15. CALCAREOUS NANNOFOSSILS - LEG 15, DEEP SEA DRILLING PROJECT1

William W. Hay, Institute of Marine and Atmospheric Sciences, University of Miami, Miami, Florida and Fred M. Beaudry, NOAA, National Marine Fisheries Service, Monterey, California

INTRODUCTION Chiasmolithus californicus (Sullivan) (ex ) Chiasmolithus consuetus (Bramlette & Sullivan) (ex This account of the calcareous nannoplankton encoun- Coccolithus) tered in cores recovered on Leg 15 of the Deep Sea Drilling Chiasmolithus danicus (Brotzen) (ex Cribrosphaerella) Project is intended to serve as an aid in the selection of Chiasmolithus gigas (Bramlette & Sullivan) (ex Cocco- samples for more detailed studies. Indications of the lithus) abundance and state of preservation of calcareous Chiasmolithus grandis (Bramlette & Riedel) (ex Cocco- nannofossils are given in the sections of this volume dealing lithus) with the description of the cores. This chapter contains (1) Chiasmolithus oamaruensis (Deflandre) (ex Tremalithus) a list of the species recognized; (2) a summary of the Chiasmolithus solitus (Bramlette & Sullivan) (ex highest and lowest occurrence surfaces and zones used to Coccolithus) determine stratigraphic position of samples, with data on Chiasmolithus sp. (isolated rims) the position of each surface in each of the holes cored; (3) a Chiastozygus plicatus Gartner series of tables presenting data on the abundances of the Chiastozygus sp. species recognized in each of the samples examined; and Coccolithus apomnemoneumus Hay & Mohler (4) a special section on the Pleistocene calcareous Coccolithus carteri (Wallich) (ex Coccosphaera) nannofossils found in Holes 147, 148,149, and 154A. Coccolithus cavus Hay & Mohler Coccolithus crassus Bramlette & Sullivan SPECIES RECOGNIZED Coccolithus pataecus Gartner The following list includes all of the species which have ^Coccolithus pelagicus (Wallich) (ex Coccosphaera) been recognized and tabulated in Tables 1 through 30. The Coccolithus pseudocarteri Hay, Mohler, & Wade full species name and author is given with an indication of Coronocyclus nitescens (Kamptner) (ex Umbili- the genus in which the species was originally placed. Species cosphaera) discussed in more detail in the special section on the Coronocyclus serratus Hay, Mohler, & Wade Pleistocene are indicated with an asterisk. The original Cretarhabdus conicus Bramlette & Martini descriptions of the other species can be found by consulting Cretarhabdus crenulatus Bramlette & Martini the annotated indices and bibliographies of the calcareous Cribrosphaera ehrenbergi Arkhangelskü nannoplankton published by Loeblich and Tappan (1966, Cribrosphaera linea (Gartner) (ex Cribrosphaerella) 1968, 1969, 1970a, 1970b). Cruciplacolithus tenuis (Stradner) (ex Heliorthus) Actinozygus splendens (Deflandre) (ex Rhabdolithus) Cyclicargolithus floridanus (Roth & Hay) (ex Cocco- Ahmuellerella octoradiata (Gorka) (ex Discolithus) lithus) Arkhangelskiella costata Gartner *Cyclococcolithina leptopora (Murray & Blackman) (ex Arkhangelskiella cymbiformis Vekshina Coccosphaera) Arkhangelskiella ethmopora Bukry Cyclococcolithina macintyrei (Bukry & Bramlette) (ex Arkhangelskiella parca Stradner Cyclococcolithus) Arkhangelskiella specillata Vekshina Cyclolithella annula (Cohen) (ex Coccolithites) *Braarudosphaera bigelowi (Gran & Braarud) (ex Cylindralithus sp. Pontosphaera) Discoaster adamanteus Bramlette & Wilcoxon Campylosphaera dela (Bramlette & Sullivan) (ex Discoaster aster Bramlette & Riedel Coccolithites) Discoaster asymmetricus Gartner Catinaster calyculus Martini & Bramlette Discoaster aulakos Gartner Catinaster coalitus Martini & Bramlette Discoaster barbadiensis Tan Sin Hok *Ceratolithus cristatus Kamptner Discoaster binodosus Martini Ceratolithus rugosus Bukry & Bramlette Discoaster bollii Martini & Bramlette Ceratolithus tricorniculatus Gartner Discoaster brouweri brouweri Tan Sin Hok (= Discoaster Chiasmolithus bidens (Bramlette & Sullivan) (ex brouweri) Coccolithus) ^Discoaster brouweri rutellus Gartner Discoaster brouweri subsp. tamalis Kamptner (= Discoaster tamalis Kamptner) 1 Research supported by the Oceanography Section, National Discoaster brouweri subsp. tridenus Kamptner (= Science Foundation, NSF Grant GA-31969X. Discoaster tridenus Kamptner)

625 W. W. HAY, F. M. BEAUDRY

Discoaster brouweri subsp. triradiatus Tan Sin Hok (= Helicopontosphaera intermedia (Martini) (ex Helicos- Discoaster triradiatus Tan Sin Hok) phaera) Discoaster challengeri Bramlette & Riedel ^Helicopontosphaera kamptneri Hay & Mohler Discoaster deflandrei Bramlette & Riedel Helicopontosphaera parallela (Bramlette & Wilcoxon) Discoaster diastypus Bramlette & Sullivan (ex Helicosphaera) Discoaster dilatus Hay Helicopontosphaera recta (Haq) (ex Helicosphaera; H. Discoaster divaricatus Hay seminulum ssp. recta) Discoaster druggi Bramlette & Wilcoxon ^Helicopontosphaera sellii Bukry & Bramlette Discoaster exilis Martini & Bramlette ^Helicopontosphaera wallichi (Lohmann) (ex Cocco- Discoaster extensus Hay lithophora) Discoaster gemmeus Stradner Heliolithus kleinpelli Sullivan Discoaster gemmifer Stradner Heliolithus cf. riedeli Bramlette & Riedel Discoaster hamatus Martini & Bramlette Heliorthus concinnus (Martini) (ex Zygolithus) Discoaster kugleri Martini & Bramlette Kamptnerius magnificus Deflandre Discoaster lenticularis Bramlette & Sullivan Kamptnerius punctatus Stradner Discoaster lidzi Hay Lithastrinus grilli Stradner Discoaster lodoensis Bramlette & Riedel Lithraphidites carniolensis Deflandre Discoaster mediosus Bramlette & Sullivan Lithraphidites quadratus Bramlette & Martini Discoaster multiradiatus Bramlette & Riedel "Loxolithus " Noel Discoaster neohamatus Bukry & Bramlette Lucianorhabdus cayeuxi Deflandre Discoaster nephados Hay Markalius astroporus (Stradner) (ex Cyclococcolithus) Discoaster nobilis Martini Marthasterites furcatus (Deflandre) (ex Discoaster) *Discoaster pentaradiatus Tan Sin Hok Marthasterites tribrachiatus (Bramlette & Riedel) (ex Discoaster perclarus Hay Discoaster) Discoaster perplexus Bramlette & Riedel Microrhabdulus decoratus Deflandre Discoaster phyllodus Hay Microrhabdulus stradneri Bramlette & Martini Discoaster quinqueramus Gartner Micula staurophora (Gardet) (ex Discoaster) Discoaster saipanensis Bramlette & Riedel Neococcolithes protenus (Bramlette & Sullivan) (ex Discoaster saundersi Hay Zygolithus) Discoaster sp. Oolithotus antillarum (Cohen) (ex Discolithus) Discoaster sublodoensis Bramlette & Sullivan Parhabdolithus embergeri (Noel) (ex Discolithus) Discoaster subsurculus Gartner Pontosphaera discopora Schiller ^Discoaster surculus Martini & Bramlette ^Pontosphaera scutellum Kamptner Discoaster tani nodifer Bramlette & Riedel ^Pontosphaera spp. Discoaster tani ornatus Bramlette & Wilcoxon Prediscosphaera cretacea (Arkhangelskii) (ex Coccolitho- Discoaster tani tani Bramlette & Riedel phora) Discoaster trinidadensis Hay Prinsius bisulcus Hay & Mohler Discoaster variabilis Martini & Bramlette *Pseudoemiliania lacunosa Kamptner ex Gartner Discoaster woodringi Bramlette & Riedel Reticulofenestra bisecta (Hay, Mohler, & Wade) (ex Discoasteroides kuepperi (Stradner) (ex Discoaster) ) Discolithina japonica Takayami Reticulofenestra cf. pseudoumbilica Gartner (very small *Discolithina cf. macropora (Deflandre) specimens) *Discolithina spp. Reticulofenestra pseudoumbilica Gartner *"Discolithus" phaseolus Black & Barnes Reticulofenestra umbilica (Levin) (ex Coccolithus) *Discosphaera tubifera (Murray & Blackman) (ex *Rhabdosphaera clavigera Murray & Blackman Rhabdosphaera) *Rhabdosphaera stylifera Lohmann Eiffellithus turriseiffeli (Deflandre) (ex Zygolithus) *Scapholithus fossilis Deflandre *Ellipsodiscoaster lidzi Boudreaux & Hay *Scyphosphaera apsteini Lohmann * (Lohmann) (ex Pontosphaera) Sphenolithus abies Deflandre Ericsonia subpertusa Hay & Mohler Sphenolithus anarrhopus Bukry & Bramlette Fasciculithus involutus Bramlette & Sullivan Sphenolithus belemnos Bramlette & Wilcoxon Fasciculithus janii Perch-Nielsen Sphenolithus ciperoensis Bramlette & Wilcoxon Fasciculithus tympaniformis Hay & Mohler Sphenolithus heteromorphus Deflandre * californiensis Kamptner Sphenolithus furcatolithoides Locker *Gephyrocapsa kamptneri Deflandre Sphenolithus moriformis Bronnimann & Stradner * Kamptner Sphenolithus neoabies Bukry & Bramlette *Gephyrocapsa parallela Beaudry & Hay, n. sp. Sphenolithus pacificus Martini *Gephyrocapsa sinuosa Beaudry & Hay, n. sp. Sphenolithus predistentus Bramlette & Wilcoxon *Gephyrocapsa sp. (isolated rims) Sphenolithus radians Deflandre Glaukolithus diplogrammus (Deflandre) (ex Zygolithus) *Syracosphaera clava Beaudry & Hay, n. sp. Helicopontosphaera ampliaperta (Bramlette & Wilcoxon) *Syracosphaera decussata Beaudry & Hay, n. sp. (ex Helicosphaera) * Syracosphaera histrica Kamptner

626 CALCAREOUS NANNOFOSSILS

*Syracosphaera jonesi (Cohen) (ex Cricolithus) Site 146 Syracosphaera labrosa Bukry & Bramlette Calcareous nannoplankton occur in the uppermost part *Syracosphaera pulchra Lohmann of Section 1 and in the core catcher sample of Core 1 * Syracosphaera sp. (Table 1). Both assemblages are similar, and contain Tetralithus aculeus (Stradner) (ex Zygrhablithus) Discoaster brouweri, D. pentaradiatus, D. quinqueramus, Tetralithus cf. mums Martini and other species characteristic of the late Miocene Tetralithus gothicus Deflandre Discoaster quinqueramus Zone. All other samples from Tetralithus gothicus trifidus Stradner Core 1 proved to be barren of these fossils, suggesting that Thoracospahera pelagica Kamptner the top of Section 1 and the core catcher sample may *Thoracosphaera saxea Stradner represent contamination from slumping of layers higher in Tranolithus sp. the hole. Triquetrorhabdulus carinatus Martini Core 2 (Table 1) contains a rich and varied assemblage, Triquetrorhabdulus inversus Bukry & Bramlette enriched in asteroliths, with abundant specimens of Triquetrorhabdulus rugosus Bramlette & Wilcoxon Triquetrorhabdulus carinatus. Typical specimens of Dis- Umbilicosphaera cricota (Gartner) (ex Cyclococcolithus) coaster druggi occur in samples from Sections 2, 3, and 4, *Umbilicosphaera mirabilis Lohmann so that these strata may be assigned to the Discoaster druggi Watznaueria barnesae (Black) (ex Tremalithus) Zone of the Early Miocene. Sections 5 and 6 contain Zygodiscus adamas Bramlette & Sullivan Discoaster cf. druggi as a relatively rare asterolith Zygodiscus pseudoanthophorus Bramlette & Martini component, suggesting that the base of the barrel belongs Zygodiscus sigmoides Bramlette & Sullivan to the Triquetrorhabdulus carinatus Zone (Early Miocene Zygodiscus simplex (Bramlette & Sullivan) (ex Zygrhab- or Late Oligocene). No sphenoliths other than Sphenolithus lithus) moriformis and S. pacificus occur in these samples. Zygodiscus sp. * "Little u" * "Truncate-elongate coccolith"

TABLE 1 OCCURRENCE SURFACES AND ZONES Calcareous Nannofossils in Cores 1 and 2, Hole 146

During investigation of the cores, special attention was Age a. Early Eocene given to determining the position of the highest and lowest Triquetror- occurrences of species of known stratigraphic value. Zones Zone Discoaster habdulus are defined as the interval between successive surfaces of t) druggi carinatus biostratigraphic importance. The philosophy of the ^\^ Sample ^^ ^ methods used here is elucidated in a recent paper by Hay ^^N. Level en © l-H o p— tN en 11 8 (1972). tN ò —i V-> "9 vo

627 W. W. HAY, F. M. BEAUDRY

Emiliania huxleyi Zone LOS Emiliania huxleyi Gephyrocapsa oceanica Zone PLEISTOCENE LOS Gephyrocapsa oceanica "Gephyrocapsa caribbeanica" Zone HOS Discoaster brouweri Discoaster brouweri Zone HOS Discoaster pentaradiatus Discoaster pentaradiatus Zone HOS Discoaster surculus Discoaster surculus Zone HOS Reticulofenestra pseudoumbilica PLIOCENE Reticulofenestra pseudoumbilica Zone HOS Ceratolithus tricorniculatus Discoaster asymmetricus Zone LOS Discoaster asymmetricus Ceratolithus rugosus Zone LOS Ceratolithus rugosus Ceratolithus tricorniculatus Zone HOS Discoaster quinqueramus Discoaster quinqueramus Zone LOS Discoaster quinqueramus Discoaster calcaris Zone HOS Discoaster hamatus Discoaster hamatus Zone LOS Discoaster hamatus Catinaster coalitus Zone LOS Catinaster coalitus Discoaster kugleri Zone LOS Discoaster kugleri MIOCENE Discoaster exilis Zone HOS Sphenolithus heteromorphus Sphenolithus heteromorphus Zone HOS Helicopontosphaera ampliaperta Helicopontosphaera ampliaperta Zone HOS Sphenolithus belemnos Sphenolithus belemnos Zone HOS Triquetrorhabdulus carinatus Discoaster druggi Zone LOS Discoaster druggi Triquetrorhabdulus carinatus Zone HOS Helicopontosphaera recta Sphenolithus ciperoensis Zone HOS Sphenolithus distentus Sphenolithus distentus Zone LOS Sphenolithus ciperoensis OLIGOCENE Sphenolithus predistentus Zone HOS Reticulofenestra umbilica INTERVAL NOT RECOVERED IN CORES TAKEN ON LEG 15 HOS Chiasmolithus oamaruensis Discoaster saipanensis Zone HOS Chiasmolithus solitus Discoaster tani nodifer Zone LOS Discoaster tani nodifer Chiphragmalithus alatus Zone EOCENE LOS Chiphragmalithus alatus Discoaster sublodoensis Zone LOS Discoaster sublodoensis INTERVAL NOT RECOVERED IN CORES TAKEN ON LEG 15 Discoaster diastypus Zone HOS Discoaster multiradiatus Discoaster multiradiatus Zone LOS Discoaster multiradiatus Heliolithus riedeli Zone LOS Heliolithus riedeli Discoaster gemmeus Zone LOS Discoaster gemmeus Heliolithus kleinpelli Zone LOS Heliolithus kleinpelli PALEOCENE Fasciculithus tympaniformis Zone LOS Fasciculithus tympaniformis Chiasmolithus danicus Zone LOS Chiasmolithus danicus Cruciplacolithus tenuis Zone LOS Cruciplacolithus tenuis Markalius astroporus Zone HOS Arkhangelskiella cymbiformis Nephrolithus frequens Zone LOS Tetralithus murus Lithraphidites quadratus Zone LOS Lithraphidites quadratus Chiastozygus initialis Zone LOS Chiastozygus initialis LATE Tetralithus aculeus Zone CRETACEOUS LOS Tetralithus aculeus Kamptnerius magnificus Zone LOS Kamptnerius magnificus Kamptnerius punctatus Zone LOS Kamptnerius punctatus Arkhangelskiella ethmopora Zone LOS Arkhangelskiella ethmopora Figure 1. Surfaces and zones based on calcareous nannofossils used in this study. (HOS = highest occurrence surface; LOS lowest occurrence surface).

628 Figure 2. Relation of cores recovered on Leg 15 to surfaces and zones based on calcareous nannofossils. W. W. HAY, F. M. BEAUDRY

TABLE λ Calcareous Nannofossils in Cores 5 through 8 Hole 146 Age Eocene Paleocene Disçaaster Discoaster Zone diastypus multiradiatus aL ^"""•~-~--^^^ Sample /—. Co o σ\ in CO CO o * * in (# 2 (# 1 (# 3 (3 6 (# 2 i n in in >n in •A in in in in <λ MD c•- 00 00

Total Abundance -1 -1 + 1 +1 0 0 + 1 0 + 1 + 1 0 +^ -1 + 1 +2 0 -1 Campylosphaera dela -1 -1 -1 Chiasmolithus bidens -1 C. californicus -2 -1 -1 -1 -1 C. consuetus -1 -1 C. grandis -1 Coccolithus apomnemoneumus 0 + 1 0 0 + 1 0 + 1 + 1 +1 +1 + 1 + 1 C. cavus -1 -1 +1 -1 0 0 + 1 0 + 1 + 1 +1 + 1 -1 -1 +1 Discoaster cf. aster 0 0 -1 0 -1 0 -1 -1 D. diastypus 0 +1 -1 -1 -1 0 -1 -1 -1 D. gemmeus 0 -1 D. lenticularis 0 -2 D. multiradiatus 0 0 0 -1 -1 0 -1 0 +1 D. nobilus -1 -2 + + + Ericsonia subpertusa -1 0 + 0 0 +1 +1 -1 +1 +1 Fasciculithus tympaniformis -1 _2 0 -1 Neococcolithes protenus -1 -1 -1 Sphenolithus anarrhopus _2 0 +1 0 ?

^Discoaster gemmeus or Heliolithus riedeli

No calcareous nannoplankton were found in Cores 3 and The distribution of species in Cores 11 through 41R is 4. Distribution of species in samples from Cores 5 through presented in Table 3. Core 11 contains calcareous 8 is presented in Table 2. Core 5 contains sparse to good nannoplankton fossils below 140 cm in Section 1. Higher assemblages, with the calcareous nannofossils becoming samples contain either no calcium carbonate, or, between more abundant and better preserved toward the base of 114 and 138 cm, contain planktonic foraminifera and a Section 1 and in Section 2. The highest occurrence of mass of minute carbonate particles not recognizable as Discoaster multiradiatus lies between the rocks numbered calcareous nannoplankton. Below 140 cm, Cretaceous 20 and 23 [Samples 146-5-1 (#20) and 146-5-6(#23)] in calcareous nannoplankton appear, becoming more abun- Section 1. Higher samples contain Discoaster diastypus and dant and diverse with depth. Only Micula and Tetralithus a generally sparse assemblage of coccoliths. They may be sp. are present at 140 cm; Watznaueria barnesae appears at referred to the Discoaster diastypus Zone (Early Eocene) 142 cm, and a more diverse assemblage is present in Section suggested in the Leg 3 report (Bukry and Bramlette, 1970) 2. None of the Late Maestrichtian marker species are and consisting of the interval between the highest present. Cores 12 and 13 contain the same sort of occurrence of Discoaster multiradiatus and the highest assemblage as the lower part of Core 11, with species occurrence of Discoaster diastypus. Lower samples from diversity reaching a maximum of about ten in Section 4 of Section 1, and samples from Section 2 belong to the upper Core 13. Here, specimens resembling the early specimens of part of the Discoaster multiradiatus Zone (Late Paleocene Lithraphidites quadratus from the Ripley Formation in or Early Eocene). Core 6 yielded only sparse assemblages of Alabama are present, and a tentative assignment to the the Discoaster multiradiatus Zone. The lower part of the Lithraphidites quadratus Zone of Cepek and Hay (1969) Discoaster multiradiatus Zone (Late Paleocene) is well seems possible. represented in Core 7; the samples contain a very high From Core 14 to the base of the hole, the calcareous proportion of asteroliths of the nominate species as nannofossil assemblages are monotonous, with the same compared to coccoliths. Fasciculithus tympaniformis is also long-ranging species present in most samples. The present in Core 7 samples. Only the uppermost part of Core preservation is generally poor; the centers of many 8, the upper 40 cm of Section 1, contains any calcareous coccoliths lack structure, and other specimens appear to nannoplankton fossils. The assemblages are extremely poor, have calcitic overgrowths. Below Core 26, the species consisting of Discoaster gemmeus, Fasciculithus tympani- diversity drops, and only Micula, Watznaueria barnesae, and formis, and a few corroded coccoliths. They belong to Cretarhabdus crenulatus are recognizable. Throughout this either the Discoaster gemmeus Zone or to the Heliolithus section, the groundmass of the rock appears to be riedeli Zone (Middle Paleocene). fragments derived from calcareous nannofossils. Short- Cores 9 and 10 contain siliceous clays devoid of ranged species useful in subdivision of the Upper calcareous nannoplankton fossils. Cretaceous are absent throughout the section, and only

630 TABLE 3 Calcareous Nannofossüs in Cores 11 through 41R, Hole 146

Age Zone

^~~^~•^^ Sample ^^•^^Level

Total Abundance A ctinozygus splendens Arkhangelskiella costata A. cymbiformis A. parca Chiastozygus sp. Cretarhabdus conicus C. crenulatus Cribrosphaera ehrenbergi C. linea Cylindralithus sp. Eiffellithus turriseiffeli Glaukolithus diplogrammus Lithraphidites quadratics L. carniolensis Microrhabdulus decoratus M. stradneri Micula staurophora Prediscosphaera cretacea Tetralithus aculeus T. gothicus T. gothicus trifidus Watznaueria barnesae Zygodiscus pseudoanthophorus Z. sp. TABLE 3 - Continued

Age Zone

"""--~--~^^ Sample """"~^^eyel \ ^^^--^_^ c ^^^ ( ^"*"•^^^ v

Total Abundance Actinizygus splendens Arkhangelskiella costata A. cymbiformis A. parca Chiastozygus sp. Cretarhabdus conicus C. crenulatus Cribrosphaera ehrenbergi C. linea Cylindralithus sp. Eiffellithus turriseiffeli Ghukolithus diplogrammus Lithmphidites quadratus L. carniolensis Microrhabdulus decoratus M. stradneri Micula staurophora Prediscosphaera cretacea Tetralithus aculeus T. gothicus T. gothicus trifidus Watznaueria barnesae Zygodiscus pseudoanthophorus Z. sp. TABLE 3 - Continued

Age Zone

Sample Level

Total Abundance Actinozygus splendens Arkhangelskiella costata A. cymbiformis A. parca Chiastozygus sp. Cretarhabdus conicus C. crenulatus Cribrosphaera ehrenbβrgi C. linea Cylindralithus sp. Eiffellithus turriseiffeli Glaukolithus diplogrammus Lithraphidites quadratus L. carniolensis Microrhabdulus decoratus M. stradneri Micula staurophora Prediscosphaera cretacea Tetralithus aculeus T. gothicus T. gothicus trifidus Watznaueria bamesae Zygodiscus pseudoanthophorus Z. sp. W. W. HAY, F. M. BEAUDRY

Tetralithus aculeus, present in Cores 17 and 20, and relatively short-ranging species in the later part of the Late Tetralithus gothicus trifidus, present in Cores 17 through Cretaceous which is resistant to solution. It appears to be 26, enable a more precise stratigraphic determination, particularly valuable as a biostratigraphic indicator in the suggesting Campanian age {Tetralithus aculeus Zone of deep-sea chalks. Cepek and Hay, 1969). Lower cores are referrable to the Late Cretaceous, but narrower age assignment is not Site 147 possible using the calcareous nannoplankton. The entire section cored at this site is Late Pleistocene to The cores taken in surficial sediment during the reentry Recent. The lowest occurrence of Emiliania huxleyi appears procedure are referred to Hole 146A. Only Cores 1 and 3 to be between Cores 7 and 8, so that the upper part of the retrieved sediment suitable for study. Distribution of hole belongs to the E. huxleyi Zone and the remainder to calcareous nannofossils in these cores is presented in the later part of the Gephyrocapsa oceanica Zone. The top Table 4. of Pseudoemiliania lacunosa is reached in the deepest core. The Cenozoic assemblages are generally enriched in The distribution of the calcareous nannofossils in the cores asteroliths, suggesting deposition in the lower part of the from Hole 147 is presented in Table 5, and a more region of calcium carbonate compensation. Disappearance thorough discussion of this interesting suite of cores is of calcareous nannoplankton in the Middle Paleocene presented in the section of this chapter dealing with the accords with Worsley's (1971) hypothesis of migration of Pleistocene. compensation depth associated with the Cretaceous- A subsequent hole, 147C, was drilled in the immediate Tertiary boundary event. The increase in species diversity in vicinity. Only Core 7 from this hole was sampled for the Late Cretaceous below the Cretaceous-Tertiary calcareous nannoplankton, and results of examination of boundary also is in agreement with the Worsley model. The the material is presented in Table 6. reason for the monotony of the Late Cretaceous assemblages is not clear; it may be that only a relatively few Site 148 species inhabited this area or alternatively that the The distribution of calcareous nannofossils in Cores 1 assemblage is the result of selective solution and/or through 29 is presented in Table 7. Coccoliths are abundant recrystallization. Tetralithus gothicus trifidus is the only and well preserved in the younger cores, but tend to be corroded in cores from greater depths. The lowest occurrence of Emiliania huxleyi is in Section TABLE 4 4 of Core 2; Core 1 and the upper part of Core 2 belong to Calcareous Nannofossils in Cores 1 and 3, Hole 146A the E. huxleyi Zone. The highest occurrence of Pseudoemiliania lacunosa is in Age a b c Core 3, with the circular variety ranging higher than the Zone d e 9 elliptical variety, which does not occur above Core 4.

