Deep Sea Drilling Project Initial Reports Volume 15

Total Page:16

File Type:pdf, Size:1020Kb

Deep Sea Drilling Project Initial Reports Volume 15 15. CALCAREOUS NANNOFOSSILS - LEG 15, DEEP SEA DRILLING PROJECT1 William W. Hay, Institute of Marine and Atmospheric Sciences, University of Miami, Miami, Florida and Fred M. Beaudry, NOAA, National Marine Fisheries Service, Monterey, California INTRODUCTION Chiasmolithus californicus (Sullivan) (ex Coccolithus) Chiasmolithus consuetus (Bramlette & Sullivan) (ex This account of the calcareous nannoplankton encoun- Coccolithus) tered in cores recovered on Leg 15 of the Deep Sea Drilling Chiasmolithus danicus (Brotzen) (ex Cribrosphaerella) Project is intended to serve as an aid in the selection of Chiasmolithus gigas (Bramlette & Sullivan) (ex Cocco- samples for more detailed studies. Indications of the lithus) abundance and state of preservation of calcareous Chiasmolithus grandis (Bramlette & Riedel) (ex Cocco- nannofossils are given in the sections of this volume dealing lithus) with the description of the cores. This chapter contains (1) Chiasmolithus oamaruensis (Deflandre) (ex Tremalithus) a list of the species recognized; (2) a summary of the Chiasmolithus solitus (Bramlette & Sullivan) (ex highest and lowest occurrence surfaces and zones used to Coccolithus) determine stratigraphic position of samples, with data on Chiasmolithus sp. (isolated rims) the position of each surface in each of the holes cored; (3) a Chiastozygus plicatus Gartner series of tables presenting data on the abundances of the Chiastozygus sp. species recognized in each of the samples examined; and Coccolithus apomnemoneumus Hay & Mohler (4) a special section on the Pleistocene calcareous Coccolithus carteri (Wallich) (ex Coccosphaera) nannofossils found in Holes 147, 148,149, and 154A. Coccolithus cavus Hay & Mohler Coccolithus crassus Bramlette & Sullivan SPECIES RECOGNIZED Coccolithus pataecus Gartner The following list includes all of the species which have ^Coccolithus pelagicus (Wallich) (ex Coccosphaera) been recognized and tabulated in Tables 1 through 30. The Coccolithus pseudocarteri Hay, Mohler, & Wade full species name and author is given with an indication of Coronocyclus nitescens (Kamptner) (ex Umbili- the genus in which the species was originally placed. Species cosphaera) discussed in more detail in the special section on the Coronocyclus serratus Hay, Mohler, & Wade Pleistocene are indicated with an asterisk. The original Cretarhabdus conicus Bramlette & Martini descriptions of the other species can be found by consulting Cretarhabdus crenulatus Bramlette & Martini the annotated indices and bibliographies of the calcareous Cribrosphaera ehrenbergi Arkhangelskü nannoplankton published by Loeblich and Tappan (1966, Cribrosphaera linea (Gartner) (ex Cribrosphaerella) 1968, 1969, 1970a, 1970b). Cruciplacolithus tenuis (Stradner) (ex Heliorthus) Actinozygus splendens (Deflandre) (ex Rhabdolithus) Cyclicargolithus floridanus (Roth & Hay) (ex Cocco- Ahmuellerella octoradiata (Gorka) (ex Discolithus) lithus) Arkhangelskiella costata Gartner *Cyclococcolithina leptopora (Murray & Blackman) (ex Arkhangelskiella cymbiformis Vekshina Coccosphaera) Arkhangelskiella ethmopora Bukry Cyclococcolithina macintyrei (Bukry & Bramlette) (ex Arkhangelskiella parca Stradner Cyclococcolithus) Arkhangelskiella specillata Vekshina Cyclolithella annula (Cohen) (ex Coccolithites) *Braarudosphaera bigelowi (Gran & Braarud) (ex Cylindralithus sp. Pontosphaera) Discoaster adamanteus Bramlette & Wilcoxon Campylosphaera dela (Bramlette & Sullivan) (ex Discoaster aster Bramlette & Riedel Coccolithites) Discoaster asymmetricus Gartner Catinaster calyculus Martini & Bramlette Discoaster aulakos Gartner Catinaster coalitus Martini & Bramlette Discoaster barbadiensis Tan Sin Hok *Ceratolithus cristatus Kamptner Discoaster binodosus Martini Ceratolithus rugosus Bukry & Bramlette