The Mtorc1/S6K/PDCD4/Eif4a Axis Determines Outcome of Mitosis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Helicase-Independent Activity of Eif4a in Promoting Mrna Recruitment to the Human Ribosome
A helicase-independent activity of eIF4A in promoting mRNA recruitment to the human ribosome Masaaki Sokabea and Christopher S. Frasera,1 aDepartment of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, CA 95616 Edited by Alan G. Hinnebusch, National Institutes of Health, Bethesda, MD, and approved May 5, 2017 (received for review December 12, 2016) In the scanning model of translation initiation, the decoding site and at the solvent side of the mRNA entry channel (14). Importantly, latch of the 40S subunit must open to allow the recruitment and that study showed that a short mRNA that does not extend into the migration of messenger RNA (mRNA); however, the precise molec- entry channel fails to displace eIF3j. A similar observation was also ular details for how initiation factors regulate mRNA accommodation found for initiation mediated by the hepatitis C virus internal ribo- into the decoding site have not yet been elucidated. Eukaryotic some entry site, where an mRNA truncated after the initiation co- initiation factor (eIF) 3j is a subunit of eIF3 that binds to the mRNA don failed to displace eIF3j (11). Taken together, these studies entry channel and A-site of the 40S subunit. Previous studies have suggest a model in which a full accommodation of mRNA in the shown that a reduced affinity of eIF3j for the 43S preinitiation mRNA entry channel of the 40S subunit corresponds to a reduced complex (PIC) occurs on eIF4F-dependent mRNA recruitment. Because affinity of eIF3j for the 40S subunit. This model has allowed us to eIF3j and mRNA bind anticooperatively to the 43S PIC, reduced eIF3j exploit the change in eIF3j affinity for the 43S PIC to quantitatively affinity likely reflects a state of full accommodation of mRNA into the monitor the process of mRNA recruitment. -
In Relation to HIFU Treatment on the Growth of Dunning Tumors: Results of a Preliminary Study
Prostate Cancer and Prostatic Diseases (2008) 11, 181–186 & 2008 Nature Publishing Group All rights reserved 1365-7852/08 $30.00 www.nature.com/pcan ORIGINAL ARTICLE Influence of the docetaxel administration period (neoadjuvant or concomitant) in relation to HIFU treatment on the growth of Dunning tumors: results of a preliminary study P Paparel1,2, JY Chapelon2, A Bissery3, S Chesnais2, L Curiel2 and A Gelet2,4 1Department of Urology, Lyon Sud Hospital, Pierre Be´nite, France; 2INSERM U 556, Lyon, France; 3Department of Biostatistics, Hospices civils de Lyon, Lyon, France and 4Department of Urology, Edouard Herriot Hospital, Lyon, France The objective of this study was to evaluate mechanisms of the synergy between high intensity- focused ultrasound (HIFU) and docetaxel and to determine the best sequence of chemotherapy administration in relation to HIFU treatment for obtaining optimum control of tumoral growth. A total of 15 days after s.c. implantation of the tumor, 52 Copenhagen rats studied were randomized in 4 groups of 13: controls, docetaxel alone (group 1), HIFU and docetaxel concomitant (group 2) and HIFU and docetaxel administered 24 h before treatment (group 3). The number of HIFU shots was calculated in order to cover 75% of the tumor volume. The effects of docetaxel, HIFU and their interaction on tumor volumes were analyzed using a linear regression. The distributions of the tumor volumes were significantly greater in the control group than in the group 1 (P ¼ 0.002) and than in both groups 2 and 3 (Po0.0001 and P ¼ 0.0001). These volumes were also significantly greater in group 1 than in both groups 2 and 3 and there was no difference between the groups 2 and 3. -
Ten Commandments for a Good Scientist
