of human epidermal growth factor receptor 2 relapse and who are, therefore, potential candidates for (HER2): 63% of PR-positive tumors were tau-positive adjuvant systemic treatments. compared to 36% of PR-negative tumors; 60% of low-grade The first study to assess the prognostic value of tau tumors were tau-positive compared to 30% of high-grade protein mRNA expression in 209 patients with node- tumors; and 2.4% of HER2+ tumors compared were tau- negative, ER-positive disease who received no adjuvant positive compared to 20% of HER2-negative
Recommended publications
  • In Relation to HIFU Treatment on the Growth of Dunning Tumors: Results of a Preliminary Study
    Prostate Cancer and Prostatic Diseases (2008) 11, 181–186 & 2008 Nature Publishing Group All rights reserved 1365-7852/08 $30.00 www.nature.com/pcan ORIGINAL ARTICLE Influence of the docetaxel administration period (neoadjuvant or concomitant) in relation to HIFU treatment on the growth of Dunning tumors: results of a preliminary study P Paparel1,2, JY Chapelon2, A Bissery3, S Chesnais2, L Curiel2 and A Gelet2,4 1Department of Urology, Lyon Sud Hospital, Pierre Be´nite, France; 2INSERM U 556, Lyon, France; 3Department of Biostatistics, Hospices civils de Lyon, Lyon, France and 4Department of Urology, Edouard Herriot Hospital, Lyon, France The objective of this study was to evaluate mechanisms of the synergy between high intensity- focused ultrasound (HIFU) and docetaxel and to determine the best sequence of chemotherapy administration in relation to HIFU treatment for obtaining optimum control of tumoral growth. A total of 15 days after s.c. implantation of the tumor, 52 Copenhagen rats studied were randomized in 4 groups of 13: controls, docetaxel alone (group 1), HIFU and docetaxel concomitant (group 2) and HIFU and docetaxel administered 24 h before treatment (group 3). The number of HIFU shots was calculated in order to cover 75% of the tumor volume. The effects of docetaxel, HIFU and their interaction on tumor volumes were analyzed using a linear regression. The distributions of the tumor volumes were significantly greater in the control group than in the group 1 (P ¼ 0.002) and than in both groups 2 and 3 (Po0.0001 and P ¼ 0.0001). These volumes were also significantly greater in group 1 than in both groups 2 and 3 and there was no difference between the groups 2 and 3.
    [Show full text]
  • A Mitotic Spindle Requirement for DNA Damage-Induced Apoptosis in Chinese Hamster Ovary Cells
    [CANCER RESEARCH 59, 2696–2700, June 1, 1999] A Mitotic Spindle Requirement for DNA Damage-induced Apoptosis in Chinese Hamster Ovary Cells Penny A. Johnson, Paula Clements, Kevin Hudson, and Keith W. Caldecott1 School of Biological Sciences, University of Manchester, Manchester M13 9PT, United Kingdom [P. A. J., P. C., K. W. C.], and Zeneca Pharmaceuticals, Alderley Park, Alderley Edge, United Kingdom [K. H.] ABSTRACT ascribed unequivocally to DNA damage. Furthermore, the use of mutant cells that are defective in specific repair pathways allows Promiscuously reactive electrophilic agents induce DNA and other cellular responses to be ascribed to specific DNA lesions (8–10). cellular damage. DNA repair-defective cells, when compared with genet- DNA single- and double-strand breaks can result in unwanted ically matched, repair-proficient parental cells, provide a means to dis- tinguish cellular responses triggered by individual genetic lesions from recombination events, chromosomal abnormalities, and inhibition of other macromolecular damage. The Chinese hamster ovary (CHO) cell DNA replication and transcription and consequently pose a serious line EM9 is hypersensitive to the alkylating agent ethyl methanesulfonate threat to genetic stability. The mechanisms that couple this damage to (EMS) and is unable efficiently to repair DNA single strand breaks in loss of viability are thus likely to be important to maintaining genetic contrast to parental AA8 cells. EM9 was used to examine how CHO cells stability in vivo. In contrast to double strand breaks, little is known couple unrepaired DNA strand breaks to loss of viability. Flow cytometry about cellular responses to SSBs.2 This lack of understanding is revealed that EMS-treated EM9 cells underwent prolonged cell cycle despite the fact that SSBs arise more frequently than double strand arrest in G2, followed by entry into mitosis, micronucleation, and apop- breaks both spontaneously and in response to genotoxic stress.