Rhabdosphaera stylifera 0 + uncertain because the highest occurrence of Discoaster Sphenolithus abies ~2 surculus is difficult to fix since the preservation of asteroliths below Core 16 is generally poor. Specimens with a Pleistocene dGephyrocapsa oceanica affinities to D. surculus, but with narrow arms are present bPliocen e eDiscoaster pentaradiatus in Core 19, but the highest typical specimens of this distinctive species were noted in Core 20. Somewhat °Miocene arbitrarily, the interval from the base of Section 2 of Core

634 CALCAREOUS NANNOFOSSILS

TABLE 5 Calcareous Nannofossils in Cores 1 through 18, Hole 147

Age Recent' Zone Emiliania huxleyi

—H o o CN ON ro rò~ o CN ck oó Sample CN ro o i-H

69-70 ) T-H (10-1 1 52-53 ) —H (89-9 0 a\ (50- 5 r (10-1 1 (40-41 ) [80-81 ) [120-1 2 (90-91 ) [50-51 ) [142-1 ' (95-96 ) (30-31 ) ,70-71 ) (100- K (148-1 ' (10-11 ) (50-51 ] (90-91 ) [31-32 ) [i32-i : Level

Total Abundance + 1 + 1 + 1 0 + 1 + 1 +2 + 1 +2 + 1 + 1 0 + 2 +2 + 1 0 +1 + 1 £ +1 0 + 1 + 1 0 0 +1 +1 + 1 0 Braarudosphaera bigelowi Ceratolithus cristatus Coccolithus pelagicus -1 -2 -1 -2 Cyclococcolithina leptopora -1 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 1 Discolithina cf. macropora D. spp. "Discolithus" phaseolus ~l 0 -1 -1 0 0 +1 0 -1 -1 0 0 -1 0 -1 -1 -1 0 0 Discosphaera tubifera Ellipsodiscoaster lidzi + Emiliania huxleyi 0 + 1 +1 + 1 0 + + 1 +2 +2 +1 + 0 +2 +2 +1 0 +1 +1 + 1 +1 0 0 + 1 ü ü +1 +1 + 1 -1 Gephyrocapsa californiensis G. kamptneri

G. oceanica +1 + 1 +1 +1 0 + 1 + 1 +2 +1 +2 +1 +1 0 +2 +1 +1 0 + 1 + 1 + 1 +1 0 +1 +1 0 0 +1 + -2 G. parallela ~l -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 G. sinuosa -2 _2 -2 -1 1 1 1 1 1 1 1 1 1 i 1 1 1 1 1 i 1 1 1 1 1 \ i 0 o 1 Helicopontosphaera kamptneri -1 ~l -1 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 H. sellii -1 -2 H. wallichi -1 -1 -1 Pontosphaera scutellum P spp. -1 Pseudoemiliania lacunosa (circular) P. lacunosa (elliptical) Rhabdosphaera clavigera R. stylifera ~l -1 -1 0 -1 Scapholithus fossilis -2 -1 Scyphosphaera apsteini Syracosphaera clava -1 -2 -2 -1 -1 S. decussata -1 -1 -1 -2 -i -1 S. historica S. jonesi 1 1 1 1 1 1 i 1 i A i 1 i i 1 i 1 1 1 1 1 1 1 i ] o 1 I S. pulchra -2 -2 -2 -2 -2 -2 S. sp. -1 -1 Thoracosphaera saxea -1 -2 -2 _2 Umbilicosphaera mirabilis -1 ~l -1 -1 -1 -1 -1 -1 -1 ~l -2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 i -1 -1 -1 -i 1 "Little u" -2 _2 -1 -2 -1 -1 -1

16 through Core 19 is referred to the Discoaster penta- The volcanic sediments contained in Cores 28 through radiatus Zone, and Cores 20 through 26 and the first three 31 include a few fine-grained layers with mixed calcareous sections of Core 27 are referred to the Discoaster surculus nannofossils of Late Cretaceous (particularly Campanian- Zone. Maestrichtian) and older Tertiary age. The base of the Discoaster surculus Zone can be fixed within Core 27. The highest occurrence of Sphenolithus Site 149 abies lies between the top of Core 27 and the base of Core Core 1 consists only of a catcher sample with a rich, 26, in an unrecovered interval. If the terminology of well-preserved assemblage belonging to the Emiliania Boudreaux and Hay (1969) were used, Core 27 would be huxleyi Zone. referred to the Sphenolithus abies Zone. However, follow- Distribution of calcareous nannofossils for Cores 2 ing the scheme of Martini and Worsley (1971), the highest through 8 is shown in Table 8. Core 2 contains a number of occurrence of Reticulofenestra pseudoumbilica is used to important horizons. The lowest occurrence of Emiliania define the base of the Discoaster surculus Zone, and this huxleyi is between samples from Sections 2 and 3. In the event occurs in the uppermost part of Section 4 of Core 27. first two sections, the abundance of E. huxleyi steadily The lowest occurrence of Pseudoemiliania lacunosa was not diminishes, and the species is replaced by Gephyrocapsa reached above the volcanics encountered at the base of the oceanica as dominant species by the middle of Section 1. hole, so that the sediments of the lower three sections of Gephyrocapsa californiensis has its highest occurrence near Core 27 belong to the uppermost part of the R. pseudo- the base of Section 1. Other species of Gephyrocapsa have umbilica Zone. their highest occurrences in subsequent sections. From this,

635 W. W. HAY, F. M. BEAUDRY

TABLE 5—Continued

Age Recent ? Pleistocene Zone Emiliania huxleyi

Co rH o

Sample 18 ) 23 ) 28 ) 40 ) VO 00 Level o rH rs VO t o o l/•> ro O σoi -=+ 00 rH •St- t T^• IJ-> VO VO CN * •sj • VO VO VO VO VO •* t •* i/-> vo VO vo VO vo t> Total Abundance 0 + 1 + 1 + 1 + 1 + 1 +1 0 +1 + 1 +2 +2 +2 + 1 + 1 + 1 0 + 1 +1 + 1 + 1 0 0 +1 + 1 + 1 Braarudosphaera bigelowi Ceratolithus cristatus Coccolithus pelagicus -1 "I -1 -i -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 i 1 1 1 i i 1 1 1 1 1 1 Cyclococcolithina leptopora 1 I * I -*- 0 0 0 0 0 -2 Discolithina cf. macropora D. spp. -1 0 -1 -1 "Discolithus " phaseolus -1 0 0 -1 0 0 -1 -1 0 -2 0 0 -1 0 -1 0 -1 0 Discosphaera tubifera -2 -1 Ellipsodiscoaster Hdzi -2 Emiliania huxleyi 0 + 1 + 1 + 1 + 1 + 1 ~i 0 0 +1 +1 +2 +2 +2 +1 +1 + 1 +1 + 1 +1 0 -1 0 0 -1 -1 ü Gephyrocapsa californiensis +1 0 G. kamptneri + 1 U 0 +1 -1 0 +1 0 0 +1 u 0 G. oceanica 0 0 + 1 + 1 + 1 + 1 +i +1 0 0 +1 +1 +1 +1 0 +1 + 1 0 0 +1 +1 +1 +1 0 0 +1 +1 G. parallela 1 1 1 i 1 1 1 1 i 1 i i 1 i 1 1 1 -1 -1 -1 G. sinuosa _2 -2 -2 -2 (1 on 1 1 1 i 1 1 i π i 1 i π i i 1 i 1 1 π 1 1 1 1 n 1 o 1 2 Helicopontosphaera kamptneri 1 1 1 i 1 1 1 i i 1 i i 1 i 1 i 1 1 i 1 1 1 i 1 1 1 I H. sellii A H. wallichi Pontosphaera scutellum P. spp. -1 -1 -1 Pseudoemiliania lacunosa (circular) P. lacunosa (elliptical) Rhabdosphaera clavigera R. stylifera 0 -1 0 -l -1 -1 -1 -1 0 -1 0 Scapholithus fossilis -1 -2 -1 -1 -1 -1 -1 -2 -1 Scyphosphaera apsteini Syracosphaera clava -1 -1 -2 -1 i i i i i i i 1 i 1 i i -l -1 -2 S. decussata -1 "I -1 -2 -1 -2 -l -1 -1 -1 -1 -l -1 -1 -1 S. historica S. jonesi -1 -1 0 -1 -1 -l -i -1 -1 -1 0 0 0 -1 -1 -1 0 0 -1 -1 -1 0 -1 — 1 -1 S. pulchra -2 -2 _2 -2 -1 -l -1 0 -1 -1 S. sp. -1 -1 -1 -1 Thoracosphaera saxea -2 -2 -2 1 1 i i i i i 1 1 1 1 i 1 1 1 1 Umbilicosphaera mirabilis -1 -1 π I I -*• "Little u" -1 -1 -1 -1 -1 -l -i -1 -1 -2 _2 -1 -1 -l -1 -1 it would appear that the sequence of events in this core number of more exotic species of Quaternary nanno- duplicates that found in cores from Sites 147 and 148, and plankton are present here, including Discoaster perplexus that a fine stratigraphic breakdown may be possible in this and Oolithotus antillarum. Core 5 is similar to Core 4. Core part of the Pleistocene. That the sequence is the same here 6 presents a complex picture. No less than four calcareous is somewhat remarkable because of the considerable dis- nannoplankton zones are represented in this core, and the turbance of the cored material. Sections 1 and 2 of this distributional sequence is that expected. Section 2 contains core can be referred to the Emiliania huxleyi Zone; the assemblages typical of the Gephyrocapsa oceanica Zone. lower part of the core belongs to the Gephyrocapsa Section 3, however, contains Gephyrocapsa caribbeanica oceanica Zone. Core 3 contains typical, well-preserved Zone assemblages, with the expected relative abundances of assemblages of the Gephyrocapsa oceanica Zone. Circular different species. Section 4 and the upper part of Section 5 specimens of Pseudoemiliania lacunosa appear in the lower contain Discoaster brouweri, which increases in abundance part of Section 2. In the terminology of Gartner (1969), downward; these sediments belong to the D. brouweri the Gephyrocapsa Zone would include the upper part of Zone. The lower part of section 5 and section 6 contain Section 2 of this core and the lower part of the preceding Discoaster pentaradiatus in addition toZλ brouweri, and are core, up to the level of first occurrence of E. huxleyi. referrable to theiλ pentaradiatus Zone. It is very surprising Subjacent cores would belong to the Pseudoemiliania Zone. that the "G. caribbeanica" Zone and theiλ brouweri Zone Core 4 contains more typical Gephyrocapsa oceanica Zone are represented by such a short section, and this is probably assemblages, with Pseudoemiliania becoming more abund- a function of drilling disturbances. The first five sections of ant and present as both circular and elliptical forms. A Core 7, supposedly recovered below Core 6, contain mixed

636 CALCAREOUS NANNOFOSSILS

TABLE S-Continued

Age Pleistocene Zone Gephyrocapsa oceanica

^^^^ Sample c-• Co CO O\ o CO CO -H CO CN 1 ' ^^^^ Level -Λ• oo ,_, —•i on ^H 00 00 —H CO CN CO ts en LO

637 W. W. HAY, F. M. BEAUDRY

TABLE 5-Continued

Age Pleistocene Zone Gephyrocapsa oceanica

CN~ CN T-i t~- ^^^^ Sample o <—1 a r•> r~> o © en 1 \o CN H r—1 —i σ•s CN en T CO CO co co CO co en o 00 ^^\^ Level CO <-> <~• co of) CN "9 o ó 00 t CN ^. IN CO o> r-i CO O O ,—i © in H © T—( on on CO CoO CO n CO o CO >—< o CO *-H CO CN CO σ > CO co co 00 CN xt- r•~ 00 1 1 in in T >n in I—1 T CN CN co en t "? in T CN

638 CALCAREOUS NANNOFOSSILS

TABLE 5- Continued

Age Pleistocene Zone Gephyrocapsa oceanica

tr> o Co in σ co ^^"~-> Sample o _H T—1 ,_, IO π•v CN 00 CN 00 o o o o CN t~- 00 CN 1^ 00 O\ CO <—1 CN CN CO ^~~\. Level CN cλ •~ , IO r- r~ in ó CN co σ\ o o o O *t CN o co in CN [– o CO ^or o CN c~- σ\ O ON σ\ i—< ró on in CN r- 00 CN (N 00 in \D \D S> H CN CO in in ^o CN CN CO in -H ^H CN CN CN co CO T in in CN CN CN CN m co CO co CO co CO "

sections belong to the Helicopontosphaera ampliaperta the Discoaster druggi Zone. The lowest occurrence of Zone. Coronocyclus nitescens is a sparse but consistent typical D. druggi is near the base of Section 3. The lower member of the assemblages. sections (Sections 4 and 5) are characterized by common, Table 11 illustrates the distribution of calcareous nanno- well-preserved calcareous nannofossils, with assemblages fossils in Cores 20 through 30. Core 20 contains assem- typical of the Triquetrorhabdulus carinatus Zone. Cores 24 blages similar to those of Core 18. In Core 21, Sphenolithus through 28 all contain common calcareous nannofossils, belemnos is present in Section 2. The upper part of this assemblages typical of the Triquetrorhabdulus carinatus section seems referrable to the Sphenolithus belemnos Zone. Core 29 represents sudden condensation of the Zone. The highest occurrence of Triquetrorhabdulus cari- stratigraphic section. The uppermost section of the core natus is near the base of Section 2; strata below 94 cm in contains assemblages of the Triquetrorhabdulus carinatus that section are referred to the Discoaster druggi Zone. Zone. Section 2, however, contains Helicopontosphaera Typical specimens of Discoaster druggi are present in truncata and Sphenolithus ciperoensis and belongs to the Sections 4 and 5. All of the higher sections of Core 22 are Sphenolithus ciperoensis Zone. Section 3 is somewhat highly disturbed, only the lower part of Section 6 seems to peculiar in that Triquetrorhabdulus carinatus is not present represent in situ material. The calcareous nannofossils from (its lowest occurrence is in the base of Section 2), but the the base of Section 6 are common and well preserved, and sphenoliths are not typical Sphenolithus distentus as would typical of the Discoaster druggi Zone. Section 3 of Core 23 be expected, but rather seem to be intermediate between contains assemblages of calcareous nannofossils typical of that species and S. predistentus. Nevertheless, Section 3

639 W. W. HAY, F. M. BEAUDRY

TABLE S-Continued

Age Pleistocene Zone Gephyrocapsa oceanica

o oò~ cr, o (S en o o CM en o o r- O CN 00 σ\ (N o (S o o o o o m r~- c•> 00 T—1 >—i in ^^ (N en r~ cs c- —H in r^ —< ro (N IT) ^o cs (S m t t t (N m t in in *? cs CO m in "? \D t- i^ r-• r- r~ oo 00 00 00 00 00 00 00 00 00 00 00 00

Total Abundance +2 + 1 0 +1 +1 + 1 + 1 +1 + 1 +2 + 1 + 1 + 1 +1 +2 + 1 + 1 + 1 +1 +1 + 1 + 1 0 0 +2 0 0 +1 + 1 +1 +1 Braarudosphaera bigelowi -2 -2 _^ Ceratolithus cristatus -1 0 -1 Coccolithus pelagicus -2 Cyclococcolithina leptopora -1 0 -1 -1 -1 -1 -1 -1 -1 0 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 _j -1 Discolithina cf. macropora -1 -1 _j -2 0 D. spp. -1 -1 -1 -1 -1 -2 -1 -1 "Discolithus" phaseolus 0 0 0 0 0 "1 0 -1 0 0 _j 0 0 0 + 1 -1 -1 0 -1 -1 0 Discosphaera tubifera -2 -2 Ellipsodiscoaster lidzi Emiliania huxleyi Gephyrocapsa californiensis + 1 0 +1 0 0 0 0 0 +1 0 +1 +1 +1 + 1 + 1 0 + 1 +1 0 +2 0 0 + 1 0 0 +1 G. kamptneri 0 0 0 0 +1 0 0 + 1 +1 +2 +1 ü 0 ü +2 ü +1 ü + 1 +1 ü + 1 ü ü +2 ü ü + 1 ü 0 +1 G. oceanica +2 +1 0 0 + 1 +1 +1 + 1 0 +2 +1 +1 +1 + 1 0 +1 0 + 1 + 1 +1 + 1 + 1 0 0 + 1 0 0 + 1 +1 +1 +1 G. parallela -2 0 G. sinuosa -1 -1 +1 -1 -1 -1 -2 _2 G. sp. 0 0 + 1 0 0 0 -1 0 0 0 0 0 +1 0 0 0 0 0 0 -1 -1 0 0 0 0 0 0 0 0 0 Helicopontosphaera kamptneri -1 -1 -1 -1 -1 -1 -1 -1 -1 0 -1 0 0 0 0 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 0 -1 H. sellii _l -1 -1 H. wallichi Pontosphaera scutellum P. spp. -1 Pseudoemiliania lacunosa (circular) -1 _2 -2 -2 P. lacunosa (elliptical) Rhabdosphaera clavigera -1 -1 -1 _j -1 -1 -1 -1 -2 -1 -1 -2 -1 -1 -1 -1 -2 R. stylifera -1 0 -1 -1 -1 + 1 -1 -1 Scapholithus fossilis -1 -2 -1 -1 -1 -1 -2 Scyphosphaera apsteini Syracosphaera clava -2 -1 —1 --1 -1 -1 -1 _j -1 S. decussata 0 0 -1 0 -1 0 _2 0 -1 -1 -1 -1 -1 -2 -1 -1 -1 —1 -1 -1 -1 0 -1 -1 -1 -2 -1 -1 _j S. historica _2 -1 -1 -1 -1 S. jonesi -1 0 -1 -1 0 -1 -1 -1 -1 -1 -2 1 -1 -1 -1 -1 0 0 0 0 0 0 0 ~l S. pulchra -2 -1 -1 -1 -1 -1 S. sp. Thoracosphaera saxea -1 -2 -2 Umbilicosphaera mirabilis -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -2 -1 "Little u" _2 -1 -1 -1 -2

may be tentatively referred to the Sphenolithus distentus Chiasmolithus cf. oamaruensis. The specimens tending Zone. Samples from Core 30 are dominated by Spheno- toward C. oamaruensis may indicate that the age of this lithus predistentus and are referred to the Sphenolithus series of samples is late Discoaster saipanensis Zone. Core predistentus Zone. 34 lacks Chiasmolithus cf. oamaruensis, but contains Distribution of calcareous nannofossils in Cores 31 Triquetrorhabdulus inversus; its age is Discoaster saipanen- through 41 is shown in Table 12. Core 31 contains radically sis Zone. Core 35 contains Chiasmolithus solitus and different calcareous nannofossils. Only a few, poorly Sphenolithus radians along with Discoaster barbadiensis, D. preserved specimens are present; the only recognizable saipanensis, Reticulofenestra umbilica, and Chiasmolithus species are Discoaster barbadiensis, D. saipanensis, and grandis. It is assigned to the Discoaster tani nodifer Zone Reticulofenestra umbilica. Assemblages in Core 32 are because of the presence of C. solitus. Calcareous nanno- somewhat more diverse, but not sufficiently so as to permit fossils are rare and poorly preserved in samples from Core any precise age determination. Species include Discoaster 36, and are questionably referred to the Discoaster tani barbadiensis, D. saipanensis, Reticulofenestra umbilica and nodifer Zone. Sphenolithus furcatolithoides. Preservation is somewhat Discoaster saipanensis has its lowest occurrence in the better in Core 33, which contains, in addition to the species interval between Cores 36 and 37. Core 37 still contains found in the superjacent core, Chiasmolithus grandis and Reticulofenestra umbilica, but is referred to the Chiphrag-

640 CALCAREOUS NANNOFOSSILS

TABLE 6 with sparse, generally poorly preserved calcareous nanno- Calcareous Nannofossils in Core 7, Hole 147C fossils occur: Discoaster aulakos, D. cf. exilis, D. brouweri, D. druggi, and Sphenolithus heteromorphus. These upper- Age Pleistocene most calcareous strata seem to represent the Sphenolithus Zone Gephyrocapsa oceanica heteromorphus Zone. Between 110 and 120 cm, assem- o

^ ^^^^ Sample -1 2 •st• rj• 36 ) son with richer assemblages lower in the section. The 0~k0 1 It S. Level © ó ó iA fü CO —I ON ^o I> i—l asteroliths are more typically Early Miocene: Discoaster CN CO co "? in ^o ^£> \ç \O deflandrei, D. aulakos, D. nephados, and D. trinidadensis. t-• t> e-• t~~ r- r~ r^- Sphenolithus heteromorphus is present along with Helico- Total Abundance + 1 +1 +1 + 1 0 0 0 + + 1 0 Coccolithus pelagicus -1 -1 pontosphaera ampliaperta. Below 120 cm, Sphenolithus Cyclococcolithina leptopora 0 -1 -1 -1 -1 -1 + 1 -1 0 belemnos is present, so that the base of this section and the Discolithina spp. -1 top of Section 2 are referred to the Sphenolithus belemnos "Discolithus" phaseolus 0 0 -1 -1 -1 Zone. The highest occurrence of Triquetrorhabdulus Gephyrocapsa oceanica 0 +1 0 + 1 0 0 0 0 + 0 G. californiensis 0 0 0 0 0 0 carinatus is difficult to determine. Its highest occurrence is G. sinuosa +1 0 +1 0 -1 -1 -1 0 0 tentatively placed at about 100 cm in Section 2, so that the G. sp. 0 0 -1 -1 -1 -1 -1 -1 0 base of that section is referred to the Discoaster druggi Helicopontosphaera kamptneri 0 0 -1 -1 -1 -1 Zone. Discoaster druggi, which occurs in Sections 1 and 2, Pontosphaera sp. _2 does not occur in Section 3 so that the latter section is Syracosphaera clava -1 S. decussata -1 -1 -1 -2 referred to the Triquetrorhabdulus carinatus Zone. Core 5 S. jonesi 0 -1 -1 -1 -1 -1 contains assemblages typical of the Triquetrorhabdulus S. pulchra -1 -1 -1 carinatus Zone, with the name species abundant and Umbilicosphaera mirabilis -1 0 -1 -1 -1 -2 Sphenolithus belemnos present. No nannofossils were found in the sample from Core 6. Core 7 again contains an assemblage from the Triquetror- malithus alatus Zone. The name species is not encountered, habdulus carinatus Zone. This is very likely a result of but the position of the samples below the lowest occur- slumping into the hole and is not recorded on the tables. rence of D. saipanensis suggests the C. alatus Zone age. Core No calcareous nannofossils were recovered from Core 8. 38 does not contain Reticulofenestra umbilica; it is referred Distribution of species in Cores 9 and 10 is shown in to the Chiphragmalithus alatus Zone. Core 39 contains Table 15. Core 9 contains a few poorly preserved calcareous generally poor assemblages also referred to the Chiphrag- nannofossils. The assemblages are dominated by Watz- malithus alatus Zone. naueria barnesae and Prediscosphaera cretacea, but Marthas- Cores 40 and 41 contain only a few, poorly preserved terites furcatus is conspicuously present. Lithastrinus grilli, calcareous nannofossils, including Discoaster barbadiensis, Arkhangelskiella ethmopora, and Kamptnerius punctatus D. sublodoensis, Triquetrorhabdulus inversus, Sphenolithus are also present, and Section 1 to near its base is referred radians, and S. furcatolithoides. The cores probably belong questionably to the Kamptnerius punctatus Zone. K. to the Discoaster sublodoensis Zone. punctatus was not found in samples from the base of the Core 42 contains but a very few poorly preserved section, and the lowest part of the core is referred calcareous nannofossils. However, it seems possible to questionably to the Arkhangelskiella ethmopora Zone. Core recognize heavily calcified specimens of Discoaster lodoen- 10 contains somewhat more abundant, slightly better sis among them. In general, the assemblages resemble those preserved, calcareous nannofossils; the assemblages in Sec- of the immediately superjacent cores. These strata may tion 1 resemble those of the base of the superjacent core, belong to the Discoaster lodoensis Zone. but the assemblages from Section 2 contain Arkhangel- skiella specillata, Glaukolithus diplogrammus, and are Site 150 notably lacking Marthasterites furcatus. Cores 1 through 3 (Table 13) contain highly variable In the two cores taken in Hole 150A, the upper core sediment. Some layers yield abundant, diverse, well- contains no useful calcareous nannoplankton. The second preserved coccoliths and discoasters; other layers princi- core yielded two assemblages; one a mixture of Eocene and pally contain discoasters with only a few poorly preserved Pliocene forms, the other apparently indigenous. The latter coccoliths present; and some layers are wholly devoid of contains Discoaster diastypus, D. multiradiatus, Ellipsoli- calcareous nannoplankton fossils. The assemblages all thus distichus, Chiasmolithus californicus, C. consuetus, appear to be derived from the same suite of species, with and other species characteristic of the upper part of the certain forms removed by selective solution. In the more Discoaster multiradiatus Zone. diverse assemblages, Pseudoemiliania lacunosa and Gephy- rocapsa kamptneri dominate. Discoaster brouweri, D. Site 151 pentaradiatus, and D. surculus are present and are referred The distribution of calcareous nannofossils in Cores 1 to the Discoaster surculus Zone. and 2 is presented in Table 16. Core 1 contains a section The distribution of calcareous nannofossils in Cores 4 apparently through the earlier part of the Pleistocene and and 5 is given in Table 14. The top of Section 1 of Core 4 is the latest Pliocene. Section 2 contains Gephyrocapsa barren, but the lower part of this core contains a series of oceanica and Pseudoemiliania lacunosa, and is referrable to beds yielding significantly different assemblages of calcar- the lower part of the Gephyrocapsa oceanica Zone. The eous nannofossils. Between 90 and 110 cm, assemblages lowest occurrence of G. oceanica is between samples from