Unravelling the mechanism of differential biological responses induced by food-borne xeno- and phyto-estrogenic compounds Ana María Sotoca Covaleda Wageningen 2010 Thesis committee Thesis supervisors Prof. dr. ir. Ivonne M.C.M. Rietjens Professor of Toxicology Wageningen University Prof. dr. Albertinka J. Murk Personal chair at the sub-department of Toxicology Wageningen University Thesis co-supervisor Dr. ir. Jacques J.M. Vervoort Associate professor at the Laboratory of Biochemistry Wageningen University Other members Prof. dr. Michael R. Muller, Wageningen University Prof. dr. ir. Huub F.J. Savelkoul, Wageningen University Prof. dr. Everardus J. van Zoelen, Radboud University Nijmegen Dr. ir. Toine F.H. Bovee, RIKILT, Wageningen This research was conducted under the auspices of the Graduate School VLAG Unravelling the mechanism of differential biological responses induced by food-borne xeno- and phyto-estrogenic compounds Ana María Sotoca Covaleda Thesis submitted in fulfillment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. dr. M.J. Kropff, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Tuesday 14 September 2010 at 4 p.m. in the Aula Unravelling the mechanism of differential biological responses induced by food-borne xeno- and phyto-estrogenic compounds. Ana María Sotoca Covaleda Thesis Wageningen University, Wageningen, The Netherlands, 2010, With references, and with summary in Dutch. ISBN: 978-90-8585-707-5 “Caminante no hay camino, se hace camino al andar. Al andar se hace camino, y al volver la vista atrás se ve la senda que nunca se ha de volver a pisar” - Antonio Machado – A mi madre. -
Initiation Factor Eif5b Catalyzes Second GTP-Dependent Step in Eukaryotic Translation Initiation
Initiation factor eIF5B catalyzes second GTP-dependent step in eukaryotic translation initiation Joon H. Lee*†, Tatyana V. Pestova†‡§, Byung-Sik Shin*, Chune Cao*, Sang K. Choi*, and Thomas E. Dever*¶ *Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2716; ‡Department of Microbiology and Immunology, State University of New York Health Science Center, Brooklyn, NY 11203; and §A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia Edited by Harry F. Noller, University of California, Santa Cruz, CA, and approved October 31, 2002 (received for review September 19, 2002) Initiation factors IF2 in bacteria and eIF2 in eukaryotes are GTPases In addition, when nonhydrolyzable GDPNP was substituted Met that bind Met-tRNAi to the small ribosomal subunit. eIF5B, the for GTP, eIF5B catalyzed subunit joining; however, the factor eukaryotic ortholog of IF2, is a GTPase that promotes ribosomal was unable to dissociate from the 80S ribosome after subunit subunit joining. Here we show that eIF5B GTPase activity is re- joining (7). quired for protein synthesis. Mutation of the conserved Asp-759 in To dissect the function of the eIF5B G domain and test the human eIF5B GTP-binding domain to Asn converts eIF5B to an model that two GTP molecules are required in translation XTPase and introduces an XTP requirement for subunit joining and initiation, we mutated conserved residues in the eIF5B G translation initiation. Thus, in contrast to bacteria where the single domain and tested the function of the mutant proteins in GTPase IF2 is sufficient to catalyze translation initiation, eukaryotic translation initiation. -
Eif4a Is Stimulated by the Pre-Initiation Complex and Enhances Recruitment of Mrnas Regardless of Structural Complexity
bioRxiv preprint doi: https://doi.org/10.1101/147959; this version posted June 13, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 eIF4A is stimulated by the pre-initiation complex and enhances recruitment of mRNAs regardless of structural 2 complexity 3 Paul Yourik1, Colin Echeverría Aitken1, Fujun Zhou1, Neha Gupta1,2, Alan G. Hinnebusch2,3, Jon R. Lorsch1,3 4 5 1Laboratory on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child 6 Health and Development, National Institutes of Health, Bethesda, MD 20892 7 2Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and 8 Human Development, National Institutes of Health, Bethesda, MD 20892, USA 9 3Corresponding Author 10 11 ABSTRACT 12 eIF4A is a DEAD-box RNA-dependent ATPase thought to unwind RNA secondary structure in the 5'-untranslated 13 regions (UTRs) of mRNAs to promote their recruitment to the eukaryotic translation pre-initiation complex (PIC). We 14 show that the PIC stimulates the ATPase of eIF4A, indicating that the factor acts in association with initiating ribosomal 15 complexes rather than exclusively on isolated mRNAs. ATP hydrolysis by eIF4A accelerates the rate of recruitment for 16 all mRNAs tested, regardless of their degree of secondary structure, indicating that the factor plays important roles 17 beyond unwinding mRNA structure. Structures in the 5'-UTR and 3' of the start codon synergistically inhibit mRNA 18 recruitment, in a manner relieved by eIF4A, suggesting that the factor resolves global mRNA structure rather than just 19 secondary structures in the 5'-UTR. -