    [Show full text]
  • Microtubule Inhibitors Identified Through Non-Biased Screening
    bioRxiv preprint doi: https://doi.org/10.1101/2021.05.13.443985; this version posted June 27, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Microtubule inhibitors identified through non-biased screening 2 enhance DNA transfection efficiency by delaying p62-dependent 3 ubiquitin recruitment 4 5 Megumi Tsuchiya1#, Hidesato Ogawa1#*, Kento Watanabe1, Takako Koujin2, Chie 6 Mori2, Kazuto Nunomura3, Bangzhong Lin3, Akiyoshi Tani3, Yasushi Hiraoka1,2, and 7 Tokuko Haraguchi1,2* 8 9 1Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita 10 565-0871, Japan 11 2Advanced ICT Research Institute Kobe, National Institute of Information and 12 Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe 651-2492, 13 Japan 14 3Graduate School of Pharmaceutical Science, Osaka University, 1-6 Yamadaoka, Suita 15 565-0871, Japan 16 # These authors contributed equally to this manuscript. 17 18 *Correspondence should be addressed to: 19 Hidesato Ogawa, Tel: +81 668794621; Fax: +81 668794622 20 E-mail address: [email protected] 21 Tokuko Haraguchi, Tel: +81 668794621; Fax: +81 668794622 22 E-mail address: [email protected] 23 Short title: MT drugs enhance transfection efficiency 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.05.13.443985; this version posted June 27, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • S41467-021-24841-Y.Pdf
    ARTICLE https://doi.org/10.1038/s41467-021-24841-y OPEN Integrative oncogene-dependency mapping identifies RIT1 vulnerabilities and synergies in lung cancer Athea Vichas1,10, Amanda K. Riley 1,2,10, Naomi T. Nkinsi1, Shriya Kamlapurkar1, Phoebe C. R. Parrish 1,3, April Lo1,3, Fujiko Duke4, Jennifer Chen4, Iris Fung4, Jacqueline Watson4, Matthew Rees 4, Austin M. Gabel 3,5,6,7, James D. Thomas 6,7, Robert K. Bradley 3,6,7, John K. Lee1, Emily M. Hatch 1,7, ✉ Marina K. Baine8, Natasha Rekhtman8, Marc Ladanyi8, Federica Piccioni4,9 & Alice H. Berger 1,3 1234567890():,; CRISPR-based cancer dependency maps are accelerating advances in cancer precision medicine, but adequate functional maps are limited to the most common oncogenes. To identify opportunities for therapeutic intervention in other rarer subsets of cancer, we investigate the oncogene-specific dependencies conferred by the lung cancer oncogene, RIT1. Here, genome-wide CRISPR screening in KRAS, EGFR, and RIT1-mutant isogenic lung cancer cells identifies shared and unique vulnerabilities of each oncogene. Combining this genetic data with small-molecule sensitivity profiling, we identify a unique vulnerability of RIT1- mutant cells to loss of spindle assembly checkpoint regulators. Oncogenic RIT1M90I weakens the spindle assembly checkpoint and perturbs mitotic timing, resulting in sensitivity to Aurora A inhibition. In addition, we observe synergy between mutant RIT1 and activation of YAP1 in multiple models and frequent nuclear overexpression of YAP1 in human primary RIT1-mutant lung tumors. These results provide a genome-wide atlas of oncogenic RIT1 functional inter- actions and identify components of the RAS pathway, spindle assembly checkpoint, and Hippo/YAP1 network as candidate therapeutic targets in RIT1-mutant lung cancer.
    [Show full text]
  • Characterization of Drosophila Cyclin J and Mps1
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2011 Characterization of Drosophila Cyclin J and Mps1 Althoff, Friederike Erika Andrea Abstract: Der fehlerfreie Ablauf des Zellzyklus erfordert eine genaue Regulation an bestimmten Kon- trollpunkten. Die Steuerung stellt sicher, dass der Wechsel von der jeweiligen Zellzyklusphase in die nächste nur möglich ist, wenn die zellulären Vorgänge, die für die vorangehende Zellzyklusphase charak- teristisch sind, sämtlich ohne Fehler abgeschlossen wurden. Cycline, die mit Cyclin-abhängigen Kinasen (Cdks) interagieren, sind für diese Steuerung wesentlich. Die Aktivitäten der verschiedenen Cyclin-Cdk- Komplexe begünstigen bestimmte Übergänge. Sie werden durch komplexe Kontrollpunkt-Signalwege gesteuert, die aktiv bleiben, solange die jeweilige Zellzyklusphase unvollständig oder fehlerbehaftet ist. So können Kontrollpunkt-Signalwege den Ablauf des Zellzyklus unterbrechen und dadurch Zeit zum Nachbessern oder zum Abschluss der zellulären Vorgänge zur Verfügung stellen. Der erste Teil dieser Arbeit beschreibt die Charakterisierung eines bisher wenig untersuchten Cyclins – Cyclin J. Nach seiner ursprünglichen Identifizierung in einem Yeast-two-Hybrid- Screen, wurde angenommen, dass Drosophila Cyclin J an der Kontrolle der spezialisierten früh- embryonalen Mitosen beteiligt ist. Nachträglich wurde jedoch entdeckt, dass es im gesamten Reich der mehrzelligen Tiere konserviert ist. Paraloge kommen daher in vielen Spezies vor, die nicht durch syncytiale Teilungszyklen, welche charakteristischerweise nur in der frühen Embryogenese bei Insekten vorkommen, gehen. Cyclin J muss daher eine allgemeinere Funktion jenseits der spezialisierten Zyklen von Insektenembryos haben. Sein Expressionsmuster in Drosophila zu- grundelegend, schien eine meiotische Funktion wahrscheinlich. Allerdings zeigten genaue Fertilitätstests und meiotische Missegregationstests an Fliegen ohne Cyclin J-Funktion keine Defekte.