641 W. W. HAY, F. M. BEAUDRY

TABLE 7 Calcareous Nannofossils in Cores 1 through 29, Hole 148 Age Pleistocene Zone Emiliania huxleyi Gephyrocapsa oceanica

^^^^ Sample •—1 OS 00 CO o '~> Os £*> ,—i in o i—i 1 1 CN CO -jp ^o CO CO CO ^r ó oó [». •^• Λ ¥ CO 4 •* 4 4

642 CALCAREOUS NANNOFOSSILS

TABLE 1-Continued

Age Pleistocene Zone (lephyrocapsa oceanica

H o CO A CO r> >o lθ A iA >A >A \b yb \D ^o yb c-« oò oò oó oó oó oó Total Abundance + 1 +1 + 1 +1 +1 +1 +1 + 1 + 1 + 1 0 +1 +1 + 1 + 1 +1 0 +1 +1 + 1 +1 0 +1 +1 0 0 + 1 +1 +1 +1 +1 0 Braarudosphaera bigelowi -2 ~2 -2 -1 -2 Ceratolithus cristatus -2 ~l ~l -1 -1 -1 -1 -1 -1 C. rugosus Coccolithus pehgicus -2 _i _i 1 _i _i 1 _1 1 i 1 1 i i i 1 i i 1 i i Cyclococcolithina leptopora j. I I I I I -L _1 X X i X X —± 1 o Discoaster adamanteus D. asymmetricus D. brouweri rutellus D. brouweri tamalis D. brouweri tridenus D. brouweri triradiatus D. cf. bollii D. extensus D. cf. surculus -1 -1 D. surculus Discolithina japonica D. cf. macropora -2 -2 -2 D. spp. -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 "Discolithus" phaseolus 0 0 0 0 0 0 0 0 0 0 0 0 0 ~l 0 0 0 0 0 ~l 0 0 0 0 -1 -1 0 Discosphaera tubifera -2 -1 -1 0 ~l -1 -1 ~l Ellipsodiscoaster lidzi 0 0 Emiliania huxleyi Gephyrocapsa californiensis 0 0 0 0 0 +1 0 +1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 G. kamptneri +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 0 +1 +1 +1 0 +1 +1 +1 +1 +1 0 +1 +1 0 0 +1 +1 +1 +1 +1 0 G. oceanica +1 0 +1 +1 +1 0 0 0 0 0 0 +1 0 +1 0 0 0 0 0 0 0 -1 0 0 0 G. parallela G. sinuosa 1 π _1 i n n π 1 fl n n 1 1 1 1 1 1 1 i 1 1 1 1 X 1 L uπ uπ u uπ ' J. u U U u u 1 — 1 1 G. sp. +1 +1 +1 +1 0 0 0 0 +1 +1 0 0 0 0 0 0 -1 0 +1 +1 0 0 0 0 +1 +1 0 0 0 0 Helicopontosphaera kamptneri 0 -1 1 -1 J -1 -1 -1 -1 ~l 0 -l -1 -1 ~i -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 H. sellii ~l H: wallichi -2 Pontosphaera scutellum ~l -2 -1 -1 -1 -1 -1 -1 -1 -1 P. sp. -1 -1 -1 -1 0 -1 -1 -1 ~i -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 Pseudoemiliania lacunosa 0 -1 -1 0 0 0 0 0 0 0 0 0 -l 0 -1 -1 -1 0 0 0 -1 0 0 0 0 -1 0 -1 (circular) P. lacunosa (elliptical) -2 -1 -2 0 0 0 0 0 0 -1 0 ~i 0 -1 -1 -1 -1 0 0 -1 0 0 0 0 0 +1 +1 +1 Reticulofenestra cf. 0 pseudoumbilica R. pseudoumbilica Rhabdosphaera clavigera -1 ~l ~l -1 -1 R. stylifera 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 0 0 0 -1 ~l 0 Scapholithus fossilis \ 1 I I 1 1 1 1 i 1 1 1 1 i 1 1 1 1 _9 _1 1 _1 _1 π 1 — 1 1 i 1 X X 1- X Scyphosphaera apsteini Sphenolithus abies Syracosphaera clava -2 S. decussata 0 0 ~l -1 -1 0 0 -1 ~l -1 0 0 0 -1 0 -1 -1 _1 -1 -1 -1 — 1-1 0 0 -1 S. historica -] S. jonesi -1 _J -1 -1 -I 0 -1 -1 ~l 0 -1 -1 -1 -1 -1 -1 ~l 0 0 -1 S. pulchra S. sp. Thoracosphaera saxea _2 _2 -1 -2 ~l -1 -1 -1 -1 -1 -1 ~l -1 -2 -1 -1 -1 -1 -1 -1 _1 -1 Umbilicosphaera mirabilis 0 _j -1 0 -1 0 0 0 0 -1 -1 0 -1 ü -l -1 -1 -1 -1 ~l -1 0 -1 -1 -1 -1 0 -1 -1 "Little u" -2 -2 -1 -1

643 W. W. HAY, F. M. BEAUDRY

TABLE 1-Continued

Age Pleistocene Zone Gephyrocapsa oceanica

^\. Sample ^~j• —•H r- o o © •

Total Abundance +1 +1 +1 +1 +1 +1 +1 0 0 +1 +1 0 +1 +1 +1 +1 +1 +1 +1 + 1 +1 +1 +1 + 1 0 0 0 +1 +1 +1 0 0 Braarudosphaera bigelowi -2 -2 Ceratolithus cristatus -2 -1 -1 -1 -2 -1 -1 -1 -1 -1 -1 -1 -1 C. rugosus Coccolithus pelagicus -1 -1 — 1 -1 -1 Cyclococcolithina leptopora -1 0 -1 -1 I -1 -1 1 -1 -1 -1 -1 1 1 -1 -1 1 -1 -1 -1 -1 1 -1 ~l -1 -1 1 -1 1 Discoaster adamanteus D. asymmetricus D. brouweri rutellus D. brouweri tamalis D. brouweri tridenus D. brouweri triradiatus D. cf. bollii D. extensus D. cf. surculus D. surculus Discolithina faponica D. cf. macropora -1 -2 -2 D. spp. -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 _i -1 -1 -1 -1 -1 -1 -1 -1 -1 "Discolithus" phaseolus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ~l -1 0 0 0 0 0 0 Discosphaera tubifera -1 -1 ~l Ellipsodiscoaster lidzi -1 Emiliania huxleyi Gephyrocapsa californiensis 0 0 0 0 0 0 +1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 G. kamptneri +1 +1 +1 +1 +1 +1 +1 0 0 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 G. oceanica 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 G. parallela -1 G. sinuosa -1 ~l ~l ~l -1 -1 -1 -1 -1 -1 -1 -1 0 +1 +1 0 0 -1 -1 -1 -1 0 G. sp. 0 0 0 0 -1 0 0 0 +1 0 0 0 +1 +1 +1 0 0 0 0 0 0 +1 +1 0 0 0 0 0 0 0 0 0 Helicopontosphaera kamptneri 1 1 -1 -1 ~l 1 -1 -1 -1 0 1 -1 1 -1 -1 -1 1 -1 -1 -1 ~l -1 0 -1 0 -1 1 0 1 -1 1 1 H. sellii -1 ~l ~l _1 -1 -1 -1 -1 H. wallichi Pontosphaera scutellum -1 -1 — 1 -1 -1 -1 ~l -1 -1 -1 -1 -1 -1 -1 -1 P. sp. ~l -1 -1 -1 -1 -1 - 1 -1 -1 -1 ~l ~l -1 0 -1 -1 -1 -1 Pseudoemiliania lacunosa 0 0 0 0 -1 -1 0 -1 -1 0 0 0 0 -1 _1 -1 0 0 0 -1 (circular) P. lacunosa (elliptical) 0 0 0 -1 -1 -1 0 -1 -1 0 +1 +1 0 0 -1 0 0 0 0 0 0 0 Reticulofenestra cf. pseudoumb ilica R. pseudoumbilica Rhabdosphaera clavigera -1 -1 -1 R. stylifera ~l -1 -1 0 0 -1 -1 -1 -1 0 0 -1 0 0 0 -1 -1 0 0 -1 Scapholithus fossilis -1 -1 -1 -1 ~l -1 -1 -1 -1 Scyphosphaera apsteini -1 -1 -1 ~l Sphenolithus abies -2 Syracosphaera clava -1 S. decussata ~l 0 -1 -1 -1 -1 -1 -1 ~l -1 0 -1 -1 1 -1 -1 -1 -1 -1 ~l -1 0 0 0 ~l -1 -1 S. historica S. jonesi -1 -1 -1 -1 -1 -1 -1 ~l -1 -1 -1 -1 -1 -1 S. pulchra -1 S. sp. Thoracosphaera saxea -1 -1 -1 -1 _1 -1 -1 -1 _1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 Umbilicosphaera mirabilis -1 -1 -1 ~l -1 -1 -1 -1 -1 -1 0 _1 -1 -1 _1 -1 0 0 0 -1 — 1 0 0 -1 ~l "Little u" -1

644 CALCAREOUS NANN0F0SSILS

TABLE 7- Continued

Age Pleistocene Zone a "Gephyrocapsa caribbeanica"

i-H Co <^ en >o H &\ —i en o

Total Abundance 0 0 +1 +1 + 1 0 +1 0 0 0 0 0 0 0 0 0 0 0 +1 +1 +1 0 0 0 0 +1 0 0 0 0 +1 +1 Braarudosphaera bigelowi Ceratolithus cristatus -1 -1 -1 -1 -1 -1 C. rugosus Coccolithus pelagicus -1 -2 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 _J _1 -1 i _i 1 _1 i _1 1 i 1 1 i 1 1 1 1 1 1 1 1 1 1 1 i 1 i 1 Cyclococcolithina leptopora 1 X — X X X X X "~l "~l ~l — X X X Discoaster adamanteus —x —x —x —x —x D. asymmetricus D. brouweri rutellus D. brouweri tamalis D. brouweri tridenus D. brouweri triradiatus D. cf. bollii D. extensus D. cf. surculus -1 -1 D. surculus Discolithina japonica D. cf. macropora -1 -2 -1 D. spp. -1 -1 -1 -1 -1 "Discolithus " phaseolus -1 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Discosphaera tubifera Ettipsodiscoaster lidzi Emiliania huxleyi Gephyrocapsa californiensis 0 0 0 0 0 0 0 0 0 0 0 G. kamptneri 0 0 +1 +1 +1 0 +1 +1 +1 +1 +1 +1 0 G. oceanica 0 0 -1 G. parallela -2 i _1 _1 1 1 1 1 1 1 1 i i 1 1 1 1 1 i 1 G. sinuosa o o o 1 X X un ~ ~l 1 —x —x X , X ~ —x X X G. sp. +1 0 0 0 -1 0 -1 0 0 0 +1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Helicopontosphaera kamptneri -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 2 -1 -1 -1 -1 1 -1 -1 -1 I -1 H. sellii -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 H. wallichi Pontosphaera scutellum 2 1 1 1 1 i i 1 1 t 1 1 1 1 1 1 1 1 1 1 _1 X X —x 1 — 1 ~l — 1 — 1 — 1 ~~l ~~l —x —x X — 1 P. sp. -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 Pseudoemiliania lacunosa -1 -1 0 0 0 0 0 -1 0 -1 0 0 0 -1 (circular) P. lacunosa (elliptical) 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 Reticulofenestra cf. pseudoumbilica R. pseudoumbilica Rhabdosphaera clavigera -1 R. stylifera -1 -1 -1 0 0 -1 -1 -1 0 0 -1 0 0 Scapholithus fossilis -1 -1 -1 -2 -1 -1 — 1 Scyphosphaera apsteini rr -1 -1 Sphenolithus abies Syracosphaera clava -1 -1 _1 -1 1 1 1 _1 _i 1 1 1 1 1 1 1 i 1 i i 1 _1 1 1 _1 S. decussata o o J- X X X X X X X X X X 1 X S. historica —x ~x —x S. jonesi -1 -1 -1 -1 -1 -1 -1 -1 -1 _j -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 S. pulchra S. sp. Thoracosphaera saxea -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 _1 -1 -1 -1 Umbilicosphaera mirabilis -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 "Little u" -2 -2

^Gephyrocapsa oceanica

645 W. W. HAY, F. M. BEAUDRY

TABLE 1-Continued

Age Pleistocene Pliocene Zone "Gephyrocapsa caribbeanica' D brouweri D. pentaradiatuf

T—< rH o oó "-H o'-H o 00 ò enó oO•N CTv T-H 1/0 4 \D 1en" ò1/0 ^o A 1/0 1/0 iA 'A iA •A 1/0 lA iA 1/0 iA ^D \b t~- h- > Total Abundance 0 0 0 +1 +1 +1 0 +1 * 0 +1 +1 £ 1 0 + 1 +1 +1 0 0 +1 0 +1 0 0 0 0 0 0 0 0 0 Braarudosphaera bigelowi Ceratolithus cristatus -1 -1 -l -2 -1 -1 -1 -1 -1 -1 C. rugosus -1 Coccolithus pelagicus -1 -1 -1 -1 -1 -1 _2 ~l -1 -1 -l -1 1 -2 -1 -1 -1 -1 -1 1 -1 -1 -1 1 _1 Cyclococcolithina leptopora -1 -1 _1 -1 1 -1 -1 -1 -1 -1 -1 ~l -l -1 -1 -1 -1 -1 -1 -1 -1 —1 0 -1 ~l -1 -1 -1 Discoaster adamanteus -2 D. asymmetricus D. brouweri rutellus -1 -2 -1 -l -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 D. brouweri tamalis D. brouweri tridenus D. brouweri triradiatus D. cf. bollii D. extensus -2 I~i c*^ vuy/^u In c 1 1 1 1 1 1 1 1 1 1 1 1 _1 _1 1 _1 _1 1 X 1 1 — 1 1 1 —1 — 1 1 —x — 1 1 X L X D. surculus Discolithina japonica D. cf. macropora -2 _2 -2 D. spp. _i -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 "Discolithus" phaseolus 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 Discosphaera tubifera Ellipsodiscoaster lidzi Emiliania huxleyi Gephyrocapsa californiensis 0 0 0 0 0 0 0

G. kamptneri 0 +1 0 +1 +1 h- > h- > +1 +1 +1 0 0 0 0 G. oceanica G. parallela G. sinuosa -1 -1 -1 -1 -1 -1 ~l -1 0 1 -1 G. sp. 0 0 0 0 0 0 0 0 _J 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Helicopontosphaera kamptneri -1 -1 -1 -1 -1 -1 -1 0 _J -1 _2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 _]. -1 -1 -1 1 ~l 0 H. sellii 1 1 1 1 1 1 i 1 i i 1 1 1 1 i 1 _i _1 1 _1 — x — 1 "1 — 1 —1 — 1 —i ~l — X ~l — 1 — 1 L — x — 1 X 1 X L H. wallichi Pontosphaera scutellum -1 -1 -1 -1 _J ~l -1 -1 -1 1 -1 -1 -1 _J -1 -1 -1 -1 -1 -1 -1 P. sp. -1 -1 -1 -1 ~l -1 -1 -1 Pseudoemiliania lacunosa -1 0 0 -1 ~l -1 ~l 0 0 0 0 0 0 0 -1 0 -1 0 0 . (circular) P. lacunosa (elliptical) 0 0 0 0 -1 -1 0 0 0 0 0 0 0 0 0 +1 0 0 +1 Reticulofenestra cf. pseudoumbilica R. pseudoumbilica Rhabdosphaera clavigera 0 R. stylifera -1 -1 0 0 0 -1 0 -1 -1 0 -1 0 0 0 0 0 Scapholithus fossilis -1 Scyphosphaera apsteini -2 -1 -1 -1 -1 Sphenolithus abies Syracosphaera clava 7 S. decussata -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 S. historica S. jonesi -1 -1 -1 -1 0 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 ~l -1 -1 -1 -1 -1 -1 ~i -1 S. pulchra S. sp. Thoracosphaera saxea -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 Umbilicosphaera mirabilis -1 -1 -1 0 -1 -1 -1 -1 -1 0 +1 0 0 0 0 -1 -1 -1 0 0 -1 -1 -1 -l -1 0 "Little u" -1

646 CALCAREOUS NANNOFOSSILS

TABLE 1-Continued

Age Pliocene Zone D. pentaradiatus Discoaster surculus

647 W. W. HAY, F. M. BEAUDRY

TABLE 1-Continued

Age Pliocene 1 Zone Dis coa

^v. Sample o A vç ò ò r—( VO O >/-> —I iA i—I CO © A o A 1 ^• 5p• JO ^o VJ3 AN <>AN

648 CALCAREOUS NANNOFOSSILS

TABLE 7- Continued the base of Section 2 and the top of Section 3. Sections 3, 4, 5, and the upper part of Section 6 belong to the Age Pliocene Gephyrocapsa caribbeanica Zone. (Note: In the terminol- Zone a R. pseudoumbilica ogy of Gartner [1969], the entire upper part of this core ^• *. Sample would be assigned to the Pseudoemiliania Zone). The I—H o ^\^^ Level o G" o o rΛ o Λ «H r> ^H the Discoaster brouweri Zone. Core 2 lies in the region of rj• is SO H ^ ^H •«. t~L 00 oó σ\ overlap of the ranges of Ceratolithus tricorniculatus and C. ts

649 o

TABLE 8 Calcareous Nannofossils in Cores 2 through 8, Hole 149

Age Pleistocene :'liocene Zone a Gephyrocapsa oceanica b d Mixed e Mixed f (T O ^^^^^ Sample T-H Co m AN T-H so AN C7\ n r>Ao T—1 n VO SO T—1 * sθ ^**•-"»^

"Discolithus" phaseolus +1 0 + 1 0 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +1 0 0 0 0 0 0 0 +1 0 0 0 0 Ellipsodiscoaster lidzi -1 -1 -1 -1 Emiliania huxleyi +2 0 + 1 Gephyrocapsa californiensis 0 0 +1 0 0 0 +1 0 0 0 0 0 0 +1 0 0 0 +1 0 0 +1 +1 0 0 G. kamptneri 0 +1 +2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +1 +1 +1 0 0 0 0 G. oceanica +1 +1 +1 0 0 +1 +1 +1 0 0 0 0 0 -2 G. sinuosa -1 +1 +1 +1 0 +1 +1 0 +1 +1 +1 0 0 +1 0 -1 -1 -1 0 0 0 +1 +1 +1 +1 +1 +2 +1 G. sp. 0 0 0 0 0 +1 0 0 0 +1 0 0 0 0 0 0 +1 0 0 0 0 Helicopontosphaera kamptneri -1 -1 _j -1 0 -1 -1 -1 -1 -1 -1 0 0 _l 0 0 -1 -1 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 H. sellii -1 0 -1 -1 -1 -1 0 -1 -1 -1 Oolithotus antillarum -1 -1 -2 -2 Pontosphaera scutellum -1 -1 -1 -1 -1 -1 -1 -2 -1 -1 -1 -1 -1 P. sp. -1 -1 -1 -1 -1 -1 -1 _J -1 -1 -2 -2 Pseudoemiliania lacunosa (circular) -1 -1 -1 0 -1 0 0 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 P. lacunosa (elliptical) -1 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reticulofenestra cf. pseudoumbilica 0 0 0 0 -1 -1 0 0 0 R. pseudoumbilica Rhabdosphaera clavigera -1 -1 -1 0 R. stylifera 0 0 0 0 0 0 0 0 -1 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 Scapholithus fossilis 0 -1 0 0 0 0 0 0 0 0 -1 0 -1 -1 -1 -1 -1 0 -1 -1 Scyphosphaera apsteini -2 -2 -2 -1 -1 -2 -2 -2 -2 -2 -2 Sphenolithus abies -2 -1 -2 Syracosphaera clava S. decussata 0 -1 0 0 0 _]_ -1 0 S. historica -1 -1 0 -1 0 -1 S. jonesi 0 0 0 0 0 0 -1 0 0 -1 0 0 0 0 0 -1 0 0 0 0 Thoracosphaera pelagica -1 -2 -2 0

'/ ' ft/7 Y£>/J 1 1 1 1 1 i 1 1 1 1 1 1 i 1 1 1 1 1 1 l. ÒUΛCU o 1 1 1 i 1 1 1 1 — x — 1 — L — i — i Umbilicosphaera mirabilis 0 -1 -1 -1 -1 -1 -1 0 0 0 0 0 0 0 0 +1 0 0 0 0 0 +1 0 0 0 0 -1 0 -1 -1 -1 0 -1 0 0 "Little u" -1 -1 -1 aEmiliania huxleyi d& Discoaster pentaradiatus

"Gephyrocapsa caribbeanica" Discoaster surculu.J cDiscoaster brouweri

oB G W. W. HAY, F. M. BEAUDRY

TABLE 9 Calcareous Nannofossils in Cores 9 through 14 (Section 3), Hole 149

Age Pliocene Miocene Zone Discoaster surculus a t c Discoaster calcaris o o (0 0 121 ) 101 ) 130 ) >^^ Sample o o -6(1 2 0-2( 6 4 as as as"9 as as σ-N 6 Total Abundance 0 0 0 -1 +1 -1 -1 0 -1 0 -1 + 1 0 0 0 0 0 -1 0 +1 +1 -1 +1 +1 +1 +1 0 -1 -1 Ceratolithus cristatus -1 -1 -2 -1 C. rugosus -1 -1 _2 _2 -1 -2 -1 -1 -1 C. tricorniculatus -2 -2 -1 -2 Coccolithus pataecus -1 C. pelagicus 0 -1 -1 0 0 -1 -1 -1 0 0 0 0 -1 0 -1 0 Cyclococcolithina leptopora 0 -1 0 0 -1 -1 -2 C. macintyrei -2 ~l -1 -1 -1 -1 -1 Discoaster asymmetricus -1 -1 0 -2 0 0 -1 0 0 -1 -2 0 0 D. bollii -1 -1 0 0 -1 0 D. brouweri calcaris -1 -1 -1 0 D. brouweri rutellus 0 0 0 _2 0 -2 -2 0 -1 0 -1 0 -1 0 0 0 0 -1 0 +1 +1 -1 0 +1 +1 +1 0 0 0 D. brouweri tamalis -1 -1 -1 -2 -1 -1 -1 -2 -1 -1 -2 -2 -2 D. brouweri tridenus -2 0 0 -1 -1 0 D. brouweri triradiatus -2 -1 -2 -2 -2 -2 -2 0 _2 _^ -1 -2 _2 _2 D. challengeri -2 D. extensus -1 -2 -1 0 -1 -1 -1 -1 0 0 -1 0 +1 0 0 0 0 0 D. neohamatus ? 1 0 0 0 ? -1 0 D. pentaradiatus 0 -1 0 -2 +1 -2 -2 0 0 -1 0 0 0 0 0 0 0 0 0 -1 D. quinqueramus -1 -1 +1 +1 -1 +1 D. surculus -1 -1 -1 -1 -2 tl -1 -1 -1 -1 -1 -1 u ü -2 _2 -1 D. variabüis 0 0 0 0 0 "Discolithus" phaseolus 0 Helicopontosphaera intermedia 0 0 0 0 H. kamptneri 0 0 -2 0 ~2 -1 0 0 H. sellü -1 -1 -1 0 0 Pseudoemiliania lacunosa (circular) 0 0 -1 P. lacunosa (elliptical) 0 0 0 0 0 7 Pontosphaera scutellum -2 P. sp. -1 -2 Reticulofenestra cf. pseudoumbilica 0 +1 +1 0 0 0 0 R. pseudoumbilica -1 -1 -1 -1 0 0 -1 -1 Scyphosphaera apsteini -2 -1 Sphenolithus abies 0 0 -1 -1 0 -1 0 0 S. neoabies -1 -2 Triquetrorhabdulus rugosus -2 -1 -1 Umbilicosphaera cricota -1 -1 -2 -2 0 -1 -1

^Reticulofenestra pseudoumbilica cDiscoaster quinqueramus Discoaster asymmetricus

Section 6 of Core 11 contains an assemblage similar to that Site 152 of Section 2 of the superjacent core, but lacking Chiasmoli- The distribution of species in Cores 1 through 9 is shown thus danicus. It does contain Cruciplacolithus tenuis and is in Table 20. In Core 1, the highest occurrence of Discoaster referred to the Cruciplacolithus tenuis Zone. Most of the multiradiatus is between Sections 1 and 2. Assemblages in rest of Section 6 lacks C. tenuis and belongs to the both sections are rich and well preserved. Discoaster Markalius astroporus Zone. diastypus dominates in assemblages from Section 1, which Cores 12 and 13 contain a mixture of lumps of various is referred to the/), diastypus Zone. Section 2 is referred to color in a dark soupy matrix. Individual lithologies were the Discoaster multiradiatus Zone, but is very high in that examined for their nannofossil content. Most contain sparse unit. Core 2 recovered sediments with calcareous nanno- assemblages, but the light green marly chips contain a fossil assemblages very similar to those of the lower part of diverse more or less well-preserved assemblage characteristic Core 1, and referred to the Discoaster multiradiatus Zone. of the Late Cretaceous (Table 19). The highest occurrence of Fasciculithus tympaniformis is

652 CALCAREOUS NANNOFOSSILS

TABLE 10 Calcareous Nannofossils iiv Core 14 (Section 4) through 18, Hole 149 Age Miocene Zone a b c d e f P~(o o