Whole Exome Sequencing in Families at High Risk for Hodgkin Lymphoma: Identification of a Predisposing Mutation in the KDR Gene
Hodgkin Lymphoma SUPPLEMENTARY APPENDIX Whole exome sequencing in families at high risk for Hodgkin lymphoma: identification of a predisposing mutation in the KDR gene Melissa Rotunno, 1 Mary L. McMaster, 1 Joseph Boland, 2 Sara Bass, 2 Xijun Zhang, 2 Laurie Burdett, 2 Belynda Hicks, 2 Sarangan Ravichandran, 3 Brian T. Luke, 3 Meredith Yeager, 2 Laura Fontaine, 4 Paula L. Hyland, 1 Alisa M. Goldstein, 1 NCI DCEG Cancer Sequencing Working Group, NCI DCEG Cancer Genomics Research Laboratory, Stephen J. Chanock, 5 Neil E. Caporaso, 1 Margaret A. Tucker, 6 and Lynn R. Goldin 1 1Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; 2Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; 3Ad - vanced Biomedical Computing Center, Leidos Biomedical Research Inc.; Frederick National Laboratory for Cancer Research, Frederick, MD; 4Westat, Inc., Rockville MD; 5Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; and 6Human Genetics Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA ©2016 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2015.135475 Received: August 19, 2015. Accepted: January 7, 2016. Pre-published: June 13, 2016. Correspondence: [email protected] Supplemental Author Information: NCI DCEG Cancer Sequencing Working Group: Mark H. Greene, Allan Hildesheim, Nan Hu, Maria Theresa Landi, Jennifer Loud, Phuong Mai, Lisa Mirabello, Lindsay Morton, Dilys Parry, Anand Pathak, Douglas R. Stewart, Philip R. Taylor, Geoffrey S. Tobias, Xiaohong R. Yang, Guoqin Yu NCI DCEG Cancer Genomics Research Laboratory: Salma Chowdhury, Michael Cullen, Casey Dagnall, Herbert Higson, Amy A. -
A Mitotic Spindle Requirement for DNA Damage-Induced Apoptosis in Chinese Hamster Ovary Cells
[CANCER RESEARCH 59, 2696–2700, June 1, 1999] A Mitotic Spindle Requirement for DNA Damage-induced Apoptosis in Chinese Hamster Ovary Cells Penny A. Johnson, Paula Clements, Kevin Hudson, and Keith W. Caldecott1 School of Biological Sciences, University of Manchester, Manchester M13 9PT, United Kingdom [P. A. J., P. C., K. W. C.], and Zeneca Pharmaceuticals, Alderley Park, Alderley Edge, United Kingdom [K. H.] ABSTRACT ascribed unequivocally to DNA damage. Furthermore, the use of mutant cells that are defective in specific repair pathways allows Promiscuously reactive electrophilic agents induce DNA and other cellular responses to be ascribed to specific DNA lesions (8–10). cellular damage. DNA repair-defective cells, when compared with genet- DNA single- and double-strand breaks can result in unwanted ically matched, repair-proficient parental cells, provide a means to dis- tinguish cellular responses triggered by individual genetic lesions from recombination events, chromosomal abnormalities, and inhibition of other macromolecular damage. The Chinese hamster ovary (CHO) cell DNA replication and transcription and consequently pose a serious line EM9 is hypersensitive to the alkylating agent ethyl methanesulfonate threat to genetic stability. The mechanisms that couple this damage to (EMS) and is unable efficiently to repair DNA single strand breaks in loss of viability are thus likely to be important to maintaining genetic contrast to parental AA8 cells. EM9 was used to examine how CHO cells stability in vivo. In contrast to double strand breaks, little is known couple unrepaired DNA strand breaks to loss of viability. Flow cytometry about cellular responses to SSBs.2 This lack of understanding is revealed that EMS-treated EM9 cells underwent prolonged cell cycle despite the fact that SSBs arise more frequently than double strand arrest in G2, followed by entry into mitosis, micronucleation, and apop- breaks both spontaneously and in response to genotoxic stress. -
Microtubule Inhibitors Identified Through Non-Biased Screening