    [Show full text]
  • DNA Damage Responses in Mammalian Oocytes
    REPRODUCTIONREVIEW DNA damage responses in mammalian oocytes Josie K Collins and Keith T Jones Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, UK Correspondence should be addressed to K T Jones, Email: [email protected]; J K Collins, Email: [email protected] Abstract DNA damage acquired during meiosis can lead to infertility and miscarriage. Hence, it should be important for an oocyte to be able to detect and respond to such events in order to make a healthy egg. Here, the strategies taken by oocytes during their stages of growth to respond to DNA damaging events are reviewed. In particular, recent evidence of a novel pathway in fully grown oocytes helps prevent the formation of mature eggs with DNA damage. It has been found that fully grown germinal vesicle stage oocytes that have been DNA damaged do not arrest at this point in meiosis, but instead undergo meiotic resumption and stall during the first meiotic division. The Spindle Assembly Checkpoint, which is a well-known mitotic pathway employed by somatic cells to monitor chromosome attachment to spindle microtubules, appears to be utilised by oocytes also to respond to DNA damage. As such maturing oocytes are arrested at metaphase I due to an active Spindle Assembly Checkpoint. This is surprising given this checkpoint has been previously studied in oocytes and considered to be weak and ineffectual because of its poor ability to be activated in response to microtubule attachment errors. Therefore, the involvement of the Spindle Assembly Checkpoint in DNA damage responses of mature oocytes during meiosis I uncovers a novel second function for this ubiquitous cellular checkpoint.
    [Show full text]
  • Defective Sister Chromatid Cohesion Is Synthetically Lethal with Impaired APC/C Function
    ARTICLE Received 21 Nov 2014 | Accepted 19 Aug 2015 | Published 1 Oct 2015 DOI: 10.1038/ncomms9399 OPEN Defective sister chromatid cohesion is synthetically lethal with impaired APC/C function Job de Lange1, Atiq Faramarz1, Anneke B. Oostra1, Renee X. de Menezes2, Ida H. van der Meulen3, Martin A. Rooimans1, Davy A. Rockx1, Ruud H. Brakenhoff4, Victor W. van Beusechem3, Randall W. King5, Johan P. de Winter1,z & Rob M.F. Wolthuis1 Warsaw breakage syndrome (WABS) is caused by defective DDX11, a DNA helicase that is essential for chromatid cohesion. Here, a paired genome-wide siRNA screen in patient- derived cell lines reveals that WABS cells do not tolerate partial depletion of individual APC/C subunits or the spindle checkpoint inhibitor p31comet. A combination of reduced cohesion and impaired APC/C function also leads to fatal mitotic arrest in diploid RPE1 cells. Moreover, WABS cell lines, and several cancer cell lines with cohesion defects, display a highly increased response to a new cell-permeable APC/C inhibitor, apcin, but not to the spindle poison paclitaxel. Synthetic lethality of APC/C inhibition and cohesion defects strictly depends on a functional mitotic spindle checkpoint as well as on intact microtubule pulling forces. This indicates that the underlying mechanism involves cohesion fatigue in response to mitotic delay, leading to spindle checkpoint re-activation and lethal mitotic arrest. Our results point to APC/C inhibitors as promising therapeutic agents targeting cohesion-defective cancers. 1 Department of Clinical Genetics, section Oncogenetics, VU University Medical Center, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands. 2 Department of Epidemiology and Biostatistics, VU University Medical Center, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands.