1 o p 106 ) 00 ) | •129 ) "^"^^^ Sample 123 ) | G G o G ^""--^^ Level

15-3 ( 3 3 15-2 ( 15-1 ( 14-4 ( Total Abundance 0 -1 +1 +1 +1 0 +1 +1 0 0 + 1 +1 +1 0 +1 Catinaster calyculus 0 1 C. Coalitus 0 0 ? Coccolithus eopelagicus 0 0 0 -1 0 0 0 0 0 0 0 0 0 C. pelagicus 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 Coronocyclus nitescens _J -1 Cyclicargolithus floridanus +1 0 +1 0 Cyclococcolithina macintryei -1 -1 0 Discoaster adamanteus 0 D. aulakos 0 0 D. bollii -1 -1 -1 -1 0 0 -1 D. brouweri rutellus 0 -1 0 0 0 0 0 0 0 0 0 D. deflandrei 0 0 0 D. divaricatus -1 -1 -1 0 D. exilis -2 -1 -1 -1 0 -1 0 0 0 0 0 0 0 0 D. extensus 0 -1 0 0 0 0 0 D. hamatus 0 D. kugleri -1 0 _1 7 7 ? D. phyllodus -1 D. subsurculus -1 D. trinidadensis -1 D. variabilis -1 0 0 0 0 0 0 Helicopontosphaera ampliaperta -1 H. intermedia -1 -1 Reticulofenestra pseudoumbilica 0 -1 0 0 -1 -1 -1 Sphenolithus abies 0 0 S. heteromorphus 0 -1 0 0 +1

^Discoaster hamatus Discoaster exilis Catinaster coalitus eSphenolithus heteromorphus cDiscoaster kugleri Helicopontosphaera ampliaperta between the recovered sediments of Core 2 and Core 3. contains equally poor calcareous nannofossils, but exclu- Discoaster multiradiatus is present in Core 3, but its sively of Late Cretaceous age. concurrent appearance with F. tympaniformis suggests the Cores 13 through 16 contain common, moderately lower part of the Discoaster multiradiatus Zone. Core 4 well-preserved calcareous nannofossil floras which are more contains assemblages resembling those of Core 3. diverse than those encountered in the Late Cretaceous The core catcher sample of Core 5 contains two kinds of rocks at Sites 146 and 151. They appear to represent the rock, one pink and one gray. The gray rocks contain an interval of the Chiastozygus initialis Zone although the abundant calcareous nannofossil flora with Heliolithus defining species is not present. kleinpelli well developed and well preserved; the H. Cores 17 through 19 contain relatively diverse assem- kleinpelli Zone is indicated. Core 6 contains a similar blages, in which Tetralithus gothicus var. trifidus is con- assemblage. spicuous. This probably represents the Tetralithus aculeus Cores 7 and 8 contain more or less rich, moderately Zone, at least in part. well-preserved calcareous nannofossil assemblages with a Deeper cores (Cores 20 through 24) contain very poor typical early Paleocene aspect, but with Fasciculithus assemblages in which the only species of calcareous tympaniformis present, and are assigned to the Fasciculi- nannofossil present is Watznaueia barnesae, and no precise thus tympaniformis Zone. age assignment is possible. Core 9 contains a typical early Paleocene assemblage, with Chiasmolithus danicus and Cruciplacolithus tenuis, Site 153 and are referred to the Chiasmolithus danicus Zone. The distribution of calcareous nannofossils in Cores 1 Data from Cores 10 through 23 are presented in Table through 3 is shown in Table 22. Discoaster surculus is a rare 21. Samples from Core 10 contain only rare, poorly constituent of Cores 1 and 3. All of the material recovered preserved calcareous nannofossils, with a few Late Cretace- in Core 1 is assigned to the Discoaster surculus Zone. ous forms and some specimens of Paleocene age. Core 11 Gephyrocapsa californiensis and G. kamptneri are present

653 > < TABLE 11 Calcareous Nannofossils in Cores 20 through 30, Hole 149

Age Miocene 9 Oligocene Zone a b Discoaster druggi Triquetrorhabdulus carinatus c i

v Slam nip Co Co Co o o Co Co o Co o o o o Co o Co" o Co o Co o Co o o Co o 00 Co CM t-H i CS o 5N ó •o CO σ\ cλ ó σ\ ON ON σ\ <ó σ\ >Λ ON >A σ\ >Λ σ\ O•N 5-4 6 CO >Λ >o **O \Q c-~ f— oò oò oó 00 00 oo ON ON ON ON ON o

Total Abundance + 1 +1 0 + 1 + 1 +1 +1 + 1 + 1 +1 + 1 0 ± +1 0 + 1 + 1 + 1 +1 +1 +1 + 1 + 1 + 1 0 + 1 +1 + 1 + 1 +1 +1 + 1 +1 +1 Coccolithus eopelagicus -1 0 -1 ~l -1 -1 0 0 0 0 -1 -1 0 0 0 0 -1 0 0 -1 0 0 0 0 0 0 0 C. pelagicus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 Coronocyclus nitescens -1 -1 -1 -1 -1 -1 -2 -1 -1 -1 -1 -1 -1 -1 -1 _1

Cyclicargolithus floridanus +1 0 0 0 0 +1 +1 + 1 +1 +1 +1 0 +1 +1 0 + 1 +1 +1 +1 +1 +1 +1 +1 + 0 + 1 +1 +1 +1 + 1 +1 +1 +1 +1 Discoaster adamanteus -1 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 D. aulakos 0 0 0 -1 D. deflandrei 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 ~l 0 0 0 0 0 0 -1 D. dilatus 0 0 0 0 -1 -1 -1 -1 0 -1 -1 -1 _1 D. druggi 0 -1 -1 -1 -1 D. cf. druggi 0 -1 0 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 D. lidzi -1 -2 D. nephados 0 -1 0 0 0 -1 _j -1 -1 -2 0 0 -1 0 0 0 -1 -1 D. saundersi 0 0 D. tani ornatus -2 -2 -1 -1 D. trinidadensis 0 D. woodringi -1 0 Helicopontosphaera ampliaperta -1 H. parallela -1 -1 -1 -1 -1 H. recta -1 -1 -1 Reticulofenestra bisecta +1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Sphenolithus belemnos 0 -1 S. ciperoensis 0 -1 -1 S. distentus -1 -1 S. heteromorphus 0 0 -1 0 S. moriformis -1 0 -1 0 0 0 0 0 0 +1 -1 0 0 0 -1 0 0 0 0 0 0 S. pacificus 0 0 0 S. predistentus -1 -1 -1 Triquetrorhabdulus carinatus -1 0 -1 -1 0 0 0 0 0 0 0 0 -1 0 -1 0 -1 -1 -1 -1

a d Helicopontosphaera ampliaperta S. distentus b e Sphenolithus belemnos S. predistentus

CS. ciperoensis TABLE 12 Calcareous NannofossUs in Cores 31 through 41, Hole 149

Age Zone 7 Discoaster saipanensis Discoaster tani nodifer Chiphragmalithus alatas Discoaster sublodoensis

Jo o Jo Có~' Jo CO~ Nò <òN

σ\ W. W. HAY, F. M. BEAUDRY

TABLE 13 The distribution of calcareous nannofossils in Cores 8 Calcareous Nannofossils in Cotes 1 through 13, Hole 150 through 11 and the top of Core 12 is presented in Table 24. Core 8 contains a poorly preserved assemblage including Age some very poorly preserved asteroliths which may be Discoaster Discoaster gemmeus and is assigned questionably to the Zone surculus i Discoaster gemmeus Zone. Cores 9 through 11 contain Fasciculithus tympani- "^-~-^^^ Sample o o o formis, and all appear to belong to the Fasciculithus ^^^_^ Level o Co o o ro

t 3-4 i T-H T—1 2-2 1 cm, contains an assemblage characteristic of the Chiasmo- lithus danicus Zone. Lower Paleocene calcareous nanno- Total Abundance +2 0 0 0 -2 -2 Ceratolithus cristatus -1 -2 -1 plankton zones are not present. Coccolithus pelagicus -1 -1 -1 -2 -2 The distribution of calcareous nannofossils in the lower Cyclococcolithina leptopora -1 -1 -1 part of Core 12 and in subjacent cores taken from Hole 153 Discoaster brouweri rutellus 0 0 0 -1 is given in Table 25. The assemblages are poor, with only a D. brouweri tamalis -1 few species represented. Arkhangelskiella cymbiformis is D. pentaradiatus 0 0 0 0 D. surculus -1 -2 -1 -1 present in a sample from 104 to 106 cm in Section 1 of D. cf. surculus -1 Core 12, and Tetralithus cf. murus is present in samples "Discolithus" phaseolus +1 from Cores 12 and 13, suggesting that these sediments are Gephyrocapsa kamptneri +1 0 +1 0 probably Maestrichtian in age. Samples from Cores 15 Helicopontosphaera kamptneri 0 0 0 0 H. sellii 0 through 19 are very poor and most contain only Watz- Pontosphaera scutellum -1 -1 naueria barnesae. P. sp. _J Site 154 Pseudoemiliania Jacunosa (circular) +1 -1 -1 P. lacunosa (elliptical) +1 -1 0 Hole 154 was cored discontinuously to establish the Reticulofenestra cf. pseudoumbilica 0 0 0 0 nature of the section present. Rhabdosphaera stylifera +1 0 -1 Scapholithus fossilis -1 The distribution of calcareous nannofossils in Core 1 is Sphenolithus neoabies -2 indicated in Table 26. The assemblages are moderately well Umbilicosphaera mirabilis -1 -1 -1 preserved. Gephyrocapsa oceanica and Pseudoemiliania lacunosa both occur in all samples from this core indicating that it represents the older part of the Gephyrocapsa oceanica Zone. throughout Core 1. In Hole 148, these species did not The distribution of calcareous nannofossils in Cores 2 overlap withD. surculus, but in Hole 148, G. kamptneri did and 3 is presented in Table 27. The assemblages tend to be occur together with D. surculus. Because these two species somewhat impoverished and relatively poorly preserved, of Gephyrocapsa are so common, some suspicion exists that indicating that dissolution has occurred. An asterolith the material recovered in Core 1 is a mixture of material of species closely resembling Discoaster surculus is present D. surculus Zone age and slightly younger sediment. near the base of Core 2. The higher part of Core 2 is The age of Core 2 is questionable, but Core 3 contains referred to the Discoaster pentaradiatus Zone and the Discoaster quinqueramus and belongs to the Discoaster bases of Core 2 and Core 3 are assigned somewhat quinqueramus Zone. arbitrarily to the Discoaster surculus Zone. Sphenolithus abies and Reticulofenestra pseudoumbilica The calcareous nannofossils found in samples from Cores occur in the lower part of Section 1 of Core 3 so that the 5, 11, and 14 are indicated in Table 28. No diagnostic lower part of Core 3 is referrable to the Reticulofenestra species were found in Cores 5 or 14, but Ceratolithus pseudoumbilica Zone. tricorniculatus occurs in Core 11. Although a zonal The distribution of calcareous nannofossils in Cores 4 assignment cannot be made, a Late Miocene or Early through 7 is shown in Table 23. Core 4 and the upper part Pliocene age is indicated. of Core 5, to the middle of Section 4, contain assemblages Hole 154A was cored continuously and represents a typical of the Sphenolithus heteromorphus Zone. section from Late Pleistocene, or Recent, to Middle Helicopontosphaera ampliaperta was not found but Pliocene. Sphenolithus belemnos occurs in the lower part of Section The distribution of species from Core 1 to the middle of 4, Core 5 and in Section 1, Core 6. Because Triquetror- Core 9 is presented in Table 29. The lowest occurrence of habdulus carinatus occurs throughout Core 6 only, the Emiliania huxleyi is between samples from Sections 2 and 3 basal part of Core 5 can be referred to the Sphenolithus of Core 1; Sections 1 and 2 of Core 1 belong to the belemnos Zone. Emiliania huxleyi Zone. Discoaster druggi was not found in any of the samples The highest occurrence of Pseudoemiliania lacunosa is studied so all of Core 6 is assigned somewhat arbitrarily to near the top of Core 3, but the lowest occurrence of the Triquetrorhabdulus carinatus Zone. Gephyrocapsa oceanica is within Section 6 of Core 4. The Core 7 contains a meager assemblage containing Spheno- entire sequence from Section 3 of Core 1 to the middle of lithus predistentus and referred to the Sphenolithus pre- Section 6 of Core 4 belongs to the Gephyrocapsa oceanica distentus Zone. Zone.

656 CALCAREOUS NANNOFOSSILS TABLE 14 Calcareous NannofossUs in Cores 4 and 5, Hole 150

Age Miocene Zone a b c d e Co Co S A in 4 V) σ\ Os o rH rH AN 0o0 <•r >o Ji "? V ~"~—•—^ 4 Total Abundance 0 -1 0 „! 0 -1 +1 -1 0 0 0 0 0 Coccolithus eopelagicus 0 -1 0 -2 -1 -2 0 -1 0 -1 0 C. pelagicus 0 -1 0 -2 0 0 -1 0 0 -1 -1 Coronocyclus nitescens -1 -2 -1 -1 -1 -1 -1 Cyclicargolithus floridanus 0 -1 0 -1 0 -1 +1 -1 0 0 0 0 0 Discoaster adamanteus -1 -1 -1 -1 -1 D. aulakos -1 0 -1 _2 D. brouweri brouweri -1 ? D. deflandrei 0 -1 0 -1 0 -1 0 -1 -1 0 0 0 D. druggi -2 D. exilis _2 -1 D. lidzi _2 -1 D. nephados 0 0 0 0 -1 -1 -1 D. trinidadensis 0 -1 -1 0 D. woodringi 0 Helicopontosphaera ampliaperta -1 Reticulofenestra bisecta -1 -1 0 -1 0 0 Sphenolithus belemnos -2 -2 -2 -2 S. heteromorphus -1 -1 0 -1 0 -1 -1 S. moriformis -1 0 0 _J -1 S. pacificus -1 Triquetrorhabdulus carinatus +1 -1 -1 0 0 0 0 a d Sphenolithus heteromorphus Discoaster druggi bHelicopontosphaera ampliaperta e Triquetrorhabdulus carinatus cSphenolithus belemnos

TABLE 15 Calcareous NannofossUs in Cores 9 and 10, Hole 150

Age Late Cretaceous Zone a b ? (6T • en 00 100 )

~^~-~^^ Sample -26 ) 00 A

^^-^^ 10- 1 10- 2 10- 1 10- 1 10- 1 σ\ σ\ σ\ 5! 10- 1

Total Abundance 0 + 1 + 1 0 0 -1 0 0 0 +1 0 0 _! Arkhangelskiella ethmopora -2 -2 -2 -2 A. specillata -2 Cretarhabdus crenulatus 0 0 -1 -1 -1 0 0 0 Eiffellithus turriseiffeli -1 0 0 -1 -1 +1 -1 -1 Glaukolithus diplogrammus -2 -1 -1 -1 -1 Kamptnerius punctatus _2 -2 _2 Lithastrinus grilli -2 -2 -2 "Loxolithus" 0 0 0 0 0 -1 0 0 0 0 0 0 Marthasterites furcatus -2 -2 -2 -2 Micula staurophora -1 -1 -1 Parhabdolithus embergeri -2 -1 -2 Prediscosphaera cretacea -1 -1 -1 -1 -1 -1 +1 -1 Tranolithus sp. -2 -1 -1 Watznaueria barnesae 0 +1 +1 0 0 -1 0 0 0 +1 0 0 -1

^Kamptnerius punctatus Arkhangelskiella ethmopora

657 W. W. HAY, F. M. BEAUDRY

TABLE 17 Calcareous Nannofossils in Cores 3 through 9, Hole 151

Age 7 Oligocene

Zone a b c d e f g

^v. Sample CN o o o CO l/•) σ\ 00 CO i-H o V) ON ON co U"> ^- CN i-H 00 O H CO ON ^i-H CoòN CN !"H ON CN o i-H i-H 00 oi-H i-H i-H i-H •7 i-H *? CN CN CN i-H CN CO t (S i-H (N

^Discoaster kugleri Discoaster exilis cSphenolithus heteromorphus Sphenolithus belemnos eDiscoaster druggi Triquetrorhabdulus carinatus ^Sphenolithus ciperoensis

658 CALCAREOUS NANNOFOSSILS

TABLE 18 Calcareous Nannofossils in Cores 10 and 11, Hole 151 TABLE 16 Calcareous Nannofossils in Cores 1 and 2, Hole 151 Age Paleocene

Age Pleistocene Pliocene Zone a b c d

Zone 1 b c d ^v. Sample ^v Level o i-H ^v Sample ^_^ CO CO O

i-H ll-6 < 11-6 1 10-2 (

Co o Co o o Co o Co o ll-6 <

i-H i-H T-H 10- K i-H 10- K σ\

G. oceanica -1 0 c G. sinuosa +1 +1 +1 0 +1 +1 +1 0 Chiasmolithus danicus Helicopontosphaera 0 0 -1 0 0 0 0 0 0 0 -1 _1 Cruciplacolithus tenuis kamptneri H. selli -1 -1 -1 -1 -1 -1 eMarkalius astroporus Pontosphaera -1 -1 -1 -1 -1 discopora P. scutellum -1 -1 -1 -1 -1 -1 -1 TABLE 19 Pseudoemilian ia 0 0 0 0 0 0 0 0 Calcareous Nannofossils in Cores 12 and 13, Hole 151 lacunosa (circular) P. lacunosa (elliptical) 0 0 0 0 0 0 0 0 Age Late Cretaceous Reticulofenestra cf. +1 0 0 0 pseudoumbilica Zone 9 R. pseudoumbilica 0 0 0 0 Rhabdosphaera 0 0 0 0 -1 0 0 0 ^^^^ Sample stylifera ^\^ Level o CN P CO Scapholithus fossilis -1 ^^^^ t^ i-H CO Scyphosphaera -2 -2 ^"^^^ •<^• σ\ oó ^^^^ co CO o *o

659 W. W. HAY, F. M. BEAUDRY

TABLE 20 Calcareous Nannofossils in Cores 1 through 9, Hole 152

Age Paleocene

Zone a Discoaster multiradiatus b (

^•v. Level ,-s 00 U") o o o o CN o o o O O o ( 1"™' i-H i-H i-H SO **© m u^ —* ^H CO 1—o 1 CO o CN o CN r—o< o o U"l G> 00 uo 0- 6 i-H (N o^ CM (N O^ SO o •―1 T—1 00 '~' σ\ cs σ\ σs as r- Cl &\

^Discoaster diastypus Heliolithus kleinpelli cFasciculithus tympaniformis Chiasmolithus danicus

The highest occurrence of Discoaster brouweri is in The highest occurrence of Discoaster surculus is difficult Section 3 of Core 8. The base of Core 4, all of Cores 5, 6, to fix but is within Core 12. The lower two sections of Core and 7, and the top of Core 8 belong to the "Gephyrocapsa 10, Core 11, and the upper part of Core 12 belong to the caribbeanica" Zone. Discoaster pentaradiatus Zone. The distribution of calcareous nannofossils in the lower The highest occurrence of Sphenolithus abies is probably part of Core 9 and subjacent cores through 16 is shown in near the top of Core 15; the highest occurrence of Table 30. Reticulofenestra pseudoumbilica is between samples from The highest occurrence of Discoaster pentaradiatus is Sections 2 and 3 of Core 15. The basal part of Core 12, all between samples from Sections 4 and 5 of Core 10; the of Cores 13 and 14, and the top two sections of Core 15 are lower part of Section 3, and Sections 4, 5, and 6 of Core 9, referred to the Discoaster surculus Zone. Sections 3 and the first four sections of Core 10 belong to the through 5 of Core 15 and Core 16 are referred to the Discoaster brouweri Zone. Reticulofenestra pseudoumbilica Zone.

660 TABLE 22 Calcareous Nannofossils in Cores 1 through 3, Hole 153 TABLE 21 Age Pliocene Miocene Calcareous Nannofossils in Cores 10 through 23, Hole 152 ? Age Zone a b

Zone Chiastozygus initialis Tetralithus aculeus ^-v Sample ^v. Level rH

^"\. Sample rH CO CO CO co n\ as i-H t~ I—1 n in rH CN rH rH OoN 00 vo CO roH rH >-H CO in ON u-> \n t "? có vó vç ó ó c~- °P ó

16-2 i -2 -2

13-1 1 Ceratolithus cristatus -2 -2 16-2 1 16-3 1 22-2 i 22-3 *

15-2 1 17-2 1 -2 22-l i 10- K 10- K 17- K

18-1 ( 18-2 ( CO Coccolithus pelagicus -1 0 -1 0 -1 -1 Total Abundance -2 -1 +1 "I -1 -1 0 0 -1 0 0 0 +1 -1 +1 +1 0 0 0 0 Cyclococcolithina leptopora -1 -1 -1 -1 -1 -1 Ahmuellerella octoradiata -2 Discoaster asymmetricus -2 Arkhangelskiella cymbiformis -2 -2 -1 -2 -2 -2 -1 -1 -2 _2 D. brouweri rutellus -1 0 -2 0 -1 0 -2 -1 -1 A. parca -2 -2 D. brouweri tamalis -2 Chiastozygus spp. -2 -2 D. brouweri triradiatus -2 Cretarhabdus conicus -1 -2 -2 -2 -2 -1 D. extensus -2 -2 C. crenulatus -1 0 0 0 0 0 +1 +1 0 0 0 0 +1 0 -1 -1 0 -1 D. pentaradiatus -1 -1 0 -1 0 -1 -2 Cribrosphaera ehrenbergi 0 -2 -2 -1 -1 -1 -1 D. per clams -2 C. linea 0 0 0 0 0 0 0 +1 0 0 0 0 0 -1 D. quinqueramus 9 -2 -1 -1 Cylindrolithus spP -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 D. surculus -2 -2 -2 -2 -2 -2 Eiffellithus turriseiffeli -1 -1 0 0 -2 -2 0 "Discolithus" phaseolus 0 0 0 -1 -1 Kamptnerius magnificus -1 -1 -1 -1 Gephyrocapsa californiensis 0 0 0 0 0 0 Lithraphidites carniolensis -2 0 0 -1 G. kamptneri +1 0 0 0 0 0 "Loxolithus" -1 -1 -2 -1 -1 -1 Helicopon tosphaera 0 0 0 0 -1 Lucianorhabdus cayeuxi -2 kamptneri Microrhabdulus decoratus -2 0 H. sellii -1 -1 -1 -1 -1 M. stradneri -2 -2 -1 0 -2 -1 -1 -2 _2 -2 Pseudoemiliania lacunosa 0 0 0 0 0 -1 Micula staurophora -1 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 -1 0 -1 -1 (circular) Parhabdolithus embergeri -2 -2 -2 -2 _2 -2 -2 -2 -1 -2 P. lacunosa (elliptical) 0 0 0 0 0 0 Prediscosphaera cretacea -2 -2 -1 0 -1 0 -1 -1 -1 -1 -1 +1 -1 Reticulofenestra -2 Tetralithus cf. mums -1 -1 -1 -1 -1 -1 ~l pseudoumbilica Tetralithus gothicus -2 -2 -2 -1 -2 Rhabdosphaera stylifera -1 -1 -1 -1 > T. gothicus trifidus -2 -1 -2 Sphenolithus abies -2 _2 -1 Tranolithus sp. -2 -2 ùmbilicosphaera mirabilis -1 > Watznaueria barnesae -2 0 + 1 0 +1 +1 0 +1 +1 +1 0 +1 +1 +1 +1 0 0 0 0 0 S Zygodiscus cf. adamas -1 0 -1 -1 -1 -1 -1 o ^Discoaster surculus a Discoaster quinqueramus O TABLE 24 to Calcareous NannofossUs in Cores 8 through 12 (Section 1, 88-90), Hole 153

Age Paleocene TABLE 23 Fasciculithus Calcareous Nannofossils in Core 4 through 17, Hole 153 Zone a tympaniformis b

Age Miocene 9 Oligocene oo ,-> > ^>< Sample o o 29 ) 117 ) 137 ) 128 ) o ^^^^ Level o CO oo Zone Sphenolithus heteromorphus a t) c CO CN oò ^^^^ o^Ho O *—• t Coccolithus cavus -1 -1 -1 0 0 0 0 0 0 ^\ s Total Abundance + 1+1 + 1+1 +1 +1 + 1+ 1 +1 +1 +1 + 1 +1 +1 + 1 +1 +i C. crassus 0 Coccolithus eopelagicus -1 -1 -1 -1 -1 -1 -1 0 -1 0 0 -1 0 0 0 0 0 Cruciplacolithus tenuis -1 -1 -1 -1 -1 -1 C. pelagicus 0 -1 0 0 -1 0 -1 0 -1 0 0 0 0 0 0 0 0 Discoaster gemmeus ? Coronocyclus nitescens -1 0 Ericsonia subpertusa 0 -1 -1 0 0 -1 0 0 0 Cyclicargolithus floridanus 0 +1 +1 +1 0 0 + 1 0 +1 +1 0 +1 +1 +i +1 +1 +1 Fasciculithus tympaniformis 0 0 0 0 0 -1 -1 Cyclococcolithina leptopora 0 -1 Markalius astroporus -2 Discoaster adamanteus -1 -1 -1 -1 -1 Sphenolithus moriformis 0 D. aulakos -1 -1 -1 -1 -1 D. bollii -1 ^Discoaster gemmeus D. deflandrei -1 -1 0 0 0 0 0 0 D. exilis 0 0 0 0 0 0 0 0 0 0 0 -1 Chiasmolithus danicus D. lidzi -l D. nephados 0 0 0 0 TABLE 25 D. saundersi 0 0 Calcareous NannofossUs in Cores 12 (Section 1,104-106) through D. trinidadensis 0 0 19, Hole 153 Helicopontosphaera intermedia 0 -1 0 0 0 0 0 0 0 H. parallela -1 Age H. recta -1 Reticulofenestra bisecta 0 0 0 0 0 Zone R. pseudoumbilica -1 -1 -1 ^—^^ O r-- 00 CO in 00 t~- CO S. heteromorphus 0 0 0 0 -1 -1 0 -1 0 0 CO có H 1—1 CO 14-1 ! 136- ] 110- 1 ^^^^^ Level 104- 1 132- 1 149- ] 146- 1 101- 1 67-6 5 S. moriformis 0 0 0 0 0 0

Age Zone TABLE 26 Discoaster pentaradiatu.i ? Discoaster surculus Calcareous Nannofossils in Core 1, Hole 154 (3 T