bioRxiv preprint doi: https://doi.org/10.1101/2021.05.13.443985; this version posted June 27, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Microtubule inhibitors identified through non-biased screening 2 enhance DNA transfection efficiency by delaying p62-dependent 3 ubiquitin recruitment 4 5 Megumi Tsuchiya1#, Hidesato Ogawa1#*, Kento Watanabe1, Takako Koujin2, Chie 6 Mori2, Kazuto Nunomura3, Bangzhong Lin3, Akiyoshi Tani3, Yasushi Hiraoka1,2, and 7 Tokuko Haraguchi1,2* 8 9 1Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita 10 565-0871, Japan 11 2Advanced ICT Research Institute Kobe, National Institute of Information and 12 Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe 651-2492, 13 Japan 14 3Graduate School of Pharmaceutical Science, Osaka University, 1-6 Yamadaoka, Suita 15 565-0871, Japan 16 # These authors contributed equally to this manuscript. 17 18 *Correspondence should be addressed to: 19 Hidesato Ogawa, Tel: +81 668794621; Fax: +81 668794622 20 E-mail address: [email protected] 21 Tokuko Haraguchi, Tel: +81 668794621; Fax: +81 668794622 22 E-mail address: [email protected] 23 Short title: MT drugs enhance transfection efficiency 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.05.13.443985; this version posted June 27, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. -
S41467-021-24841-Y.Pdf
ARTICLE https://doi.org/10.1038/s41467-021-24841-y OPEN Integrative oncogene-dependency mapping identifies RIT1 vulnerabilities and synergies in lung cancer Athea Vichas1,10, Amanda K. Riley 1,2,10, Naomi T. Nkinsi1, Shriya Kamlapurkar1, Phoebe C. R. Parrish 1,3, April Lo1,3, Fujiko Duke4, Jennifer Chen4, Iris Fung4, Jacqueline Watson4, Matthew Rees 4, Austin M. Gabel 3,5,6,7, James D. Thomas 6,7, Robert K. Bradley 3,6,7, John K. Lee1, Emily M. Hatch 1,7, ✉ Marina K. Baine8, Natasha Rekhtman8, Marc Ladanyi8, Federica Piccioni4,9 & Alice H. Berger 1,3 1234567890():,; CRISPR-based cancer dependency maps are accelerating advances in cancer precision medicine, but adequate functional maps are limited to the most common oncogenes. To identify opportunities for therapeutic intervention in other rarer subsets of cancer, we investigate the oncogene-specific dependencies conferred by the lung cancer oncogene, RIT1. Here, genome-wide CRISPR screening in KRAS, EGFR, and RIT1-mutant isogenic lung cancer cells identifies shared and unique vulnerabilities of each oncogene. Combining this genetic data with small-molecule sensitivity profiling, we identify a unique vulnerability of RIT1- mutant cells to loss of spindle assembly checkpoint regulators. Oncogenic RIT1M90I weakens the spindle assembly checkpoint and perturbs mitotic timing, resulting in sensitivity to Aurora A inhibition. In addition, we observe synergy between mutant RIT1 and activation of YAP1 in multiple models and frequent nuclear overexpression of YAP1 in human primary RIT1-mutant lung tumors. These results provide a genome-wide atlas of oncogenic RIT1 functional inter- actions and identify components of the RAS pathway, spindle assembly checkpoint, and Hippo/YAP1 network as candidate therapeutic targets in RIT1-mutant lung cancer. -
Rps3/Us3 Promotes Mrna Binding at the 40S Ribosome Entry Channel and Stabilizes Preinitiation Complexes at Start Codons
Rps3/uS3 promotes mRNA binding at the 40S ribosome entry channel and stabilizes preinitiation complexes at start codons Jinsheng Donga, Colin Echeverría Aitkenb, Anil Thakura, Byung-Sik Shina, Jon R. Lorschb,1, and Alan G. Hinnebuscha,1 aLaboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892; and bLaboratory on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892 Contributed by Alan G. Hinnebusch, January 24, 2017 (sent for review December 15, 2016; reviewed by Jamie H. D. Cate and Matthew S. Sachs) Met The eukaryotic 43S preinitiation complex (PIC) bearing Met-tRNAi rearrangement to PIN at both near-cognate start codons (e.g., in a ternary complex (TC) with eukaryotic initiation factor (eIF)2-GTP UUG) and cognate (AUG) codons in poor Kozak context; hence scans the mRNA leader for an AUG codon in favorable “Kozak” eIF1 must dissociate from the 40S subunit for start-codon rec- context. AUG recognition provokes rearrangement from an open ognition (Fig. 1A). Consistent with this, structural analyses of PIC conformation with TC bound in a state not fully engaged with partial PICs reveal that eIF1 and eIF1A promote rotation of the “ ” the P site ( POUT ) to a closed, arrested conformation with TC tightly 40S head relative to the body (2, 3), thought to be instrumental bound in the “P ” state. Yeast ribosomal protein Rps3/uS3 resides IN in TC binding in the POUT conformation, but that eIF1 physically in the mRNA entry channel of the 40S subunit and contacts mRNA Met clashes with Met-tRNAi in the PIN state (2, 4), and is both via conserved residues whose functional importance was unknown. -