    [Show full text]
  • Neurymenolide A, a Novel Mitotic Spindle Poison from the New Caledonian Rhodophyta Phacelocarpus Neurymenioides
    marine drugs Article Neurymenolide A, a Novel Mitotic Spindle Poison from the New Caledonian Rhodophyta Phacelocarpus neurymenioides Sofia-Eléna Motuhi 1,2,3, Omid Feizbakhsh 2,4,Béatrice Foll-Josselin 2, Blandine Baratte 2 , Claire Delehouzé 2, Arnaud Cousseau 2,3, Xavier Fant 2, Jeannette Chloë Bulinski 2,5, Claude Elisabeth Payri 1, Sandrine Ruchaud 2 , Mohamed Mehiri 3,* and Stéphane Bach 2,* 1 UMR ENTROPIE (IRD—Université de La Réunion—CNRS), Laboratoire d’Excellence Labex-CORAIL, Institut de Recherche pour le Développement (IRD), BP A5, 98848 Nouméa CEDEX, New Caledonia, France; sofi[email protected] (S.-E.M.); [email protected] (C.E.P.) 2 Sorbonne Université, CNRS, USR 3151, Protein Phosphorylation & Human Diseases, Station Biologique de Roscoff, CS 90074, 29688 Roscoff CEDEX, France; [email protected] (O.F.); [email protected] (B.F.-J.); [email protected] (B.B.); [email protected] (C.D.); [email protected] (A.C.); [email protected] (X.F.); [email protected] (J.C.B.); [email protected] (S.R.) 3 UMR 7272 CNRS, Marine Natural Products Team, Nice Institute of Chemistry (ICN), University Nice Sophia Antipolis, Parc Valrose, 02 F-06108 Nice CEDEX, France 4 Sorbonne Université, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688 Roscoff CEDEX, France 5 Department of Biological Sciences, Columbia University, New York, NY 10027, USA * Correspondence: [email protected] (M.M.); [email protected] (S.B.); Tel.: +33-492-076-154 (M.M.); +33-298-292-391 (S.B.); Fax: +33-492-076-151 (M.M.); +33-298-292-526 (S.B.) Received: 17 December 2018; Accepted: 23 January 2019; Published: 1 February 2019 Abstract: The marine α-pyrone macrolide neurymenolide A was previously isolated from the Fijian red macroalga, Neurymenia fraxinifolia, and characterized as an antibacterial agent against antibiotic-resistant strains that also exhibited moderate cytotoxicity in vitro against cancer cell lines.
    [Show full text]
  • Cancer Chemotherapy: an Overview and Voice Implications
    CARE OF THE PROFESSIONAL VOICE Robert T. Sataloff, Associate Editor Cancer Chemotherapy: An Overview and Voice Implications Jillian Mattioni, Dave A. Opperman, Dominic A. Solimando, Jr., Robert T. Sataloff [Modified from: Robert Thayer Sataloff, Professional Voice: The Science and Art of Clinical Care, 4th edition (San Diego, CA: Plural Publishing, Inc., 2017).] INTRODUCTION There are many treatment options for cancer, and the plethora of che- motherapeutic drugs and other agents continues to grow. Although the Jillian Mattioni Dave A. Opperman current agents possess effective antitumor activity, they come with a multitude of potentially voice impairing side effects with which singing teachers should be familiar. These side effects vary in severity and can affect each individual to different degrees. It is therefore very important to consider the known side effects of the chemotherapeutic agents in use today in regard to their potential to alter vocal characteristics. Successful cancer treatment must always be the paramount consideration; however, if effectiveness is equal, it is reasonable for voice professionals and their health care providers to seek out the treatment with the fewest adverse Dominic A. Solimando Robert T. Sataloff voice effects. The concept of using chemotherapy to cure cancer dates back at least 1500 years. At the time of the Renaissance, many concoctions used for this purpose contained metals such as arsenic, silver, antimony, mer- cury, and bismuth. Although these mixtures had caustic or corrosive effects on skin tumors, they had no effect on malignant neoplasms derived from epithelial tissue such as breast, prostate, or lung. It was not until the introduction of nitrogen mustard and methotrexate in the 1940s that drugs were proven to have a real effect on tumor growth and remission.