T-H n σ•v ON i-H TH T-H ON t lO Zone Gephyrocapsa oceanica ^^^^^^ H T-H ^ Discoaster brouweri brouweri -2 Z D. sp. -2 g Reticulofenestra cf. pseudoumbilica 0 _2 0 7 -3 Tl R. pseudoumbilica -1 o Sphenolithus abies 0 0 σ ON W. W. HAY, F. M. BEAUDRY

TABLE 29 Calcareous Nannofossüs in Cores 1 through 9 (Section 2, 100-101), Hole 154A

Age Pleistocene Zone a Gephyrocapsa oceanica

\^ Sample 01 ) o o O 01 ) ^ Level o O Λ <Λ <ó o oT-H T-H oT-H CTs CN T•H ^^^.^^ •O4N •^

Total Abundance +i + 1 0 + 1 +1 +i 0 0 + 1 + 1 + 1 i +1 + 1 +1 +1 +1 +1 +1 + 1 +1 +1 +1 + 1 + 1 + 1 +1 + 1 Ceratolithus cristatus -2 -2 -2 -2 C. rugosus Coccolithus pelagicus Cyclococcolithina leptopora -2 -2 -1 -1 -2 -2 -2 -1 _2 -1 -1 -1 -2 -2 -2 -2 -2 C. macintyrei Discoaster brouweri rutellus D. brouweri triradiatus D. perclarus "Discolithus" phaseolus -l -1 -1 -2 -1 -1 -1 -1 _2 -2 -2 -2 -2 -2 -2 -1 -2 -2 Discosphaera tubifera -2 -2 -2 -1 -2 -2 Elliposdiscoaster lidzi -2 -2 Emiliania huxleyi +i +1 0 Gephyrocapsa californiensis 0 0 0 -1 0 0 +1 0 0 0 0 0 0 0 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 G. kamptneri -1 0 0 0 -2 0 +1 +1 0 0 0 +1 +1 0 0 0 0 0 0 0 0 0 0 0 0 0 G. oceanica 0 0 -1 -1 0 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -2 -2 -2 -1 -1 -1 G. sinuosa -1 0 0 0 -1 +1 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 G. sp. 0 0 0 0 0 0 0 +1 +1 0 0 0 0 0 0 0 0 0 0 0 0 Helicopontosphaera kamptneri -l -1 -2 -2 -2 -1 -1 -2 -2 -1 -2 -2 -1 -2 -2 -1 -2 -2 -2 -2 -2 -2 -2 H. sellii -2 H. wallichi -2 Pontosphaera scutellum -2 Pseudoemiliania lacunosa (circular) _2 -2 -2 -2 -1 -1 -2 P. lacunosa (elliptical) -2 -2 -2 -2 -2 Rhabdosphaera clavigera R. stylifera -l -2 -2 -2 -2 -2 -1 -2 -2 -2 -2 -2 -2 -2 -2 -1 -2 -2 Scapholithus fossilis -2 -2 _1 -2 -2 -1 -2 -2 -2 -2 -2 -2 Syracosphaera clava -2 -2 _2 -2 -2 S. decussata 0 -2 -2 -2 -1 -2 -2 -1 -2 -2 -2 -2 -2 S. histrica -2 -1 _2 -2 -2 -1 -1 -2 -2 -2 -2 S. jonesi -1 -2 -1 -2 -2 -1 _1 -1 -2 -2 Umbilicosphaera mirabilis -2 -2 -2 -1 0 -2 -2 -2 -1 -1 -1 -1 -2 -2 -1 -2 -2 -1 -2 -2 -1 -1 -1 "Little u" _2

a Emiliana huxleyi

PLEISTOCENE - RECENT CALCAREOUS (1962). The geochemical work included 016/018 tempera- NANNOFOSSILS FROM HOLES 147, ture analysis and Pa231/Th230 dating. They are both 148,149,AND154A thought to represent the last two glaciations, the preceding and intervening interglacials, and the modern postglacial epoch. According to the Pa23l/Th230 determination, the Previous Studies bases of both cores are about 150,000 years BP. Cohen did Pleistocene calcareous nannofossils generally have been not note any first or last occurrences among the sixteen neglected, chiefly because of their small size and lack of species he studied in detail, but his statistical counts of distinctive characters. Zonations of the Miocene and Plio- specimens suggested several significant conclusions: cene rely on discoasters and large coccoliths easily identi- 1) Syracosphaera histrica is an indicator of "cold" fied in light microscopy. Pleistocene assemblages lack the conditions. readily recognized large species so useful in the Neogene. 2) Discolithina cf. macropora, Discoaster perplexus, The first description of a sequence of Pleistocene Discosphaera tubifera, and Oolithotus antillarum tend to be coccoliths was by Cohen (1964) who tabulated the occur- more abundant in "cold" samples. rence of sixteen species in samples representing "warm" 3) Gephyrocapsa oceanica tends to be more abundant in and "cold" environments from two cores from the Carib- "warm" samples. bean. These cores had been the subject of detailed isotopic 4) Rhabdosphaera clavigera and Scapholithus fossilis do geochemical investigations, one core (A240-M1) by Rosholt not seem to have a preference for "cold" samples as had et al. (1961), and the other (A254-BR-C) by Rosholt et al. been suggested informally earlier.

664 CALCAREOUS NANNOFOSSILS

TABLE 29-Continued

Age Pleistocene Pliocene Zone 1 'Gephyrocapsa caribbeanica Discoaster brouweri

^^^^ Sample i-H CO 00 Λ oT g i—i T-H © o T—1 O o o o o o o o o o o Q i-H T-H oó -4 o I-H òi ò 1"H i-H ON Λ M >Λ OJ σs OJ OJ σs >Λ o Λ SO T-H T-H OJ

Gephyrocapsa oceanica

Boudreaux (1967) studied the Pleistocene calcareous 2) Gephyrocapsa oceanica Zone, defined as extending nannofossils of the Submarex cores. A general description from the lowest occurrence of G. oceanica to the lowest of these cores has been given by Bolli et al. (1968). occurrence of Emiliania huxleyi; and Cohen and Reinhardt (1968) described coccoliths from 3) Emiliania huxleyi Zone, from the lowest occurrence another Caribbean Pleistocene deep-sea core, CP-28, but of E. huxleyi to the top of the sediment. although the paper contains much useful taxonomic infor- Gartner (1969) suggested modification of Boudreaux mation, data on nannofossil stratigraphic distribution are and Hay's zonation. He redefined the lower two zones, absent. proposing a "Pseudoemiliania Zone" for the Gephyrocapsa Zonation by Pleistocene calcareous nannofossils first was caribbeanica Zone and part of the Gephyrocapsa oceanica proposed by Boudreaux and Hay in Hay et al. (1967) in Zone, this new unit being defined as extending from the discussing the Submarex cores. A detailed account of the highest occurrence of Discoaster brouweri to the highest Submarex calcareous nannofossils was presented by occurrence of Pseudomiliania lacunosa; the ^Gephyrocapsa Boudreaux and Hay (1969). The zonation proposed for the Zone" was proposed for part of the Gephyrocapsa oceanica Pleistocene consisted of three units from base to top: Zone and defined as the interval from the highest occur- 1) "Gephyrocapsa caribbeanica" Zone, defined as rence of P. lacunosa to the lowest occurrence of Emiliania extending from the highest occurrence of Discoaster huxleyi. brouweri to the lowest occurrence of Gephyrocapsa Hay (1970) presented range charts showing the distribu- oceanica; tion of species in Pleistocene cores recovered on Leg 4 of

665 TABLE 30 Calcareous Nannofossils in Cores 9 (Section 3, 25-26) through 16, Hole 154A

Age Pliocene Zone Discoaster brouweri Discoaster pentaradiatus (T O (T O (T O (T O (T O P cò~ T-H T—1 ^^-^^ Sample o o o o o o o 01 ) r•> o ^^ o —H v> v> T-H —H i-H o T•H V5 T-H \Λ r-H in ó ó ó o ò

Age Pliocene Zone Discoaster surculus Reticulofenestra pseudoumbilica

^H 00 i—i in *Λ >* no o m o o o o o o o r- o o i-H ^H

4-6 ( M3 MD có có có có có <Λ CO có có CO ló

ON ON W. W. HAY, F. M. BEAUDRY the Deep Sea Drilling Project, which included the Caribbean Within the cores taken from Holes 147, 148, 149, and area. 154A, the order of biostratigraphic events (highest or lowest occurrences of species) from the top through Discussion bottom sections is shown below. Calcareous nannofossils possess several pecularities which make them especially suitable for use as biostrati- For Hole 147: graphic indicators. The most important characteristics are Highest: Highest occurrence Syracosphaera clava in Section (1) many groups have evolved very rapidly; (2) numerous 1 ofCore4(89-90cm). species have worldwide distribution; and (3) in many Highest occurrence of "little u" in Section 2 of samples, they are extremely abundant (Hay et al., 1967). Core 4 (50-51 cm). As with most fossils, their abundance within a sample is Highest occurrence of Syracosphaera decussata in a function of many factors such as environmental condi- Section 3 of Core 4 (10-11 cm). tions while living and at the site of burial, post mortem Highest occurrence of Gephyrocapsa kamptneri in transportation, and chemical as well as physical changes Section 6 of Core 4 (90-91 cm). over the span of geologic time since their burial. The Highest occurrence of Gephyrocapsa sinuosa in abundance of a species from one area to another or from one sample to another is obviously a function of all these Section 2 of Core 7 (17-18 cm). factors. The presence or absence of a species is an Lowest occurrence of Emiliania huxleyi in Section extremely valuable tool as a key to biostratigraphy. The 2ofCore7(17-18cm). presence of a coccolith indicates that either a living species Highest occurrence of Gephyrocapsa califomiensis produced coccoliths which survived solution, or that in Section 3 of Core 8 (38-39 cm). reworking or contamination introduced coccoliths into the Lowest occurrence of Gephyrocapsa parallela in sample. Reworked coccoliths are introduced upwards from Section 5 of Core 9 (84-85 cm). their original stratigraphic position. Coccoliths may also be Highest occurrence of Syracosphaera histrica in displaced downward in a section by slumping during drilling Section 5 of Core 10 (62-63 cm). or coring; such coccoliths are referred to as contaminating Lowest occurrence of Syracosphaera clava in the sample. Reworking and contamination are subjective Section 3 of Core 12 (103-104 cm). explanations of the objective observation of specimens in Lowest occurrence of "little u" in Section 4 of samples "where they do not belong." Core 12 (41-42 cm). Highest occurrence of Pseudoemiliania lacunosa The absence of a coccolith from a sample is caused by (circular) in Section 1 of Core 15 (21-22 cm). (1) the species not living in the area at the time of sediment Lowest occurrence of Gephyrocapsa sinuosa in deposition, (2) the coccoliths dissolving during settling Section 3 of Core 15 (27-28 cm). through the water or at the sediment-water interface, and Lowest: Lowest occurrence of Syracosphaera histrica in (3) the coccoliths dissolving within the sediment. Because Section 3 of Core 16 (76-77 cm). the sediments at Site 149 are from deep water while those at Sites 147 and 148 are from relatively shallow water, they provide a unique opportunity to determine differential For Hole 148 solution of coccolith species. Of the species studied, Highest: (?) Highest occurrence of Gephyrocapsa sinuosa Discosphaera tubifera and Ellipsodiscoaster lidzi seem to be Syracosphaera decussata, Syracosphaera clava, and dissolved in the water or at the sediment-water interface "little u" in Section 2 of Core 1 (52-53 cm). because they occur in the shallow-water sediments of Site Highest occurrence of Gephyrocapsa kamptneri, 148 and do not occur in the deeper-water sediments of Site Gephyrocapsa sinuosa, and Syracosphaera decus- 149 (with the exception of very rare occurrences of E. sata in Section 3 of Core 1 (40-41 cm). lidzi). It is also interesting to note that D. tubifera and E. Highest occurrence of Syracosphaera clava in lidzi are absent at Site 147 with the exception of very rare Section 3 of Core 1 (100-101 cm). occurrences of E. lidzi. In this case, solution can be (?) Highest occurrence of Gephyrocapsa califor- attributed to diagenetic processes taking place in sediment niensis in Section 4 of Core 1 (9-10 cm). accumulating under anaerobic conditions, which produce Highest occurrence of Gephyrocapsa califomiensis an acidic sediment as indicated by the presence of hydrogen and Syracosphaera histrica in Section 5 of Core 1 sulfide and pyrite. (20-21 cm). A biostratigraphic event may be defined as the lowest or (?) Highest occurrence of Gephyrocapsa califor- highest stratigraphic occurrence of a fossil group. The size niensis in Section 1 of Core 2 (59-60) cm). of the analyzed sample, as well as the abundance of the Lowest occurrence of "little u" in Section 3 of fossil group, affect the precision of determination of the Core 2 (131-132 cm). lowest and highest stratigraphic occurrence of a fossil (Hay, Lowest occurrence of Emiliania huxleyi in Section 1972). Absence of a specific fossil group in an area is as 4 of Core 2(30-31 cm). important as the presence of fossil groups for determining (?) Highest occurrence of Pseudoemiliania lac- the local biostratigraphic sequence. Cyclic appearance and unosa (circular) in Section 4 of Core 2 (110-111 disappearance of species in the same sections represent cm). introduction of the species into an area with different water Lowest occurrence of Syracosphaera clava in masses rather than absolute origin or extinction of taxa. Section 4 of Core 2(110-111 cm).

668 CALCAREOUS NANNOFOSSILS

Highest occurrence of Pseudoemiliania lacunosa Highest occurrence of Pseudoemiliana lacunosa (circular) in Section 3 of Core 3 (48-49 cm). (circular) in Section 3 of Core 3 (100-101 cm). (?) Lowest occurrence of Syracosphaera clava in Highest occurrence of Pseudoemiliania lacunosa Section 1 of Core 4 (129-130 cm). (elliptical) in Section 3 of Core 4 (25-26 cm). Lowest occurrence of Syracosphaera histrica in Lowest occurrence of Gephyrocapsa oceanica in Section 4 of Core 4 (20-21 cm). Section 2 of Core 6 (99-100 cm). Lowest occurrence of Ellipsodiscoaster lidzi in (?) Highest occurrence of Coccolithus pelagicus in Section 4 of Core 4 (90-91 cm). Section 3 of Core 6 (25-26 cm). Highest occurrence of Pontosphaera sp. in Section (?) Lowest occurrence of Gephyrocapsa oceanica 4 of Core 4 (90-91 cm). in Section 4 of Core 6 (25-26 cm). (?) Highest occurrence of Pseudoemiliania Lowest: Highest occurrence of Discoaster brouweri rutellus lacunosa (elliptical) in Section 4 of Core 4 (90-91 and Discoaster pentaradiatus in Section 5 of Core cm). 6 (35-36 cm). (?) Lowest occurrence of "little u" in Section 5 of Core 4 (120-121 cm). For Hole 154A (?) Lowest occurrence of Syracosphaera clava in Highest: Highest occurrence of Syracosphaera decussata Section 1 of Core 5 (50-51 cm). above Section 1 of Core 1 (94-95 cm). Highest occurrence of Pseudoemiliania lacunosa Highest occurrences of Gephyrocapsa kamptneri (elliptical) in Section 3 of Core 5 (149-150 cm). and Gephyrocapsa sinuosa in Section 2 of Core 1 (?) Lowest occurrence of "little u" in Section 3 of (100-101 cm). Core 8 (105-106 cm). Lowest occurrence of Emiliania huxleyi in Section (?)Highest occurrence of Coccolithus pelagicus in 3 of Core 1 (23-24 cm). Section 2 of Core 9 (40-41 cm). Highest occurrence of Gephyrocapsa califomiensis Lowest occurrence of Discosphaera tubifera in in Section 3 of Core 1 (99-100 cm). Section 2 of Core 9 (40-41 cm). Highest occurrence of Syracosphaera histrica in (?) Highest occurrence of Coccolithus pelagicus in Section 4 of Core 1 (99-100 cm). Section 3 of Core 10 (34-35 cm). (?) Highest occurrence of Pseudoemiliania Highest occurrence of Pontosphaera scutellum in lacunosa (elliptical) in Section 2 of Core 3 (25-26 Section 4 of Core 10 (100-101 cm). cm). Lowest occurrence of Gephyrocapsa oceanica in Highest occurrence of Pseudoemiliania lacunosa Section 1 of Core 12 (4041 cm). (circular) in Section 2 of Core 3 (100-101 cm). Highest occurrence of Coccolithus pelagicus in Highest occurrence of Pseudoemiliania lacunosa Section 2 of Core 12 (4344 cm). (elliptical) in Section 2 of Core 4 (9-100 cm). (?) Lowest occurrence of Syracosphaera clava in Lowest occurrence of Gephyrocapsa oceanica in Section 4 of Core 13 (4041 cm). Section 6 of Core 4 (25-26 cm). Lowest: Highest occurrence of Discoaster brouweri rutellus Lowest occurrence of Syracosphaera histrica in in Section 4 of Core 15 (90-91 cm). Section 1 of Core 8 (25-26 cm). Highest occurrence of Coccolithus pelagicus in For Hole 149 Section 2 of Core 8 (101-102 cm). Highest: Highest occurrence of Coccolithus pelagicus, Lowest: Highest occurrence of Discoaster brouweri in Syracosphaera histrica, Syracosphaera decussata, Section 3 of Core 8 (99-100 cm). Syracosphaera clava, and "little u" in Section 1 of Core 2 (25-26 cm). These highest and lowest occurrences were determined Highest occurrence of Gephyrocapsa kamptneri in subjectively (using the data from Tables 5, 7, 8,29, and 30) Section 1 of Core 2 (100-101 cm). as the levels at which the species commenced or terminated Highest occurrence of Gephyrocapsa sinuosa in rather consistent occurrence. Section 2 of Core 2 (62-63 cm). Some species mark no biostratigraphic events because Lowest occurrence of Emiliania huxleyi in Section they occur continuously throughout the cores from the 2ofCore2(62-63cm). four sites, or because their occurrences and nonoccurrences (?) Highest occurrence of Pseudoemiliania are very sporadic, thus defining sporadic events of ques- lacunosa (circular) in Section 2 of Core 2 (62-63 tionable biostratigraphic value. cm). Analysis of the lists of events for each of the holes Lowest occurrence of "little u" in Section 2 of studied in detail reveals that nine stratigraphic events occur Core 2 (62-63 cm). in the same sequence in each of the sections in which they Lowest occurrence of Coccolithus pelagicus in occur. These events may be generally useful for biostrati- Section 3 of Core 2 (25-26 cm). graphic subdivision of the Pleistocene in the Caribbean: Highest occurrence oi Gephyrocapsa californiensis and Gephyrocapsa sinuosa in Section 3 of Core 2 Highest: HOS Syracosphaera decussata (25-26 cm). HOS Syracosphaera clava Lowest occurrence of Syracosphaera histrica in HOS Gephyrocapsa kamptneri Section 1 of Core 3 (144-145 cm). HOS Gephyrocapsa sinuosa

669 W. W. HAY, F. M. BEAUDRY

LOS Emiliania huxleyi At Site 147, occurrence of Coccolithus pelagicus in HOS Pseudoemiliania lacunosa (circular) Cores 4 through 7 probably marks the last glaciation with HOS Pseudoemiliania lacunosa (elliptical) the resultant introduction of colder water into the Carib- LOS Gephyrocapsa oceanica bean regions. This interpretation is substantiated by Lowest: HOS Discoaster brouweri rutellus Mclntyre and Be (1966) and Mclntyre (1967) who noted that Coccolithus pelagicus does not occur in the tropics but The surfaces defined by these events divide the Pleisto- is abundant in the North Atlantic to the area north of the cene and Recent into nine intervals. The value of the 14°C isotherm. Boudreaux and Hay (1969) further sub- highest occurrence surfaces of Emiliania huxleyi and stantiated this restricted occurrence of C. pelagicus to cold Discoaster brouweri and the lowest occurrence surfaces of waters when analysis of the Submarex cores indicated its Pseudoemiliania lacunosa and Gephyrocapsa oceanica have presence only in samples suggesting relatively colder condi- long been known, but the surfaces above the lowest tions. Thus, occurrence of Coccolithus pelagicus indicates a occurrence of Emiliania huxleyi are new and may be of cold water environment which may be directly related to considerable value in the study of younger Pleistocene cycles of glaciation. deep-sea cores. The sequence of the highest occurrences of At Sites 147 and 148, Syracosphaera histrica occurs at Syracosphaera clava and Syracosphaera decussata are sug- intervals throughout its range, probably marking intrusions gested from data from the Cariaco Trench (Hole 147) and of colder water, as suggested by Cohen (1964). must be regarded as strictly tentative. These two species are Certain species exhibit similar patterns of nonoccur- known to occur widely in the Venezuelan Basin, and rence. At Sites 147, 148, and 149, Rhabdosphaera stylifer, subsequent studies of piston and gravity cores should Gephyrocapsa californiensis, G. kamptneri, and G. oceanica confirm or refute the sequence suggested here. The posi- are covariant and do not occur in a number of specific tions of the highest and lowest occurrence surfaces of samples, as can be seen from Tables 2 through 4. general value in the Caribbean is indicated in Figure 3. The cycles of nonoccurrence and occurrence of one or The nature of appearances and disappearances of species more of these species may indicate intermittent introduc- in the cores with high sedimentation rates deserves special tion of colder and warmer water into the Caribbean during attention. The appearances of species in this area are the Pleistocene glacials and interglacials. From what is generally abrupt, even when a very high sedimentation rate known of the ecology of these species (Mclntyre & Be, permits high stratigraphic resolution. Only in a few 1967), it appears that their absence probably indicates the instances are there sporadic occurrences of subsequently influx of colder water, creating an unsuitable environment. abundant species prior to the continuous part of their At Site 147 in the Cariaco Trench, several other species ranges. The disappearances of species from this area are such as Syracosphaera jonesi, S. pulchra, and S. clava, are more complex and may be either by gradual or abrupt also absent in the same intervals as Rhabdosphaera stylifer, reduction in abundance, then absence, followed by sporadic Gephyrocapsa califomiensis, G. kamptneri, and G. recurrence. This suggests that populations were rein- oceanica; this may reflect restricted connection with the troduced into the area from a parent stock in the Atlantic Caribbean during times of lowered sea level. At Site 148, and survived for short periods, but were unable to intervals of nonoccurrence of Pseudoemiliania lacunosa and effectively resettle the area. Pseudoemiliania cricota are remarkably similar and nearly

Hole: 147 148 149 154A

HOS 4-1(51-52) 4-1(89-90) HOS 4-2(50-51) 4-3(10-11) 1-2(52-53) 2-1(25-26) 1-1(94-95) 1-2(30-33) HOS 4-6(50-51) 1-2(84-85) 2-1(25-26) 4-6(90-91) 2-1(100-101) HOS 7-1(127-128) 2-1(100-101) 7-2(17-18) 1-3(40-41) 2-2(62-63) 1-2(100-101) LOS 7-2(17-18) 2-4(30-31) 2-2(62-63) 1-2(100-101) 8-1(43-44) 2-4(110-111) 2-3(25-26) 1-3(23-24) 3-1(144-145) HOS Pseudoemiliania lacunosa (c)— 14-5(100-101) 3-2(101-102) 3-2(25-26) 15-1(21-22) 3-3(48-49) 3-3(100-101) 3-2(100-101) HOS Pseudoemiliania lacunosa (e) — 4-4(48-49) 3-3(100-101) 4-2(25-26) 4-4(90-91) 4-3(25-26) 4-2(99-100) 4-6(25-26) LOS 12-1(40-41) 6-2(99-100) 12-1(128-129) 6-3(25-26) 4-6(100-101) HOS Discoaster brouweri rutellus — 15-4(18-19) 6-3(25-26) 8-3(25-26) 15-4(90-91) 64(59-60) 8-3(99-100)

Figure 3. Relation of cores taken from holes 147, 148, 149, and 154A to surfaces of highest or lowest occurrence of calcareous nannofossils (HOS = highest occurrence surface; LOS = lowest occurrence surface).