Relevance of Translation Initiation in Diffuse Glioma Biology and Its
cells Review Relevance of Translation Initiation in Diffuse Glioma Biology and its Therapeutic Potential Digregorio Marina 1, Lombard Arnaud 1,2, Lumapat Paul Noel 1, Scholtes Felix 1,2, Rogister Bernard 1,3 and Coppieters Natacha 1,* 1 Laboratory of Nervous System Disorders and Therapy, GIGA-Neurosciences Research Centre, University of Liège, 4000 Liège, Belgium; [email protected] (D.M.); [email protected] (L.A.); [email protected] (L.P.N.); [email protected] (S.F.); [email protected] (R.B.) 2 Department of Neurosurgery, CHU of Liège, 4000 Liège, Belgium 3 Department of Neurology, CHU of Liège, 4000 Liège, Belgium * Correspondence: [email protected] Received: 18 October 2019; Accepted: 26 November 2019; Published: 29 November 2019 Abstract: Cancer cells are continually exposed to environmental stressors forcing them to adapt their protein production to survive. The translational machinery can be recruited by malignant cells to synthesize proteins required to promote their survival, even in times of high physiological and pathological stress. This phenomenon has been described in several cancers including in gliomas. Abnormal regulation of translation has encouraged the development of new therapeutics targeting the protein synthesis pathway. This approach could be meaningful for glioma given the fact that the median survival following diagnosis of the highest grade of glioma remains short despite current therapy. The identification of new targets for the development of novel therapeutics is therefore needed in order to improve this devastating overall survival rate. This review discusses current literature on translation in gliomas with a focus on the initiation step covering both the cap-dependent and cap-independent modes of initiation. -
The Mtorc1-4E-BP-Eif4e Axis Controls De Novo Bcl6 Protein Synthesis in T Cells and Systemic Autoimmunity
ARTICLE DOI: 10.1038/s41467-017-00348-3 OPEN The mTORC1-4E-BP-eIF4E axis controls de novo Bcl6 protein synthesis in T cells and systemic autoimmunity Woelsung Yi1, Sanjay Gupta1, Edd Ricker2, Michela Manni1, Rolf Jessberger3, Yurii Chinenov4,5, Henrik Molina6 & Alessandra B. Pernis1,2,7 Post-transcriptional modifications can control protein abundance, but the extent to which these alterations contribute to the expression of T helper (TH) lineage-defining factors is unknown. Tight regulation of Bcl6 expression, an essential transcription factor for T follicular helper (TFH) cells, is critical as aberrant TFH cell expansion is associated with autoimmune diseases, such as systemic lupus erythematosus (SLE). Here we show that lack of the SLE risk variant Def6 results in deregulation of Bcl6 protein synthesis in T cells as a result of enhanced activation of the mTORC1–4E-BP–eIF4E axis, secondary to aberrant assembly of a raptor–p62–TRAF6 complex. Proteomic analysis reveals that this pathway selectively controls the abundance of a subset of proteins. Rapamycin or raptor deletion ameliorates the aberrant TFH cell expansion in mice lacking Def6. Thus deregulation of mTORC1-dependent pathways controlling protein synthesis can result in T-cell dysfunction, indicating a mechanism by which mTORC1 can promote autoimmunity. 1 Autoimmunity and Inflammation Program, Hospital for Special Surgery, 535 East 70th Street, New York, New York 10021 USA. 2 Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, 1300 York Avenue, Box 65, New York, New York 10021 USA. 3 Institute of Physiological Chemistry, Technische Universität Dresden, Fiedlerstrasse 42, MTZ, 01307 Dresden, Germany.