    [Show full text]
  • Microtubule Inhibitors Enhance DNA Transfection Efficiency
    bioRxiv preprint doi: https://doi.org/10.1101/2021.05.13.443985; this version posted May 13, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Microtubule inhibitors enhance DNA transfection 2 efficiency through autophagy receptor p62/SQSTM1 3 4 Megumi Tsuchiya1#, Hidesato Ogawa1#*, Kento Watanabe1, Takako Koujin2, Chie 5 Mori2, Kazuto Nunomura3, Bangzhong Lin3, Akiyoshi Tani3, Yasushi Hiraoka1,2, and 6 Tokuko Haraguchi1,2* 7 8 1Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita 9 565-0871, Japan 10 2Advanced ICT Research Institute Kobe, National Institute of Information and 11 Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe 651-2492, 12 Japan 13 3Graduate School of Pharmaceutical Science, Osaka University, 1-6 Yamadaoka, Suita 14 565-0871, Japan 15 # These authors contributed equally to this manuscript. 16 17 *Correspondence should be addressed to: 18 Hidesato Ogawa, Tel: +81 668794621; Fax: +81 668794622 19 E-mail address: [email protected] 20 Tokuko Haraguchi, Tel: +81 668794621; Fax: +81 668794622 21 E-mail address: [email protected] 22 23 Short title: Tubulin inhibitors enhance transfection efficiency 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.05.13.443985; this version posted May 13, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Development of Human Cell Biosensor System for Genotoxicity Detection Based on DNA Damage-Induced Gene Expression
    42 research article Development of human cell biosensor system for genotoxicity detection based on DNA damage-induced gene expression Valerija Zager1, Maja Cemazar1, Irena Hreljac2, Tamara T. Lah2, Gregor Sersa1, Metka Filipic2 1 Institute of Oncology Ljubljana, Department of Radiotherapy and Department of Experimental Oncology, Ljubljana, Slovenia 2 National Institute of Biology, Department for Genetic Toxicology and Cancer Biology, Ljubljana, Slovenia Received 4 February 2010 Accepted 28 February 2010 Correspondence to: Prof. Metka Filipič, Ph.D., National Institute of Biology, Department for Genetic Toxicology and Cancer Biology, Vecna pot 101, SI-1000 Ljubljana, Slovenia. E-mail: [email protected] Disclosure: No potential conflicts of interest were disclosed. Background. Human exposure to genotoxic agents in the environment and everyday life represents a serious health threat. Fast and reliable assessment of genotoxicity of chemicals is of main importance in the fields of new chemicals and drug development as well as in environmental monitoring. The tumor suppressor gene p21, the major down- stream target gene of activated p53 which is responsible for cell cycle arrest following DNA damage, has been shown to be specifically up-regulated by genotoxic carcinogens. The aim of our study was to develop a human cell-based biosensor system for simple and fast detection of genotoxic agents. Methods. Metabolically active HepG2 human hepatoma cells were transfected with plasmid encoding Enhanced Green Fluorescent Protein (EGFP) under the control of the p21 promoter (p21HepG2GFP). DNA damage was induced by genotoxic agents with known mechanisms of action. The increase in fluorescence intensity, due to p21 mediated EGFP expression, was measured with a fluorescence microplate reader.
    [Show full text]
  • Pathways of Chemotherapy Resistance in Castration-Resistant Prostate Cancer
    Endocrine-Related Cancer (2011) 18 R103–R123 REVIEW Pathways of chemotherapy resistance in castration-resistant prostate cancer Kate L Mahon1,2,3, Susan M Henshall3, Robert L Sutherland 3 and Lisa G Horvath1,2,3 1Department of Medical Oncology, Sydney Cancer Centre, Missenden Road, Camperdown, New South Wales 2050, Australia 2University of Sydney, City Road, Camperdown, New South Wales 2006, Australia 3Cancer Research Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, New South Wales 2010, Australia (Correspondence should be addressed to K L Mahon; Email: [email protected]) Abstract Chemotherapy remains the major treatment option for castration-resistant prostate cancer (CRPC) and limited cytotoxic options are available. Inherent chemotherapy resistance occurs in half of all patients and inevitably develops even in those who initially respond. Docetaxel has been the mainstay of therapy for 6 years, providing a small survival benefit at the cost of significant toxicity. Cabazitaxel is a promising second-line agent; however, it is no less toxic, whereas mitoxantrone provides only symptomatic benefit. Multiple cellular pathways involving apoptosis, inflammation, angiogenesis, signalling intermediaries, drug efflux pumps and tubulin are implicated in the development of chemoresistance. A thorough understanding of these pathways is needed to identify biomarkers that predict chemotherapy resistance with the aim to avoid unwarranted toxicities in patients who will not benefit from treatment. Until recently, the search for predictive biomarkers has been disappointing; however, the recent discovery of macrophage inhibitory cytokine 1 as a marker of chemoresistance may herald a new era of biomarker discovery in CRPC. Understanding the interface between this complex array of chemoresistance pathways rather than their study in isolation will be required to effectively predict response and target the late stages of advanced disease.
    [Show full text]