670 CALCAREOUS NANNOFOSSILS

synchronous with the intervals for the R. stylifer-G. of Core 5, most probably marking the last introduction of glacial californiensis-G. kamptneri-G. oceanica group, suggesting cold water masses into the Cariaco Trench. This is followed by that this now extinct group also preferred warmer waters. sporadic occurrences in deeper sections. Correlation of Holes 147, 148, 149, and 154A on the Tribe GEPHYROCAPSEAE Boudreaux and Hay, 1969 basis of the highest and lowest occurrences of selected Genus GEPHYROCAPSA Kamptner, 1943 species is indicated in Figure 3. Type Species: Gephyrocapsa oceanica Kamptner, 1943 SYSTEMATIC PALEONTOLOGY Gephyrocapsa calif orniensis Kamptner Kingdom PLANTAE (Plate 1, Figures 4-5) Subkingdom PROTOBIONTA Gephyrocapsa californiensis Kamptner, 1956, Arch. Protistenk, vol. 101, pp.179,199. Phylum CHRYSOPHYTA Gephyrocapsa aperta Kamptner, 1963, Ann. Naturhistor. Mus. Class COCCOLITHOPHYCEAE Rothmaler, 1951 Wien, 66, pp. 173, 192, 194, 197, Taf. 6, Figs. 32 and 35 - Cohen and Reinhardt, 1968, N. Jb. Geol. Palaont. Abh., 131,3, Order Rood, Hay, and Barnard, 1971 p. 293 - Gartner, 1969, Gulf Coast Assoc. Geol. Socs. Trans., Family COCCOLITHACEAE Kamptner, 1928, emend., vol. 19, pi. 2, Fig. 8 - Hay, 1970, Initial Reports Deep Sea Hay and Mohler, 1967 Drilling Project, vol. 4, p. 456 - Nishida, 1970, Jour. Mar. Geol., Vol. 6, no. 1, pi. II, Figs. 1-2 - Nishida, 1970, Trans. Proc. Subfamily COCCOLITHOIDEAE Kamptner, 1928, Palaeont. Soc. Japan, N. S., No. 79, pp. 363-364 - Bukry, 1971, emend., Hay and Mohler, 1967 Initial Reports Deep Sea Drilling Project, vol. 6, pi. 1, Fig. 5. Tribe COCCOLITHEAE Kamptner, 1958, emend., Gephyrocapsa ericsonii Mclntyre and Be, 1967, Deep-Sea Research, Boudreaux and Hay, 1969 vol. 14, p. 571, pi. 10, pi. 12, Fig. B - Mclntyre, Be, and Roche, Genus COCCOLITHUS Schwarz, 1894 1970, Trans. New York Acad. Sciences, Ser. II, Vol. 32, no. 6, pp. 720-731, Fig. 5e - Mclntyre, 1970, Deep-Sea Research, vol. Type Species: Coccosphaera pelagica Wallich, 1877 17, pp. 187-190, Figs, la and 3. Gephyrocapsa undulatus Lecal, 1967, Hydrobiologia, vol. 29, pp. Coccolithus pelagicus (Wallich) 322-323, text-figs. 16-17, Figs. 23-24. (Plate 1, Figures 1-3) Gephyrocapsa protohuxleyi Mclntyre, 1969, in Degens and Ross Coccosphaera pelagica Wallich, 1877, Ann. Mag. Nat. Hist., vol. 18, (Eds.): Hot Brines and Recent Heavy Mineral Deposits in the (4th Ser.), p. 348, pi. 17, Figs. 1, 2, 5, 11, 12. Red Sea, pp. 299-305, Fig. 2, f - Mclntyre, 1970, Deep-Sea Coccolithophora pelagica (Wallich) Lohmann, 1920, p. 98, text- Research, vol. 17, pp. 187-190, fig. lb, d, f, g - Bukry, 1971, Fig. 21b. Initial Reports Deep Sea Drilling Project, Vol. 6, pi. 1, Fig. 6. Coccolithus pelagicus (Wallich) Schiller, 1930, in L. Rabenhorst: Remarks: Utilizing light microscopy, Gephyrocapsa califor- Kryptogamen-Flora, Leipzig, vol. 10, (pt. 2), p. 246 (pro niensis is virtually indistinguishable from G. aperta, G. ericsonii, G. parte) - Kamptner, 1954, Arch, Protistenk., vol. 100, pp. 20-21, undulatus, and G. protohuxleyi. These are all small coccoliths Figs. 14-15 - Kamptner, 1963, Ann. Naturhistor. Mus. Wien, 66, differentiated primarily by closed versus open central areas, the pp. 159, 191, 194 -Stradner, 1963b, Mitt. Geol. Ges Wien, vol. character of the margin, and bridge angles differing by less than 20 56, pp. 156-157 - Cohen, 1965, Leidse Geol. Meded., Vol. 35, degrees. p. 12, pi. 1, Figs, a-c - Martini, 1965, in W. F. Whittard and R. Gephyrocapsa californiensis resembles G. oceanica except that B. Bradshaw (Eds.): Submarine Geol. and Geophys., Proc. 17th the bridge segment makes a greater angle, approximately 65 degrees, Symp. Colston Res. Soc, London, p. 402, pi. 34, Figs. 103 - with the minor axis of the ellipse and the bridge extremities are Mclntyre & Be, 1967, Deep Sea Res., vol. 14, pp. 569-570, pi. 8, slightly curved in a clockwise direction. No illustrations were Figs. A-C — Mclntyre et al., 1967, in M. Sears (ed.): Progress in provided with the original description. Oceanography, vol. 4, p. 11, pi. 4, Figs. A-B - Kamptner, 1967, Gephyrocapsa aperta differs from G. oceanica in having a larger Ann. Naturhistor. Mus. Wien, 71, pp. 124, 126, 140, 169, 170, open central area, a more coarsely constructed bridge, and a bridge 171, 173, 181, 184, Tafel 2, Fig. 14 - Boudreaux and Hay, segment making an angle of 55 to 65 degrees with the minor axis of 1969, Rev. Esp. Micropal., vol. 1, num. 3., pp. 256-257, pi. 1, the ellipse. The holotype was illustrated by electron micrographs, Figs. 1-9 - Clocchiatti, 1969, Revue Micropal., vol. 12, n°2, pi. but no light micrographs of specimens have been published. 3, Fig. 6 - Geitzenauer, 1969, Nature, vol. 223, no. 5202, pp. Gephyrocapsa ericsonii is similar to G. oceanica except that the 170-172 - Gartner, 1969, Gulf Coast Assoc. Geol. Socs. Trans., bridge elements are thinner, blade-like, and highly arched. The vol. 19, pp. 587-591 - Uschakova, 1970, in Funnel and Reidel central grille is a radial net-like structure, and the bridge segment (Eds.): The Micropaleontology of Oceans, pp. 247-248, pi. 15.1, makes an angle of approximately 65 degrees with the minor axis of Figs. 7-9 - Hay, 1970, Initial Reports Deep Sea Drilling Project, the ellipse. The holotype was illustrated by electron micrographs, vol. 4, p. 456 - Bartoüni, 1970, Micropaleontology, vol. 16, no. and no light micrographs have been published. 2, pp. 132-133, pi. 1, Figs. 2-7, text-Fig. 4 - Bukry, Douglas, In Gephyrocapsa undulatus the central area has a perforate grille Kling, Krasheninnikov, 1971, Initial Reports of the Deep Sea and the bridge segment makes an angle of 60 to 65 degrees with the Drilling Project, vol. 6, pp. 1255, 1262-1266 - Bukry, 1971, minor axis of the ellipse. The holotype was illustrated by electron Initial Reports Deep Sea Drilling Project, vol. 6, p. 965-969, pi. micrograph, but no light micrographs have been published. 1, Figs. 1 and 2. Gephyrocapsa protohuxleyi is distinctive in electron micrograph. Remarks: This species occurs in transitional and subarctic The central area is open and the bridge segment makes an angle of waters (Mclntyre and Be, 1967) and is characteristic of subpolar approximately 65 to 70 degrees with the minor axis of the ellipse. It water (Mclntyre, Be, and Roche, 1970). It is found living only in resembles G. ericsonii in overall geometry (Mclntyre, 1970), but its the Northern Hemisphere (Mclntyre, Be, and Roche, 1970) but margin is composed of radiating "club-like" elements. The holotype occurs in South Atlantic sediments south of the Tropic of Capricorn has been illustrated only by electron micrograph. No light micro- (Bartolini, 1970). Mclntyre and Be (1967) have suggested that graphs of specimens assigned to this species have been published. disappearance of this species in the South Atlantic occurred at the end of the last glacial period. Because this species lives only in cold Gephyrocapsa oceanica Kamptner water masses having a temperature range of 6 to 14°C, it can be (Plate 1, Figures 6-7) used to indicate the intrusion of glacial cold water masses into more Pontosphaera huxleyi Lohmann, 1901 (part), Arch. Protistenk., vol. tropical regions during the Pleistocene. At Site 147, this species has 1, p. 130, pi. 4, Figs. 1-9 - Schiller, 1925, Arch. Protistenk., vol. an isolated occurrence at the top of Core 3, then a consistent 51, p. 9, text-Figs. A-B - Kamptner, 1941, Naturhist, Mus. occurrence from Section 1 of Core 4 through the base of Section 2 Wien, Ann., vol. 51, pp. 79, 99, pi. 2, Fig. 27, pi. 3, Figs. 29-30.

671 W. W. HAY, F. M. BEAUDRY

Gephyrocapsa oceanica Kamptner, 1943, Akad. Wiss. Wien, Anz., Gephyrocapsa kamptneri differs from G. oceanica by having a vol. 80, pp. 43^9 - Deflandre, 1954, Ann. Pal., vol. 40, p. 154, bridge that is wider and nearly fills the entire central area. The pi. 3, Fig. 7 - Halldal and Markali, 1955, Norske Vidensk. central area may be closed or very narrow and it lacks a grille. The Akad., Avh., Math. Naturv. KL, num. 1, p. 18, pi. 23, pi. 24, bridge segmenf makes an angle of approximately 45 degrees with Figs. 1-2 - Black and Barnes, 1961, Roy, Micr. Soc. Jour., vol. the minor axis of the ellipse. 80, pt. 2. 143, pi. 25, Figs. 1-2 - Kamptner, 1963, Ann. Gephyrocapsa kamptneri ranges from tropical to subpolar seas Naturhistor. Mus. Wien, 66, pp. 173-192, 194, 197 - Cohen, with a definite preference for the cold waters of the subpolar 1964, Micropaleontology, vol. 10, p. 240, pi. 3, Fig. 3 a-e, pi. 4, regions. It is known to live in the Pacific Ocean and tolerates a Fig. 3 a-b - Mclntyre and Be, 1967, Deep Sea Res., vol. 14, p. temperature range of 5 to 15°C (Mclntyre, Be, and Roche, 1970. 570, pi. 9, Figs. A-B - Mclntyre et al., 1967, in M. Sears (Ed.): Progress in Oceanography, Pergamon Press, Oxford, vol. 4, p. 12, pi. 1, Figs. A-B - Hay et al., 1967, Gulf Coast Assoc. Geol. Socs. Gephyrocapsa parallela n. sp. Trans., vol. 17, pis. 12-13, Figs. 5-6 - Kamptner, 1967, Ann. (Plate 1, Figures 10-12) Naturhistor. Mus. Wien, 71, p. 182 - Cohen and Reinhardt, Holotype: UI-H-147/3/2/99-100 1968, NJb. Geol. Palaont. Abh., 131, 3, p. 293, pi. 20, Fig. 10, Dimension: Holotype: length, 3µ; width, 2.5µ. text-Fig. 3 - Boudreaux and Hay, 1969, Rev. Esp. Micropal., Type locality: DSDP, Leg 15, Site 147, Core 3, Section 2, vol. 1, num. 3, pp. 258, 262-262, pi. 1, Figs. 18-25, pi. 11, Fig. 1 (99-100 cm). - Kennett and Geitzenauer, 1969, Nature, vol. 224, no. 5222, Diagnosis: An elliptical species distinguished by its large size, pp. 899-901 - Gartner, 1969, Trans. Gulf Coast Asso. Geol. bridge occupying the minor axis of the ellipse, and appearance in Socs., vol. 19, pi. 2, Fig. 7 - Bandy and Wilcoxon, 1970, Geol. polarized light. Soc. Am. Bull. vol. 81, pp. 2939-2948 - Mclntyre, Be, and Description: This species resembles Gephyrocapsa oceanica but Roche, 1970, Trans. New York Acad. Sciences, Ser. II, vol. 32, is much larger and the central area is spanned by a narrow bridge no. 6, pp. 720-731, Fig. 5c - Hay, 1970, Initial Reports Deep which makes an angle of no more than a few degrees with the minor Sea Drilling Project, vol. 4, p. 456 - Nichida, 1970, Trans. Proc. axis of the ellipse. The central area and margin of this species are Palaeont. Soc. Japan, N.S., no. 79, pp. 363-364, pi. 40, Fig. 1-3 both broad. Specimens are approximately twice as large as charac- - Bartolini, 1970, Micropaleontology, vol. 16, no. 2, p. 136-140, teristic G. oceanica. pi. 5, Figs. 1-8 - Uschakova, 1970, in Funnel and Riedel (Eds.): Remarks: At Site 147, Gephyrocapsa parallela first occurs in The Micropaleontology of Oceans, pp. 245-251, pi. 15-1, Figs. Section 2 of Core 2 (1-2 cm) and is present in every section through 4-5 - Bukry, 1971, Initial Reports Deep Sea Drilling Project, Section 3 of Core 7 with the exception of Section 1, Core 7. From vol. 6, pi. 2, Fig. 1. Section 5 of Core 7 (20-21 cm) through Section 5 of Core 9 (84-85 Gephyrocapsa dentata Halldal and Markali, 1955, Avh. Norske Vid. cm), it markedly decreases in occurrence. Below this, it occurs very - Akad. Oslo, Mat. - Naturv., pp. 18, pi. 24, Fig. 3. sporadically. Remarks: The central area of this species is spanned by a grille At Site 148, it occurs only in Section 1 of Core 4 (129-130 cm), similar to that of Emiliania huxleyi (Lohmann). The bridge makes Section 2 of Core 11 (20-21 cm), and Section 6 of Core 11 an angle of approximately 20 degrees or less with the minor axis of (104-105 cm). the ellipse. This species is robust and it is readily recognizable using It does not occur in cores from Sites 149 or 154. a light microscope. Cohen and Reinhardt, 1968, considered Gephyrocapsa dentata to be an etched form of G. oceanica. Gephyrocapsa oceanica occurs in all major oceans in tropical, Gephyrocapsa sinuosa n. sp. subtropical, and transitional waters (Mclntyre and Be, 1967) with a (Plate 1, Figures 13-14) preference for warm waters (Mclntyre, Be, and Preikstas, 1967). It Holotype: UI-H-149/2/3/25-26. has also been found living in the Gulf of Mexico and in the Dimension: Holotype: length, 1.2µ; width, l.Oµ. Mediterranean (Cohen, 1964). It is one of the most abundant and Type locality: DSDP, Leg 15, Site 149, Core 2, Section 3, widely distributed species in the Atlantic (Mclntyre, 1967). (25-26 cm). Diagnosis: An elliptical species distinguished by its small size Gephyrocapsa kamptneri Deflandre and Fert and distinctive appearance in polarized light; the pattern formed by (Plate 1, Figures 8-9) the bridge and margin is that of an "S." Gephyrocapsa kamptneri Deflandre and Fert, 1954, Ann. Paléont. Description: The central area is spanned by a very wide bridge 40, pp. 41, pi. 6, Fig. 4a, pi. 8, Fig. 4, text-Fig. 13. making an angle of approximately 45 to 50 degrees with the minor Gephyrocapsa gracillima Lecal and Bernheim, 1960, Bull. Soc. axis of the ellipse. The margin is very narrow and the central area d'Hist. Nat. de l'Afrique du Nord, vol. 51, pp. 290-291, pi. 18, large. This species does not closely resemble any other gephyro- photo 31, pi. 19, photo 32, sch. 12. capsid and specimens are approximately of the same size of the Gephyrocapsa caribbeanica Boudreaux and Hay, 1967, Gulf Coast central area of Gephyrocapsa oceanica. Assoc. Geol. Socs., Trans., vol. 17, p. 447, pis. 12-13, Figs. 1-4 - Remarks: At Site 147, Gephyrocapsa sinuosa does not occur Boudreaux and Hay, 1969, Rev. Esp. Micropal., vol. 1, num. 3, above Section 1 of Core 3 and its occurrence from this section p. 262, pi. II, Figs. 3-9 - Bandy and Wilcoxon, 1970, Geol. Soc. through Section 2 of Core 7 (17-18 cm) is very sporadic. It is Am. Bull., vol. 81, pp. 2939-2948 - Mclntyre, Be, and Roche, abundant and occurs in every section from Section 2 of Core 7 1970. Trans. New York Acad. Sciences, Ser. II, vol. 32, no. 6, (130-131 cm) through Section 4 of Core 15. Below this, its pp. 720-731, Fig. 5d - Hay, 1970, Initial Reports Deep Sea occurrence is sporadic with Section 2 of Core 17 (51-52 cm) having Drilling Project, vol. 4, p. 456. the greatest abundance within this portion of Site 147. Remarks: In light microscopy, Gephyrocapsa kamptneri is At Site 148, Gephyrocapsa sinuosa occurs in nearly every virtually indistinguishable from G. caribbeanica and G. gracillima. Section from Core 1 through Section 6 of Core 15 (18-19 cm). It is Because of their relatively small sizes, it is considered impossible to absent below this through Section 3 of Core 23. From Section 4 of differentiate these species by the angle the bridge segment makes Core 23 through Section 5 of Core 27 (25-26 cm), it exhibits a with the minor axis of the ellipse. This angle differs through a range gradual and distinctive increase in abundance and occurrence. From of less than 10 degrees. Section 5 of Core 27 (100-101 cm) to the bottom of Site 148 it is Gephyrocapsa kamptneri possesses a rib-like central area and the absent, with the exception of Section 1 of Core 129. bridge makes an angle of approximately 40 to 50 degrees with the At Site 149, it does not occur above Section 3 of Core 2, minor axis of the ellipse. Only electron micrographs of this species however, commencing with Section 3 of Core 2 (25-26 cm) through have been published. Section 2 of Core 6 it is abundant and occurs in every section Gephyrocapsa gracillima possesses a central area of radiating except Section 5 of Core 5. A marked decrease in abundance occurs rib-like structures. The angle which the bridge makes with the minor in the remaining cores of Site 149 below Section 2 of Core 6. axis of the ellipse is approximately 40 degrees. Only electron At Site 154, it is present in abundance in almost every sample micrographs and one schematic diagram of this species have been from Section 2 of Core 1 (100-101 cm) through Section 4 of Core 8 published. (99-100 cm).

672 CALCAREOUS NANNOFOSSILS

Gephyrocapsa sp. It has a temperature range of 6 to 14° C with highest concentrations (Plate 1, Figures 15-16) between 9 and 12°C. It occurs in modern surface sediments that Remarks: Elliptical to circular specimens lacking a bridge in underlie the subpolar water masses in both the Northern and polarized light are assigned to this taxon. The central area and Southern Hemisphere (Mclntyre, Be, and Roche, 1970). margin are similar in size to those of Gephyrocapsa oceanica. Thus it is likely that these specimens are individuals of that species from Subfamily CYCLOCCOLITHOIDEAE Hay and Mohler, 1967 which the bar has been dissolved. Tribe CYCLOCOCCOLITHEAE Boudreaux and Hay, 1969 Genus PSEUDOEMILIANIA Gartner, 1969 Genus CYCLOCOCCOLITHINA Wilcoxon, 1970 Type Species: Ellipsoplacolithus lacunosus Kamptner, 1963 Type spec es: Coccosphaera leptopora Murray and Blackman, 1898 Pseudoemiliania lacunosa (Kamptner) (Plate 1, Figures 17-20) Cyclococcolithina leptopora (Murray and Blackman) Ellipsoplacolithus lacunosus Kamptner, 1963, Ann. Naturhistor, (Plate 1, Figures 23-24) Mus. Wien, vol. 66, p. 172, pi. 9, Fig. 50. Coccosphaera leptopora Murray and Blackman, 1898, Roy. Soc. Coccolithus doronicoides Black and Barnes (part), Mclntyre, Be, London, Phil. Trans., vol. 190, ser. B, p. 430, pi. 15, Figs. 1-7. and Preikstas, 1967, Progress in Oceanography, vol. 4, p. 8, pi. 3, Coccolithophora leptopora (Murray and Blackman) Lohmann, Fig. A. 1902, Arch. Protistenk., vol. 1, p. 138, pi. 5, Figs. 52, 61-64. Umbilicosphaera cricota (Gartner), Cohen and Reinhardt, 1968, vol. Coccolithus leptoporus (Murray and Blackman) Schiller, 1930, in L. 131, 3, p. 296, pi. 19, Fig. 1, pi. 21, Fig. 3 - Nishida, 1970, Rabenhorst: Kryptogamen-Flora, vol. 10, p. 245, text-Fig. 10 - Jour. Mar. Geol., vol. 6, no. 1, pp. 34-39, pi. 1, Fig. 10, pi. 2, Kamptner, 1941, Naturhist. Mus. Wien, Ann., vol. 51, p. 94, pi. Fig. 10-11. 13, Figs. 137-139 - Deflandre, 1952, in P. Grasse: Traité de Pseudoemiliania lacunosa Gartner, 1969, Trans. Gulf Coast Assoc. Zoologie, vol. 1, pt. 1, text-Fig. 343 - Gardet, 1955, Publ. Serv. Geol. Soc, vol. 19, p. 598, pi. 2, Fig. 9-10 - Bandy and Carte Géol. Algerie, n. ser., Bull. 5, p. 513, pi. 6, Fig. 50 - Black Wilcoxon, 1970, Geol. Soc. Am. Bull., vol. 81, pp. 2939-2948 - and Barnes, 1961, Roy, Micro. Soc. Jour., vol. 80, pt. 2, p. 143, Hay, 1970, Initial Reports Deep Sea Drilling Project, vol. 4, p. pi. 24, Figs. 3-4. 456. Calcidiscus quadriforatus Kamptner, 1950 Oesterr. Akad. Wiss., Remarks: Gartner (1969) stated that this species is the domi- Math. Naturw. Kl., Anz., vol. 87, pp. 153-155 - Kamptner, nant placolith in late Pliocene and early Pleistocene sediments and 1952, Mikroskopie, vol. 7, p. 236, Fig. 11 - Kamptner, 1952, described its total range as from middle Pliocene to middle Mikroskopie, vol. 7. p. 391, Figs. 20 a-b - Kamptner, 1954, Pleistocene. Arch. Protistenk., vol. 100, pp. 33-34, Figs. 35-37 - Kamptner, 1958, Arch. Protistenk., vol. 103, p. 81 - Kamptner, 1963, Genus EMILIANIA Hay and Mohler, 1961 Naturhist. Mus. Wien, Ann., vol. 66, p. 147 - Hay, 1967, Taxon, vol. 16, pp. 240-242. Type Species: Pontosphaera huxleyi Lohmann, 1902 Calcidiscus medusoides Kamptner, 1950, Oesterr. Akad. Wiss., Emiliania huxleyi (Lohmann) Math-Naturw. KL, Anz., vol. 87, pp. 153, 155 - Kamptner, 1954, Arch. Protistenk., vol. 100, p. 26, Figs. 24-34 - Martini (Plate 1, Figures 21-22) and Bramlette, 1963, Jour. Paleont., vol. 37, p. 849, pi. 102, Pontosphaera huxleyi Lohmann, 1902 (part), Arch, Protistenk, vol. Figs. 1-2, 37, p. 849, pi. 102, Figs. 1-2 - Hay, 1967, Taxon, vol. 1, p. 130, ρl. 4, Figs. 1-6, pi. 6, Fig. 69 - Kamptner, 1941, 16, pp. 240-242. Naturhist. Mus. Wien. Ann., vol. 51, p. 79, pi. 2, Fig. 27, pi. 3, Cyclococcolithus leptoporus (Murray and Blackman) Kamptner, Figs. 29-30, pi. 99. 1954, Arch. Protistenk., vol. 100, p. 23, Fig. 20 - Deflandre, Coccolithus huxleyi (Lohmann) Kamptner, 1943, Anz. Akad. Wiss. 1954, Ann. Paléont., vol. 40, pp. 150-151, text-fig. 76, pi. 9, Wien, Math. Naturw. Kl., vol. 80, p. 44 - Kamptner, 1952, Figs. 103 - Martini and Bramlette, 1963, Jour. Paleont., vol. 37, Microskopie, vol. 7, p. 234, Figs. 7-9 - Kamptner, 1954, Arch. p. 850, pi. 102, Figs. 4-5 - Cohen, 1964, Micropaleontology, Protistenk., vol. 100, pp. 67-69 - Braarud, 1954, Blyttia, vol. vol. 10, p. 237, pi. 1, Fig. 6 a-e, pi. 2, Fig. 4 a-b - Cohen, 1965, 12, pp. 103-104, pi. 1, Figs, a-c - Kamptner, 1956b, Arch. Leidse Geol. Meded., vol. 35, pp. 25-26, pi. 17, Figs, h-i, pi. 18, Protistenk., vol. 101, p. 178, pi. 1, Figs. 1-3 - Black and Barnes, Figs, a-3, pi. 19, Figs, a-b, pi. 20, Figs, a-b - Hay, 1967, Taxon, 1961, Jour. Roy. Micr. Soc, vol. 80, p5. 2, pp. 141-152, pis. vol. 16, pp. 240-242 - Mclntyre and Be, 1967, Deep Sea Res., 20-21 - Black, 1965, Endeavour, vol. 24, no. 93, pi. 2, Fig. 24 - vol. 14, p. 569, pi. 7, Figs. A-C - Hay et al., 1967, Gulf Coast Cohen, 1965, Leidse Geol. Meded., vol. 35, pp. 11-12, pis. 8,9, Assoc. Geol. Socs., Trans., vol. 17, pis. 10-11, Fig. 3 - Bramlette 10, 11, Figs, c-e, pi. 12, Figs, a-c - Lecal, 1966, Protistologica, and Wilcoxon, 1967, Tulane Stud. Geol., vol. 5, p. 103, pi. 3, vol. 2, pp. 57-70 - Mclntyre and Be, 1967, Deep Sea Res., vol. Figs. 9-12 - Gartner, 1967, Univ. Kansas Paleont. Contrib. Paper 14, pp. 568-569, pi. 5, Fig. D, pi. 6, Figs. A-B, pi. 12, Fig. B - 28, pp. 1-4, pi. 1, Figs. 1-4, pi. 2, Figs. 1-4 - Boudreaux and Kamptner, 1967, Ann. Naturhistor. Mus. Wien, vol. 71, p. 125, Hay, 1969, Rev. Esp. Micropal., vol. 1, no. 3, pp. 263-264, pi. II, pi. 3, Figs. 17 and 19 - Mclntyre, 1970, 1970, Deep Sea Figs. 13-14, pi. 3, Figs. 1-6 - Nishida, 1969, Bull. Nara Uni. Research, vol. 17, pp. 187-190, Fig. la - Mclntyre, Be, and Education, vol. 18, no. 2, pp. 88-90, pi. 1, Figs. 4-5 - Gartner, Roche, 1970, Trans. New York Acad. Sciencces, Ser. II, vol. 32, 1969, Trans. Gulf Coast Geol. Socs., vol. 19, pp. 587-591 - no. 6, pp. 720-731. Nishida, 1970, Jour. Mar. Geol., vol. 6, no. 1, pp. 34-39, pi. 1, Emiliania huxleyi (Lohmann) Hay and Mohler, 1967, Gulf Coast Figs. 1-2 - Mclntyre, Be, Roche, 1970, Trans. New York Acad. Assoc. Geol. Soc. Trans., vol. 17, p. 447, pis. 10, 11, Figs. 1, 2 - Sciences, ser. II, vol. 32, no. 6, pp. 720-731, Fig. 5a - Nishida, Gartner, 1969, Trans. Gulf Coast Assoc. Geol. Soc, vol. 19, p. 1970, Trans. Proc. Palaeont. Soc. Japan, N. S., no. 79, pp. 593, pi. 2, Fig. 5 - Kennett and Geitzenauer, 1969, Nature, vol. 360-361, pi. 39, Figs. 1-3 - Hay, 1970, Initial Reports Deep Sea 224, no. 5222, pp. 899-901 - Geitzenauer, 1969, Nature, vol. Drilling Project, vol. 4, p. 457 - Bartolini, 1970, Micro- 223, no. 5202, pp. 170-172 - Boudreaux and Hay, 1969, Rev. paleontology, vol. 16, no. 2, pp. 134-135, pi. 2, Figs. 1, 4-10, Esp. Micropal. vol. 1, num. 3, p. 262, pi. 2, Figs. 10-12 - text-Fig. 7 - Uschakova, 1970, in Funnell and Riedel (Eds.): Nishida, 1970, Jour. Mar. Geol., vol. 6, no. 1, p. 35 - Nishida, The Micropaleontology of Oceans, pp. 245-251, pi. 15.1.1, 3 - 1970, Trans. Proc. Palaeont. Soc. Japan, N. S., no. 79, p. 363, pi. Sachs, 1970, Ph.D. dissertation, Tulane Uni., pp. 66-69, pi. 2, 41, Figs 1-3 - Bartolini, 1970, Micropaleontology, vol. 16, no. Figs. 11-17, pi. 3, Figs. 1-9 - Bukry, 1971, Initial Reports Deep 2, p. 136, pi. 4, Figs. 1-8 - Hay, 1970, Initial Reports Deep Sea Sea Drilling Project, vol. 6, pp. 965-1004, pi. 1, Fig. 3. Drilling Project, vol. 4, p. 456. Tiarolithus medusoides (Kamptner) Kamptner, 1958, Arch. Pro- Remarks: This species occurs in tropical subtropical, transi- tistenk., vol. 103, pp. 81, 85 - Kamptner, 1963, Naturhist. Mus. tional, subarctic and subantarctic waters (Mclntyre and Be, 1967). Wien, Ann., vol. 71, pp. 160,178, pi. 23, Figs. 115, 124.

673 W. W. HAY, F. M. BEAUDRY

Calcidiscus uniforatus Kamptner, 1963, Naturhist. Mus. Wien, Ann., Family THORACOSPHAERACEAE Deflandre, 1952 vol. 66, pp. 147-148, text-Fig. 2, pi. 2, Fig. 17. Genus THORACOSPHAERA Kamptner, 1927 Tiawlithus diversistriatus Kamptner, 1963, Naturhist. Mus. Wien, Ann., vol. 66, pp. 180-181, text-Fig. 28, pi. 2, Fig. 13, pi. 4, Fig. Type species: Thoracosphaera pelagica Kamptner, 1927 27. Tiawlithus pacificus Kamptner, 1963, Naturhist. Mus. Wien, Ann., Thoracosphaera saxea Stradner vol. 66, p. 182, text-Fig. 30. (Plate 1, Figures 27-28) Tiawlithus rectilineatus Kamptner, 1963, Naturhis. Mus. Wien, Thoracosphaera sp. Bramlette and Riedel, 1954, Jour. Paleont., vol. Ann., vol. 66, pp. 182-183, text-Fig. 31, pi. 2, Fig. 11 - 28, p. 393, pi. 38, Fig. 5. Kamptner, 1967, Naturhist. Mus. Wien, Ann., vol. 71, p. 160, pi. Thorcosphaera saxea Stradner, 1961, Erdoel Zeitschr., vol. 77, p. 23, Fig. 117. 84, Fig. 71 - Stradner, 1963, Sixth World Petroleum Congr., Cycloplacolithus foliosus Kamptner, 1963, Naturhist. Mus. Wien, Sec. 1, Paper 4, p. 9, pi. 3, Fig. 3 - Stradner, 1963, in K. Ann., vol. 66, pp. 167-168, pi. 7, Fig. 38. Gohrbandt: Geol. Ges. Wien. Mitt., vol. 56, p. 78, pi. 10, Fig. 8 Cycloplacolithus sejunctus Kamptner, 1963, Naturhist. Mus. Wien, — Cohen, 1964, Micropaleontology, vol. 10, p. 248, pi. 5, Fig. 6 Ann., vol. 66, pp. 169-170, ρl. 8, Fig. 43. a-e, pi. 6, Fig. 6 - Boudreaux and Hay, 1969, Rev. Esp. Cycloplacolithus laevigatus Kamptner, 1963, Naturhist. Mus. Wien, Micropal., vol. 1, no. 3, p. 265, plate 4, Figs. 2-5 - Nishida, Ann., vol. 66, pp. 168-169, pi. 9, Figs. 47-49. 1970, Trans. Proc. Palaeont. Soc. Japan, N. S., No. 79, p. 368, Cyclococcolithus atrematus Kamptner, 1967, Naturhist. Mus. Wien, pi. 41, Fig. 13. Ann., vol. 71, p. 128, pi. 3, Figs. 22-23. Remarks: This is a long-ranging species which has been recorded Cycloplacolithus renalis Kamptner, 1967, Naturhist. Mus. Wien, from the Upper Cretaceous of Austria and from Tertiary and recent Ann., vol. 71, p. 130, pi. 4, Fig. 26. marine sediments (Cohen, 1964). Cyclococcolithus leptoporus (Murray and Blackman) Kamptner var. At Site 147, Thoracosphaera saxea is not abundant and occurs A. Mclntyre et al., 1957, in M. Sears (Ed.), Progress in only in several of the sections. Oceanography, vol. 4, pp. 9-10, pi. 4, Figs. C-D. At Site 148, Thoracosphaera saxea does not occur above Section Cycloccolithus leptoporus (Murray and Blackman) Kamptner var. B. 4 of Core 2. Below this, it occurs in nearly every section of every Mclntyre et al., 1967 in M. Sears (Ed.), Progress in Oceanog- core. raphy, vol. 4, p. 10, pi. 5, Fig. A. At Site 149, Thoracosphaera saxea occurs in almost every Cyclococcolithus leptoporus (Murray and Blackman) Kamptner var. Section of Cores 2 through 6. It is not present at Site 154. C. Mclntyre et al., 1967, in M. Sears (Ed.), Progress in Oceanography, vol. 4, pp. 10-11, pi. 5, Figs. C-D. Cyclococcolithina leptopora (Murray and Blackman) Wilcoxon, Family RHABDOSPHAERACEAE Lemmermann, 1908 1970, Tulane Stud. Geol., vol. 8, pp. 82-83 Subfamily RHABDOSPHAEROIDEAE Kamptner, 1928, emend. Remarks: This species is widely distributed in Neogene sedi- Boudreaux and Hay, 1969 ments. It is known to be living in all major oceans and seas. It is eurythermal and ranges from the equator to the arctic (Mclntyre Genus RHABDOSPHAERA Haeckel, 1894 and Be, 1967). Type Species: Rhabdosphaera clavigera Murray and Blackman, 1908

Rhabdosphaera clavigera Murray and Blackman Tribe UMBILICOSPHAEREAE Boudreaux and Hay, 1969 (Plate 1, Figures 29-30) Genus UMBILICOSPHAERA Lohmann, 1902 Rhabdosphaera clavigera Murray and Blackman, 1898, Roy. Soc. Type Species: Umbilicosphaera mirabilis Lohmann, 1902 London, Phil. Trans., vol. 190, ser. B., pp. 438-439, pi. 15, Figs. 13-15 - Cohen, 1964, Micropaleontology, vol. 10, pp. 240, 242, Umbilicosphaeiamirabilis Lohmann pi. 5, Fig. 2 a-g, pi. 6, Fig. 1 - Cohen, 1965, Leidse Geol. (Plate 1, Figures 25-26) Meded, vol. 35, p. 22, pi. 3, Figs, a-c, pi. 22, Figs, a-b, pi. 23, Fig. 3. Umbilicosphaera mirabilis Lohmann, 1902, Arch. Protistenk., vol. 1, p. 139, pi. 5, Figs. 66, 66a - Black and Barnes, 1961, Roy. Micr. Rhabdosphaera clavigera Murray and Blackman, Kamptner, 1944, Soc. Jour., vol. 80, p. 5. 2, pp. 140-141, pi. 25, Figs. 4-5 - Oesterr. Bot. Zeitschr., vol. 93, p. 140 - Hay et al., 1967, Gulf Mclntyre and Be, 1967, Deep Sea Rs., vol. 14, pp. 471-572, pi. Coast Assoc. Geol. Socs. Trans., vol. 17, pis. 10-11, Fig. 4 - 11, Figs. B-C, pi. 12, Fig. A - Mclntyre et al., 1961, in M. Sears Boudreaux and Hay, 1969. Rev. Esp. Micropal., vol. 1, no. 3, pp. (Ed.): Progress in Oceanography, vol. 4, p. 13, pi. 2, Figs. C-D - 266 and 269, pi. 4, Figs. 6-10 - Gartner, 1969, Trans. Gulf Boudreaux and Hay, 1969, Rev. Esp. Micropal., vol. 1, no. 3, pp. Coast Asso. Geol. Socs., vol. 19, pp. 585-599 - Geitzenauer, 264-265, pi. 3, Figs. 7-15 - Mclntyre, 1969, in Degens and Ross 1969, Nature, vol. 223, no. 5202, pp. 170-172 - Uschakova, (Eds.): Hot Brines and Recent Heavy Metal Deposits in the Red 1970, in Funnell and Riedel (Eds.): The Micropaleontology of Sea, pp. 299-305 - Geitzenauer, 1969, Nature, vol. 223, no. Oceans, p. 248 - Hay, 1970, Initial Reports Deep Sea Drilling 5202, pp. 170-172 - Gartner, 1959, Trans. Gulf Coast Asso. Project, vol. 4, p. 459 - Bartolini, 1970, Micropaleontology, vol. Geol. Socs., vol. 19, pp. 585-599 - Uschakova, 1970, in Funnel 16, no. 12, pp. 142-144, pi. 6, Figs. 8-9, pi. 7, Figs. 3-5 - Bukry, and Riedel (Eds.): The Micropaleontology of Oceans, pp. 1971, Initial Reports Deep Sea Drilling Project, vol. 6, p. 966, pi. 245-251 - Nishida, 1970, Jour. Mar. Geol., vol. 6, no. 1, pp. 2, Fig. 4. 34-39 - Nishida, 1970, Trans. Proc. Paleont. Soc. Japan, N. S., Remarks: Cohen (1964) stated that this species has no tempera- no. 79, pp. 365-366, pi. 39, Figs. 8-11 - Hay, 1970, Initial ture preference, occurs in the Atlantic, Pacific, and Mediterranean, Reports Deep Sea Drilling Project, vol. 4, p. 457 - Bartolini, and probably has world-wide distribution. According to Mclntyre 1970, Micropaleontology, vol. 16, no. 2, pp. 146 and 148, pi. 8, (1967), this species is found in subtropical and transitional waters. Figs. 4-9 - Bukry, 1971, Initial Reports Deep Sea Drilling It also is present in many Caribbean cores (Boudreaux and Hay, Project, vol. 6, pp. 965-1004, pi. 2, Fig. 6. 1969). Cyclococcolithus mirabilis (Lohmann) Kamptner, 1954, Arch. Protistenk., vol. 100, p. 24, test-Figs. 21-23 - Cohen, 1964, vol. Rhabdosphaera stylifer (Lohmann) 10, p. 237, pi. 1, Fig. 4-a-f, pi. 2, Fig. 3-a-f. (Plate 1, Figure 31) Remarks: This species occurs in temperate to subtropical waters Rhabdosphaera stylifer Lohmann, 1902, Arch. Protistenk., vol. 1, p. and is abundant in both the North and South Atlantic (Mclntyre 143, pi. 5, Fig. 65 - Kamptner, 1941, Naturhist. Mus. Wien, and Be, 1967). It is found living in the South Pacific (Geitzenauer, Ann., vol. 51, p. 15, Figs. 148-149, p. 115 - Halldal and 1969) and in Atlantic waters north to the 18°C isotherm (Mclntyre, Markali, 1955, Norske Vidensk. Akad., Avh., Math. Naturv. Kl., 1967). no. 1, p. 16, pi. 20 - Cohen, 1964, Micropaleontology, vol. 10,

674 CALCAREOUS NANNOFOSSILS

pi. 5, Fig. 1, pi. 6, Fig. 2 - Cohen, 1965, Leidse Geol. Meded., Pontosphaera scutellum Kamptner, 1952, Mikroskopie, vol. 7, p. vol. 35, pp. 22-23, pi. 3, Figs, d-f, pi. 21, Figs, e-f, pi. 23, Figs, b, 234, Fig. 1, p. 378, Fig. 17 a-f - Kamptner, 1954, Arch. c-d. Protistenk., vol. 100, pp. 12-16, Figs. 1-7 - Kamptner, 1955, Rhabdosphaera stylifera Lohmann, Gran, and Braarud, 1935, Jour. Verh. Kon. Nederl. Akad. Wetensch., Afd. Natuurkunde, ser. 2, Biol. Board Canada, vol. 1, p. 389 - Mclntyre and Be, 1967, vol. 50, no. 2, p. 13, pi. 1, Fig. 12 a-b - Cohen, 1965, Leidse Deep Sea Res., vol. 14, p. 567, pi. 4, Figs. A-C - Mclntyre, Geol. Meded., vol. 35, pp. 18-19, pi. 15, Figs, a-b - Boudreaux 1969, in Degens and Ross (Eds.): Hot Brines and Recent Heavy and Hay, 1969, Rev. Esp. Micropal., vol. 1, no. 3, p. 271, pi. 5, Mineral Deposits in the Red Sea, pp. 299-305 - Geitzenauer, Figs. 9-13 - Hay, 1970, Initial Reports of the Deep Sea Drilling 1969, Nature, vol. 223, no. 5202, pp. 170-172 - Hay, 1970, Project, vol. 4, p. 458. Initial Reports Deep Sea Drilling Project, vol. 4, p. 459. Remarks: This species has been reported alive in the Caribbean, Aspidorhabdus stylifer Boudreaux and Hay, 1969, Rev. Esp. Atlantic, Adriatic, and Mediterranean. Micropal., vol. 1, no. 3, pp. 269-270, pi. 4, Figs. 11-15 - Hay, 1970, Initial Reports Deep Sea Drilling Project, vol. 4, p. 459. Pontosphaera spp. Remarks: Rhabdosphaera stylifer is characteristic of tropical, (Plate 1, Figure 35) subtropical, and transitional waters (Mclntyre, 1967). Remarks: These specimens belong to the genus Pontosphaera, but the characters observable using light microscopy do not permit "Discolithus" phaseolus Black and Barnes specific identification. (Plate 1, Figure 32) Discolithus phaseolus Black and Barnes, 1961, Roy, Micr. Soc. Genus HELICOPONTOSPHAERA Hay and Mohler, 1967 Jour., vol. 80, pt. 2, p. 144, pi. 26, Figs. 1-4. Type species: Helicopontosphaera kamptneri Hay and Mohler, Rhabdosphaera stylifera Lohmann, Mclntyre & Be in part, 1967, Deep Sea Res., vol. 14, p. 567, pi. 4, Fig. a (part). 1967 Remarks: Mclntyre and Be (1967) illustrate coccoliths which Helicopontosphaera kamptneri Hay and Mohler correspond to "Discolithus'''' phaseolus Black and Barnes on the surface of Rhabdosphaera stylifer cells, thus proving that a single (Plate 1, Figure 33) organism may produce both discoliths and rhabdoliths. The two Coccolithophora pelagica (Wallich) of Lohmann, 1902 (part), Arch. coccolith forms are separated here because their occurrences in the Protistenk., vol. 1, p. 138, pi. 5, Fig. 58a, c. sediment do not coincide. Coccolithus pelagicus (Wallich) of Schiller, 1930 (part), in L. Rabenhorst: Kryptogamen-Flora, vol. 10, pt. 2, p. 246. Subfamily DISCOSPH AERO IDE AE Boudreaux and Hay, 1969 Coccolithus carteri (Wallich) of Kamptner, 1941, Naturhist. Mus. Wien, Ann., vol. 51, pp. 93, 11, pi. 13, Fig. 136. Genus DISCOPHAERA Haeckel, 1894 Helicosphaera carteri (Wallich) of Kamptner, 1954, Arch. Protis- Type species: Discosphaera thomsoni Ostenfeld, 1899 tenk., vol. 100, no. 1, p. 21, text-Figs. 17-19 - Deflandre, 1954, Ann. Pal., vol. 40, p. 152, text-Figs. 9-11, 75 - Black and Discosphaera tubifera (Murray and Blackman) Barnes, 1961, Roy. Micr. Soc, Jour., vol. 80, pt. 2, pp. 139-140, (Plate 2, Figure 29) pis. 22-23 - Cohen, 1964, Micropaleontology, vol. 10, pp. 238, 240, pi. 3, Fig. 2 a-f, pi. 4, Fig. 1 a-c - Cohen, 1965, Leidse Rhabdosphaera tubifera Murray and Blackman, 1898, Roy. Soc. Geol. Meded., vol. 35, p. 21, pi. 3, Figs, o-q, pi. 17, Figs, a-d - London, Phil., Trans., vol. 190, ser. B, pp. 438-439, pi. 15, Figs. Mclntyre and Be, 1967, Deep Sea Research, vol. 14, p. 571, pi. 8-10. 11, Fig. A - Mclntyre et al., 1967, in M. Sears (Ed.): Progress in Discosphaera tubifera (Murray and Blackman) Ostenfeld, 1900, Zool. Oceanography vol. 4, pp. 12-13, pi. 6, Figs. A-B. Anz., vol. 22, p. 200 - Lohmann, 1902, Arch. Protistenk., vol. Coccolithus pelagicus forma diademata Gardet, 1955, Serv. Carte 1, p. 141, pi. 5, Figs. 47-48, 50 - Halldal and Markali, 1955, Gëol. Algerie, Publ., n. ser., Bull. 5, p. 511, pi. 5, Figs. 46-47. Norske Vidensk, Akad., Avh., Mat. Naturv. KL, no. 1, p. 17, Helicopontosphaera kamptneri Hay and Mohler, 1967, Gulf Coast pi. 22 - Cohen, 1964, Micropaleontology, vol. 10, p. 242, 244, Assoc. Geol. Socs., Trans., vol. 17, p. 448, pis. 10-11, Fig. 5 - pi. 5, Fig. 3 a-c, pi. 6, Fig. 3 a-e - Cohen, 1965, Leidse Geol. Boudreaux and Hay, 1969, Rev. Esp. Micropal. vol. 1, no. 3, p. Meded., vol. 35, p. 24, pi. 3, Figs, g-i, pi. 23, Fig. a. 272, pi. 6, Figs. 8,10-15 - Geitzenauer, 1969, Nature, vol. 223, Discosphaera tubifera (Murray and Blackman) Kamptner, 1944, no. 5202, pp. 170-172 - Gartner, 1969, Trans. Gulf Coast Oesterr. Bot. Zeitschr, vol. 9, p. 139 - Mclntyre and Be, 1967, Assoc. Geol. Socs., vol. 17, p. 587 - Hay, 1970, Initial Reports Deep Sea Res., vol. 14, p. 566, pi. 1, Figs. A-C - Geitzenauer, of the Deep Sea Drilling Project, vol. 4, p. 458 - Nishida, 1970, 1959, Nature, vol. 223, no. 5202, pp. 170-172 - Mclntyre, Trans. Proc. Palaeont. Soc. Japan, N. S., no. 79, p. 364, pi. 40, 1969, in Degens and Ross (Eds.): Hot Brines and Recent Heavy Figs. 14-15 - Nishida, 1970, Jour. Mar. Geol. vol. 6, no. 1, p. 35 Metal Deposits in the Red Sea, p. 301, Fig. 1 - Boudreaux and - Bukry, 1971, Initial Reports of the Deep Sea Drilling Project, Hay, 1969, Rev. Esp. Micropal., vol. 1, no. 3, p. 270, pi. 4, Fig. vol. 6, p. 966. 16, pi. 5, Figs. 1-7 - Gartner, 1969, Trans. Gulf Coast Asso. Remarks: This widely distributed species occurs in subtropical Geol. Socs., vol. 19, p. 591 - Oakda and Honjo, 1970, Pac. waters of the North Atlantic (Mclntyre, 1967). Its geological range Geol., vol. 2, pp. 11-12, pi. 1, Fig. 3. extends from early Pliocene or late Miocene to Recent. Remarks: This species occurs in tropical and subtropical waters. It characterizes subtropical water masses and tolerates a temperature Helicopontosphaera sellii Bukry and Bramlette range of 14 to 21°C (Mclntyre, Be, and Roche, 1970). It has been found living in the Mediterranean and Atlantic (Cohen, 1964). Helicopontosphaera sellii Bukry and Bramlette, 1969, Tulane Studies Geol. and Paleont., vol. 7, nos. 3 and 4, pi. 2, Figs. 3-7 - Order PODORHABDINALES Rood, Hay, and Barnard, 1971 Bukry, 1971, Initial Reports of the Deep Sea Drilling Project, vol. 6, p. 966. Suborder SYRACOSPHAERINEAE Boudreaux and Hay, 1969 Remarks: This species is widespread in the Upper Miocene and Family PONTOSPHAERACEAE Lemmermann, 1908 Pliocene of the Atlantic Ocean, Gulf of Mexico, tropical Pacific Ocean, and Italy (Bukry and Bramlette, 1969). Subfamily PONTOSPHAEROIDEAE Kamptner, 1937 Tribe PONTOSPHAEREAE Hay, 1966 Helicopontosphaera wallichi (Lohmann) Genus PONTOSPHAERA Lohmann, 1902 (Plate 1, Figure 36) Type Species: Pontosphaera syracusana, Lohmann, 1902 Coccolithophora wallichi Lohmann, 1902, Arch. Protistenk., vol. 1, p. 138, pi. 5, Figs. 58 a-b, 59, 60 - Lohmann, 1911, Int. Rev. Pontosphaera scutellum Kamptner Ges. Hydrobiol. Hydrograph., vol. 4, Fig. 5 (p. 39) - Lohmann, (Plate 1, Figure 34) 1913, Deutsch. Zool. Ges., Verh., vol. 23, p. 146, Fig. 1/4 - Schiller, 1925, Arch. Protistenk., vol. 51, p. 37. Discolithus scutellum Kamptner, 1950, Anz. Akad. Wiss. Wien, Coccolithus wallichi (Lohmann) Schiller, 1930, in L. Rabenhorst: Math, Naturw. Kl., vol. 87, p. 153 (nomen nudum). Kryptogamen-Flora, vol. 10, pp. 274-248, Fig. 124c. 675 W. W. HAY, F. M. BEAUDRY

Coccolithus wallichi (Lohmann) Kamptner, 1941, Naturhist. Mus. Figs. 11, 30, 90 a-b - Deflandre and Fert, 1953, C. R. Acad. Wien, Ann., vol. 51, p. 112. Sci., vol. 236, Figs. 7 - Deflandre and Fert, 1954, Ann. Pal., vol. Helicopontosphaera wallichi (Lohmann) Boudreaux and Hay, 1969, 40, Figs. 1, 27, 3, 4 - Halldal and Mar kali, 1955, Norsek Rev. Esp. Micropal., vol. 1, no. 3, p. 272, pi. 6, Fig 9 - Hay, Vidensk, Akad., Avh., Mat. Naturv. Kl., no. 1, pi. 12, pi. 11 - 1969, Initial Reports of the Deep Sea Drilling Project, vol. 4, p. Black and Barnes, 1961, Roy. Micr. Soc, Jour., vol. 80, p. 139, 458. pi. 19, Figs. 1-2 - Cohen, 1965, Leidse Geol. Meded., vol. 35, p. 20, pi. 12, Fig. d, pi. 14, Figs, a-b - Boudreaux and Hay, 1969, Genus DISCOLITHINA Loeblich and Tappan, 1963 Rev. Esp. Micropal., vol. 1, no. 3, p. 279, pi. 8, Figs. 1-9 - Type species: Discolithus vigintiforatus Kamptner, 1948 Geitzenauer, 1969, Nature, vol. 223, no. 5202, pp. 170-172 - Nishida, 1970, Trans. Proc. Palaeont. Soc. Japan, N. S., no. 79, Discolithina cf. macropoia (Deflandie) pp. 364-365, pi. 40, Figs. 4-5 - Nishida, 1970, Jour. Mar. Geol. vol. 6, no. 1, p. 35 - Bartolini, 1970, Micropaleontology, vol. (Plate 2, Figure 7) 16, no. 2, pp. 144 and 146, pi. 8, Figs. 1-3 - Bukry, 1971, Remarks: Small specimens of Discolithina with 6 to 12 holes Initial Reports Deep Sea Drilling Project, vol. 6, p. 967. were not differentiated in this investigation, but are categorized as Syracorhabdus pulchra (Lohmann) Lecal, 1967 Hydrobiol., vol. 24, Discolithina cf. macropora. pp. 315-316, text. Fig. 11, Fig. 15. Remarks: This species üves in subtropical and transitional Discolithina spp. Atlantic waters (Mclntyre and Be, 1967) and in the South Pacific (Plate 2, Figures 8-9) (Geitzenauer, 1969). It has been reported in sediments of the Remarks: These are specimens belonging to the genus Atlantic, Mediterranean, and Caribbean (Boudreaux and Hay, Discolithina, but whose observable characters using light microscopy 1969). do not permit specific identification. Syracosphaera clava n. sp. Subfamily SCYPHOSPHAEROBDEAE Boudreaux and Hay, 1969 (Plate 2, Figures 15-16) Genus SCYPHOSPHAERA Lohmann, 1902 Holotype: UI-H-149/2/3100-101. Dimension: Holotype: length, 2.8µ; width, l.Oµ. Type species: Scyphosphaera apsteini Lohmann, 1902 Type locality: DSDP, Leg 15, Site 149, Core 2, Section 3, (100-101 cm). Scyphosphaera apsteini Lohmann Diagnosis: An elliptical species distinguished in polarized light (Plate 2, Figure 6) by a bar lying in the major axis of the ellipse. Scyphosphaera apsteini Lohmann, 1902, Arch. Protistenk., vol. 1, p. Description: The coccolith is elongate elliptical, the central area 132, pi. 4, Figs. 26-30 - Deflandre, 1942, Bull. Soc. Hist. Nat. is large. The bar and margin are narrow; the width of the bar Toulouse, vol. 77, p. 130, Figs. 10-15 - Kamptner, 1955, Verh. approximately equals the width of the margin. The margin is almost Kon. Nederl. Akad. Wetensch., Afd. Natuurkunde, 2nd. ser., vol. ogival in the major axis of the ellipse. This species is smaller than 50, no. 2, p. 22, Figs. 109-112 - Boudreaux and Hay, 1969, Syracosphaera histrica. Rev. Esp. Micropal., vol. 1, no. 3, pp. 274 and 277, pi. 6, Figs. Remarks: At Site 147, Syracosphaera clava occurs in approxi- 16-18 - Bukry 1971, Initial Reports Deep Sea Drilling Project, mately one-half of the sections. Marked intervals of absence occur vol. 6, p. 966. from Section 2 of Core 2 through Section 4 of Core 2 (108-109 Remarks: The ranges of this species begins in the late Miocene cm), from Section 1 of Core 3 (95-96 cm) through Section 1 of and it is widespread in modern oceans (Boudreaux and Hay, 1969). Core 4 (51-52 cm), in Section 5 of Core 6, from Sections 3 through 5 of Core 7, from Section 6 of Core 7 (73-74 cm) through Section 2 of Core 8 (28-29 cm), in Section 3 of Core 8, in Section 4 of Core 9, in Section 4 of Core 11, from Section 4 of Core 12 through Section Family SYRACOSPHAERACEAE Lemmermann, 1908 5 of Core 12 (71-72 cm), from Section 2 of Core 13 through Genus SYRACOSPHAERA Lohmann, 1902 Section 4 of 14, from Section 5 of Core 14 (100-101 cm) through Section 2 of Core 15 (90-91 cm), from Section 2 of Core 16 Type Species: Syracosphaera pulchra Lohmann, 1902 through Section 4 of Core 16 (30-31 cm), from Section 2 of Core 17 through Section 5 of Core 17 (30-31 cm), from Section 1 Syracosphaera histrica Kamptner through Section 2 of Core 18, and from Section 5 through Section 6 (Plate 2, Figure 10) of Core 18. Syracosphaera histrica Kamptner, 1941, Naturhist. Mus. Wien, Ann., At Site 148, Syracosphaera clava consistently occurs from the vol. 51, p. 84, pi. 6, Figs. 65-58 - Boudreaux and Hay, 1959, top of Core 1 through Section 4 of Core 2. Occurrence below this is Rev. Esp. Micropal., vol. 1, no. 3, p. 279, pi. 8, Figs. 10-19. very sporadic and S. clava does not occur below Section 4 of Core Discolithus histricus (Kamptner) Cohen, 1964, Micropaleontology, 13 (40-41 cm). vol. 10, p. 236, pi. 1, Fig. 2 a-g, pi. 2, Fig. 1. At Site 149, Syracosphaera clava occurs in Sections 1 through 6 Discolithus aff. histricus (Kamptner) Cohen, 1965, Leidse Geol. of Core 2 and Section 5 of Core 5. It is abundant in Section 1 of Meded., vol. 35, p. 13, pi. 24, Fig. a. Core 2 (25-26 cm), Section 3 of Core 2 (25-26 cm) through Section Remarks: This species occurs in many Caribbean deep-sea cores; 4 of Core 2 (25-26 cm), and Section 5 of Core 5. it has been reported living in the Adriatic. Cohen (1964) considered Syracosphaera clava is rare at Site 154 and occurs in only a few it an indicator of cool water. samples.

Syracosphaera jonesi (Cohen) Beaudry & Hay (n. comb.) Syracosphaera decussata n. sp. (Plate 2, Figures 11 and 12) (Plate 2, Figures 17-18) Cricolithus fonesi Cohen, 1965, Leidsche Geologische Mededlingen, Holotype: UI-H-149/2/3/100-101. vol. 35, p. 16, pi. 2, Figs, j, k, pi. 16, Figs, a-c - Cohen and Dimension: Holotype: length, 3.0µ; width, 2.0µ. Reinhardt, 1968, N.Jb. Geol. Paleont. Abh., vol. 131, p. 299, pi. 19, Figs. 10, 14, text-Fig. 8 - Sachs, 1970, Ph.D. Dissertation. Type locality: DSDP, Leg 15, Site 149, Core 2, Section 3, Tulane Uni., p. 94, pi. 3, Figs. 14-17. (100-101 cm). Diagnosis: An elliptical species distinguished in polarized light by a "cross-like" pattern in the central area. Syracosphaera pulchra Lohmann Description: This coccolith is elliptical with a large central area. (Plate 2, Figures 13-14) The long and short segments of the "cross-like" pattern are narrow Syracosphaera pulchra Lohmann, 1902, Arch. Protistenk., vol. 1, p. and lie in the major and minor axes of the ellipse, respectively. The 134, pi. 4, Figs. 33, 36, 35a, 37 - Schüler, 1930, in L. margin of this species is wide and radially striated. This species is Rabenhorst: Kryptogamen-Flora, vol. 10, pt. 2, pp. 207-208, smaller than Syracosphaera histrica.

676 CALCAREOUS NANNOFOSSILS

Remarks: At Site 147, Syracosphaera decussata occurs Family DISCOASTERACEAE Tan Sin Hok, 1927 sporadically from the top of Core 1 through Section 1 of Core 6. Below this, it occurs in every section of every core with a Genus DISCOASTER Tan Sin Hok, 1927 pronounced increase in abundance occurring in Section 2 of Core 10 Type species: Discoaster pentaradiatus Tan Sin Hok, 1927 (33-34 cm), Section 1 of Core 11 (31-32 cm) through Section 2 of Core 11 (31-32 cm) and Section 5 of Core 12 (83-84 cm) through Discoaster brouweri rutellus Gartner Section 6 of Core 12 (20-21 cm). (Plate 2, Figure 4) At Site 148, Syracosphaera decussata occurs in every section of Discoaster brouweri rutellus Gartner, 1967, Univ. Kansas Paleont. every core except for Section 3 of Core 2, Section 5 of Core 12, Contr., Paper 28, p. 2, pi. 1, Figs. 1-2 - Hay, 1970, Initial Section 1 of Core 14, Section 1 of Core 24, Section 1 of Core 26, Reports Deep Sea Drilling Project, vol. 4, p. 461. Section 4 of Core 27, Section 1 of Core 28, and Section 1 of Core Remarks: This species appeared during the Middle Miocene; its 29. It exhibits an interval of increased abundance from Section 4 of extinction is widely used to mark the Pliocene-Pleistocene Core 11 (20-21 cm) through Section 4 of Core 11 (90-91 cm). boundary. At Site 149, Syracosphaera decussata is very abundant and A few scattered reworked specimens occur in Pleistocene occurs in every section of Cores 2 through 6. Marked increases in samples. abundance occurs in Section 3 of Core 2 (100-101 cm) and Section 5 of Core 6. Discoaster pentaradiatus Tan Sin Hok At Site 154, Syracosphaera decussata is generally rare, but does occur continuously in the lower part of Core 1 and upper part of (Plate 2, Figure 3) Core 2 from Hole 154 A. Discoaster pentaradiatus var. Tan Sin Hok, 1927, Jaarb., Mijnw. Nederl. - Indie, vol. 55, p. 120, Fig. 14 - Tan Sin Hok, 1927, Syracosphaera sp. Proc. Sect. Sc. Kon. Akad. Wetensch. Amsterdam, vol. 30, p. (Plate 2, Figures 19-20) 416, Fig. 14. Discoaster pentaradiatus Tan Sin Hok Bramlette and Riedel, 1954, Remarks: A number of specimens appear to belong to the genus Jour. Paleont., vol. 28, pp. 401-402, pi. 39, Fig. 11, text Figs. 2 Syracosphaera, but the character observable using polarized light do a-b - Martini and Bramlette, 1963, Jour. Paleont., vol. 37, p. not permit specific identification. 853, pi. 105, Fig. 5 - Boudreaux and Hay, 1969, Rev. Esp. Micropal., vol. 1, no. 3, p. 282, pi. 9, Figs. 1-3, 13 - Kenneth Order EIFFELLITHALES Rood, Hay, and Barnard, 1971 and Geitzenauer, 1969, Nature, vol. 224, no. 5222, pp. 899-901 Family CALCIOSOLENIACEAE Kamptner, 1937 - Gartner, 1969, Trans. Gulf Coast Assoc. Geol. Socs., vol. 19, p. 587 - Hay, 1970, Initial Reports Deep Sea Drilling Project, Genus SCAPHOLITHUS Deflandre, 1954 vol. 4, p. 461 — Bukry, 1971, Micropaleontology, vol. 17, no. 1, Type species: Scapholithus fossilis Deflandre, 1954 pp. 46, pi. 1, Fig. 5 - Bukry, 1971, Initial Reports Deep Sea Drilling Project, vol. 6, p. 966. Scapholithus fossilis Deflandre Remarks: This species appeared in late Miocene and became (Plate 2, Figures 25-26) extinct during late Pliocene (Boudreaux and Hay, 1969). Scapholithus fossilis Deflandre, 1954, Ann. Pal., vol. 40, p. 165, pi. A few reworked specimens have been seen in Pleistocene 8, Fig. 12, 16, 17 - Cohen, 1964, Micropaleontology, vol. 10, samples. no. 2, p. 244, pi. 3, Fig. 4 a-f, pi. 4, Fig. 2 a-c - Cohen, 1965, Leidse Geol. Meded., vol. 35, pp. 24-25, pi. 3, Figs, j-1, pi. 25, Discoaster surculus Martini and Bramlette Figs, a-d - Cohen and Reinhardt, 1968, N.Jb. Geol. Palaeont. (Plate 2, Figure 2) Abh., vol. 131, p. 293, pi. 19, Fig. 11, 15, pi. 20, Fig. 2 - Discoaster surculus Martini and Bramlette, 1963, Jour. Paleont., vol. Nishida, 1970, Trans. Proc. Palaeont. Soc. Japan. N. S., no. 79, 37, p. 854, pi. 104, Figs. 10-12 - Hay et al., 1967, Gulf Coast p. 367, pi. 41, Figs. 9-10 - Hay, 1970, Initial Reports Deep Sea Assoc. Geol. Socs. Trans., vol. 17, pi. 5, Fig. 6 - Boudreaux and Drilling Project, vol. 4, p. 459. Hay, 1969, Rev. Esp. Micropal., vol. 1, no. 3, pp. 285-286, pi. 9, Remarks: This taxon includes isolated calceosolenid coccoliths Fig. 10 - Kenneth and Geitzenauer, 1969, Nature, no. 224, no. not otherwise identifiable. Living representatives of this group are 5222, pp. 899-901 - Gartner, 1969. Trans. Gulf Coast Asso. classified on the basis of cell shape and presence and location of Geol. Socs., vol. 19, p. 589 - Hay, 1970, Initial Reports Deep spines. None of these criteria, however, are available in the fossils. Sea Drilling Project, vol. 4, p. 461. Remarks: This species appeared in the Late Miocene and Family BRAARUDOSPHAERACEAE Deflandre, 1947 became extinct in the late Pliocene. Genus BRAARUDOSPHAERA Deflandre, 1947 Reworked specimens occur rarely in Pleistocene samples. Type Species: Pontosphaera bigelowi Gran and Braarud, 1935 Braarudosphaera bigelowi (Gran and Braarud) (Plate 2, Figure 5) Pontosphaera bigelowi Gran and Braarud, 1935, Jour. Biol. Board Family CERATOLITHACEAE Norris, 1965 Canada, vol. 1, p. 389, Fig. 67. Genus CERATOLITHUS Kamptner, 1950 Braarudosphaera bigelowi (Gran and Braarud) Deflandre, 1947, C. R. Acad. Sci., vol. 225, p. 439, Figs. 1-5 - Deflandre, 1954, Type Species: Ceratolithus cristatus Kamptner, 1954 Ann. Pal., vol. 40, pp. 164-166, pi. 10, Figs. 8-13, pi. 13, Figs. 7-9 - Bramlette and Riedel, 1954, Jour. Paleont., vol. 28, pp. Ceratolithus cristatus Kamptner 393-394, pi. 38, Fig. 6 a-b. Gaarder, 1954, Rept. Sci. Results (Plate 2, Figure 1) "Michael Sars" North Atlantic Deep Sea Exped. 1910, vol. 2, no. Ceratolithus cristatus Kamptner, 1954, Arch. Protistenk., vol. 100, 4, pp. 5-6, Fig. 2 - Martini, 1958, Senck. Leth., vol. 39, p. 355, p. 43, Figs. 44-45 - Cohen, 1964, Micropaleontology, vol. 10, p. pi. 2, Fig. 6 a-b - Bramlette and Sullivan, 1961 Micropale- 244, 246, pi. 5, Figs. 5 a-d, pi. 6, Fig. 5 - Cohen, 1965, Leidse ontology, vol. 7, p. 153, pi. 8, Figs, la-b, 2-5 - Hay and Towe, Geol. Meded., vol. 35, p. 36, pi. 3, Figs, m, n - Norris, 1965, 1962, Science, vol. 137, p. 426, Fig. 1. Cohen, 1965, Leidse Arch. Protistenk., vol. 108, pp. 19-21, pi. 11, Figs. 1-4, pi. 12, Geol. Meded., vol. 35, p. 31, pi. 6, Figs, a-d - Martini, 1967, Figs. 1-4 - Boudreaux and Hay, 1969, Rev. Esp. Micropal., vol. NJb. Geol. Palaeont., vol. 10, pp. 598-600, Fig. la-b - 1, nd. 3, pi. 10, Figs. 16-19 - Gartner, 1969, Trans. Gulf Coast Boudreaux and Hay, 1969, Rev. Esp. Micropal. vol. 1, no. 3, p. Asso. Geol. Socs., vol. 19, p. 590 - Hay, 1970, Initial Reports 281, pi. 8, Figs. 21-23 - Bartolini, 1970, Micropaleontology, Deep Sea Drilling Project, vol. 4, p. 459 - Bukry, 1971, Initial vol. 16, no. 2, p. 152, pi. 1, Fig. 1. Reports Deep Sea Drilling Project, vol. 6, p. 965.

677 W. W. HAY, F. M. BEAUDRY

Remarks: This species, originally described as a fossil, is still Cepek, P. and Hay, W. W., 1969. Calcareous nannoplankton living (Norris, 1965) and has been found in samples from all ocean and biostratigraphic subdivision of the upper Cretaceous. floors (Bukry and Bramlette, 1968). Gulf Coast Assoc. Geol. Soc. Trans. 19, 323. Cohen, C. L. D., 1964. Coccolithophorids from two INCERTAE SEDIS Caribbean deep-sea cores. Micropaleontology. 10 (2), Genus ELLIPSODISCOASTER Boudreaux and Hay 231. Type species: Ellipsodiscoaster lidzi Boudreaux and Hay, 1969 Cohen, C. L. D. and Reinhardt, P., 1968. Coccolithophorids from the Pleistocene Caribbean deep-sea core CP-28. N. Ellipsodiscoaster lidzi Boudreaux and Hay Jb. Geol. Palaeont. Abh. 131 (3), 289. (Plate 2, Figures 27-28) Gartner, S., Jr., 1969. Correlation of Neogene planktonile Ellipsodiscoaster lidzi Boudreaux and Hay, 1969, Rev. Esp. foraminifer and calcareous nannofossil zones. Trans. Micropal., vol. 1, no. 3, p. 288, pi. 10, Figs. 4-15. Gulf Coast Assoc. Geol. Soc. 19, 585. Geitzenauer, K. R., 1969. Coccoliths as late Quaternary UNIDENTIFIED OBJECTS paleoclimatic indicators in the Subantarctic Pacific Little "u" Ocean. Nature, 223, 170. (Plate 2, Figure 21) Hay, W.W., 1970. Calcareous nannofossils from cores recovered on Leg 4. In Bader, R. G., Gerard, R. D., et Remarks: These "u" shaped objects occur in approximately al., 1970. Initial Reports of the Deep Sea Drilling one-half of the sections at Site 147. These objects increase markedly in abundance in Section 3 of Core 8 (114-115 cm). Project, Volume IV. Washington (U. S. Government At Site 148, these "u" shaped objects occur sporadically Printing Office). 455. throughout all of the cores. Hay, W. W., 1972. Probabilistic stratigraphy. Eclog. Geol. At Site 149, these "u" shaped objects occur only in Sections 1 Helvet. and 2 of Core 2. Hay, W. W., Mohler, H. P., Roth, P. H., Schmidt, R. R. and At Site 154, these objects are very rare. Boudreaux, J. E., 1967. Calcareous nannoplankton zonation of the Cenozoic of the Gulf Coast and 'Truncate-elongate coccolith" Caribbean-Antillean area and transoceanic correlation. (Plate 2, Figure 22) Trans. Gulf Coast Assoc. Geol. Soc, 17, 428. Remarks: At Site 147, this "truncate-elongate coccolith" occurs Loeblich, A. R., Jr. and Tappan, H., 1966. Annotated index only in Section 4 of Core 12 (41-42 cm). At Site 148, it occurs only and bibliography of the calcareous nannoplankton. in Section 2 of Core 1 (52-53 cm) and Section 6 of Core 6 (50-51 Phycologia. 5, 81. cm). This coccolith was not found at Sites 149 or 154. , 1968. Annotated index and bibliography of the calcareous nannoplankton II. J. Paleontol. 42, 584. , 1969. Annotated index and bibliography of the calcareous nannoplankton III. J. Paleontol. 43, 568. ., 1970a. Annotated index and bibliography of the calcareous nannoplankton IV. J. Paleontol. 44, 558. , 1970b. Annotated index and bibliography of the calcareous nannoplankton V. Phycologia, 9, 157. Martini E., and Worsely, T., 1971. Tertiary calcareous nannoplankton from the western equatorial Pacific. In Winterer, E. L., Riedel, W. R. et al., 1971. Initial REFERENCES Reports of the Deep Sea Drilling Project, Volume VII. Bartolini, C, 1970. Coccoliths from sediments of the Washington (U.S. Government Printing Office). 1471. western Mediterranean. Micropaleontology. 16(2), 129. Mclntyre, A., 1967. Coccoliths as paleoclimatic indicators Bolli, H. M., Boudreaux, J. E., Emiliani, C, Hay, W. W., of Pleistocene glaciation. Science. 158 (3806), 1314. Hurley, R. J. and Jones, J. I., 1968. Biostratigraphy and , 1970. Gephyrocapsa protohuxleyi sp. n. a paleotemperatures of a section cored on the Nicaragua possible phyletic link and index fossil for the Rise, Caribbean Sea. Bull. Geol. Soc. Am. 79, 459. Pleistocene. Deep Sea Research. 17, 187. Boudreaux, J. E., 1967. Biostratigraphy and calcareous Mclntyre, A., Be, A. W. H. and Preikstas, R., 1967. nannoplankton of the Submarex Section. Thesis, Coccoliths and the Pliocene-Pleistocene boundary. In University of Illinois. Sears, M., Progress in Oceanography. A. A. A. S. Boudreaux, J. E. and Hay, W. W., 1969. Calcareous Washington. 4, 3. nannoplankton and biostratigraphy of the late Pliocene- Mclntyre, A., Be, A. W. H. and Roche, M. B., 1970. Modern Pleistocene-Recent sediments in the Submarex cores. Pacific Coccolithophorida: a paleontological ther- Rev. Esp. Micropal. 1 (3), 249. mometer. Trans. New York Acad. Sci. Ser. II. 32 (6), Bukry, D. and Bramlette, M. N., 1968. Stratigraphic 720. significance of two genera of Tertiary calcareous Norris, R. E., 1965. Living cells of Ceratolithus cristatus nannofossils. Tulane Stud. Geol. 6, 149. (Coccolithophorineae). Arch. Protiskuk, 108, 19. , 1969. Coccolith age determinations Leg 1, Deep Rosholt, J. N., Emiliani, C, Geiss, J., Koczy, F. F. and Sea Drilling Project. In Ewing, W. M., Worzel, J. L. et al., Wangersky, P. J., 1961. Absolute dating of deep sea 1969. Initial Reports of the Deep Sea Drilling Project, cores by the Pa231/Th230 method. J. Geol. 69 (2), 162. Volume I. Washington (U. S. Government Printing , 1972. Pa231/Th230 dating and O18/O16 Office), 369. temperature analysis of Core A254-BR-C. J. Geophys. , 1970. Coccolith age determinations Leg 3, Deep Res. 67(7), 2907. Sea Drilling Project. In Maxwell, A. E., von Herzen, R. et Worsely, T., 1971. Calcareous nannoplankton zonation of al., Initial Reports of the Deep Sea Drilling Project, Upper Jurassic and Lower Cretaceous sediments from Volume III. Washington (U.S. Government Printing the Western Atlantic. In Proceedings II Plank. Conf. Office). 369. Roma. Farinacci, A. (Ed.). Rome (Tecnoscienze) 1301.

678

W. W. HAY, F. M. BEAUDRY

PLATE 1

Figures 1-3 Coccolithus pelagicus (Wallich). (1) phase contrast 4000X; (2) crossed polarizers 4000X; (3) phase contrast 4000X. Figures 4-5 Gephyrocapsa californiensis Kamptner. (4) crossed polarizers 4000X; (5) crossed polarizers 4000X. Figures 6-7 Gephyrocapsa oceanica Kamptner. (6) crossed polari- zers 4000X. Figures 8-9 Gephyrocapsa kamptneri Deflandre & Fert. (8) crossed polarizers 4000X; (9) crossed polarizers 4000X. Figures 10-12 Gephyrocapsa parallela n. sp. (10) crossed polarizers 4000X; (11) crossed polarizers 4000X; (12) crossed polarizers 4000X. Figures 13-14 Gephyrocapsa sinuosa n. sp. (13) crossed polarizers; (14) crossed polarizers 4000X. Figures 15-16 Gephyrocapsa sp. (15) crossed polarizers 4000X; (16) crossed polarizers 4000X. Figures 17-20 Pseudoemiliana lacunosa (Kamptner). (17) crossed polarizers 4000X; (18) crossed polarizers 4000X. (19) crossed polarizers 4000X; (20) crossed polar- izers 4000X. Figures 21-22 Emiliania huxleyi (Lohmann). (21) crossed polarizers 4000X; (22) crossed polarizers 4000X. Figures 23-24 Cyclococcolithina leptopora (Murray & Blackman). (23) crossed polarizers 4000X; (24) crossed polarizers 4000X. Figures 25-26 Umbilicosphaera mirabilis (Lohmann. 25) crossed polarizers 4000X; (26) crossed polarizers 4000X. Figures 27-28 Thoracosphaera saxea Stradner. (27) crossed polari- zers 4000X; (28) crossed polarizers 4000X. Figures 29-30 Rhabdosphaera clavigera Murray & Blackman. (29) crossed polarizers 4000X; (30) crossed polarizers 4000X. Figure 31 Rhabdosphaera sty lifer (Lohman). crossed polarizers 4000X. Figure 32 "Discolithus" phaseolus Black & Barnes, crossed polarizers 4000X. Figure 33 Helicopontosphaera kamptneri Hay & Mohler. Crossed polarizers 4000X. Figure 34 Pontosphaera scutellum Kamptner. Crossed polarizers 4000X. Figure 35 Pontosphaera sp. Crossed polarizers 4000X. Figure 36 Helicopontosphaera wallichi (Lohmann). Phase con- trast 4000X.

680 CALCAREOUS NANNOFOSSILS

PLATE 1

W

31

681 W. W. HAY, F. M. BEAUDRY

PLATE 2

Figure 1 Ceratolithus cristatus Kamptner. Crossed polarizers 4000X.

Figure 2 Discoaster surculus Martini & Bramlette. Phase contrast 4000X.

Figure 3 Discoaster pentaradiatus Tan Sin Hok. Phase contrast 4000X.

Figure 4 Discoaster brouweri rutellus Gartner. Phase contrast 4000X.

Figure 5 Braarudosphaera biglowi (Oran & Braarud). Crossed polarizers 4000X.

Figure 6 Scyphosphaera apsteini (Lohmann). Crossed polar- izers 4000X.

Figure 7 Discolithina cf. macropora (Deflandre). Crossed polarizers 4000X.

Figures 8, 9 Discolithina spp. Crossed polarizers 4000X.

Figure 10 Syracosphaera histrica Kamptner. Crossed polarizers 4000X.

Figures 11-12 (11) Crossed polarizers 4000X; (12) Crossed polarizers 4000X. Figures 13-14 Syracosphaera pulchra Lohmann. (13) Crossed polar- izers 4000X; (14) Crossed polarizers 4000X. Figures 15-16 Syracosphaera clava n. sp. (15) Crossed polarizers 4000X; (16) Crossed polarizers 4000X. Figures 17-18 Syracosphaera decussata n. sp. (17) Crossed polarizers 4000X; (18) Crossed polarizers 4000X. Figures 19-20 Syracosphaera sp. (19) Crossed polarizers 4000X; (20) Crossed polarizers 4000X. Figure 21 Little "u". Crossed polarizers 4000X. Figure 22 "Truncate-elongate coccolith". Crossed polarizers 4000X. Figures 23-24 Sphenolithus abies Deflandre. (23) Crossed polarizers 4000X; (24) Crossed polarizers 4000X. Figures 25-26 Scapholithus fossilis Deflandre. (25) Phase contrast 4000X; (26) Crossed polarizers 4000X. Figures 27-28 Ellipsodiscoaster tidzi Boudreaux & Hay. (27) Crossed polarizers 4000X; (28) Crossed polarizers 4000X. Figure 29 Discosphaera tubifera (Murray & Blackman). Phase contrast 4000X.

682 CALCAREOUS NANNOFOSSILS

PLATE 2

683