Discoaster bollii Martini & Bramlette Ceratolithus tricorniculatus Gartner Discoaster brouweri brouweri Tan Sin Hok (= Discoaster Chiasmolithus bidens (Bramlette & Sullivan) (ex brouweri) Coccolithus) ^Discoaster brouweri rutellus Gartner Discoaster brouweri subsp. tamalis Kamptner (= Discoaster tamalis Kamptner) 1 Research supported by the Oceanography Section, National Discoaster brouweri subsp. tridenus Kamptner (= Science Foundation, NSF Grant GA-31969X. Discoaster tridenus Kamptner) 625 W. W. HAY, F. M. BEAUDRY Discoaster brouweri subsp. triradiatus Tan Sin Hok (= Helicopontosphaera intermedia (Martini) (ex Helicos- Discoaster triradiatus Tan Sin Hok) phaera) Discoaster challengeri Bramlette & Riedel ^Helicopontosphaera kamptneri Hay & Mohler Discoaster deflandrei Bramlette & Riedel Helicopontosphaera parallela (Bramlette & Wilcoxon) Discoaster diastypus Bramlette & Sullivan (ex Helicosphaera) Discoaster dilatus Hay Helicopontosphaera recta (Haq) (ex Helicosphaera; H. Discoaster divaricatus Hay seminulum ssp. recta) Discoaster druggi Bramlette & Wilcoxon ^Helicopontosphaera sellii Bukry & Bramlette Discoaster exilis Martini & Bramlette ^Helicopontosphaera wallichi (Lohmann) (ex Cocco- Discoaster extensus Hay lithophora) Discoaster gemmeus Stradner Heliolithus kleinpelli Sullivan Discoaster gemmifer Stradner Heliolithus cf. riedeli Bramlette & Riedel Discoaster hamatus Martini & Bramlette Heliorthus concinnus (Martini) (ex Zygolithus) Discoaster kugleri Martini & Bramlette Kamptnerius magnificus Deflandre Discoaster lenticularis Bramlette & Sullivan Kamptnerius punctatus Stradner Discoaster lidzi Hay Lithastrinus grilli Stradner Discoaster lodoensis Bramlette & Riedel Lithraphidites carniolensis Deflandre Discoaster mediosus Bramlette & Sullivan Lithraphidites quadratus Bramlette & Martini Discoaster multiradiatus Bramlette & Riedel "Loxolithus " Noel Discoaster neohamatus Bukry & Bramlette Lucianorhabdus cayeuxi Deflandre Discoaster nephados Hay Markalius astroporus (Stradner) (ex Cyclococcolithus) Discoaster nobilis Martini Marthasterites furcatus (Deflandre) (ex Discoaster) *Discoaster pentaradiatus Tan Sin Hok Marthasterites tribrachiatus (Bramlette & Riedel) (ex Discoaster perclarus Hay Discoaster) Discoaster perplexus Bramlette & Riedel Microrhabdulus decoratus Deflandre Discoaster phyllodus Hay Microrhabdulus stradneri Bramlette & Martini Discoaster quinqueramus Gartner Micula staurophora (Gardet) (ex Discoaster) Discoaster saipanensis Bramlette & Riedel Neococcolithes protenus (Bramlette & Sullivan) (ex Discoaster saundersi Hay Zygolithus) Discoaster sp. Oolithotus antillarum (Cohen) (ex Discolithus) Discoaster sublodoensis Bramlette & Sullivan Parhabdolithus embergeri (Noel) (ex Discolithus) Discoaster subsurculus Gartner Pontosphaera discopora Schiller ^Discoaster surculus Martini & Bramlette ^Pontosphaera scutellum Kamptner Discoaster tani nodifer Bramlette & Riedel ^Pontosphaera spp. Discoaster tani ornatus Bramlette & Wilcoxon Prediscosphaera cretacea (Arkhangelskii) (ex Coccolitho- Discoaster tani tani Bramlette & Riedel phora) Discoaster trinidadensis Hay Prinsius bisulcus Hay & Mohler Discoaster variabilis Martini & Bramlette *Pseudoemiliania lacunosa Kamptner ex Gartner Discoaster woodringi Bramlette & Riedel Reticulofenestra bisecta (Hay, Mohler, & Wade) (ex Discoasteroides kuepperi (Stradner) (ex Discoaster) Syracosphaera) Discolithina japonica Takayami Reticulofenestra cf. pseudoumbilica Gartner (very small *Discolithina cf. macropora (Deflandre) specimens) *Discolithina spp. Reticulofenestra pseudoumbilica Gartner *"Discolithus" phaseolus Black & Barnes Reticulofenestra umbilica (Levin) (ex Coccolithus) *Discosphaera tubifera (Murray & Blackman) (ex *Rhabdosphaera clavigera Murray & Blackman Rhabdosphaera) *Rhabdosphaera stylifera Lohmann Eiffellithus turriseiffeli (Deflandre) (ex Zygolithus) *Scapholithus fossilis Deflandre *Ellipsodiscoaster lidzi Boudreaux & Hay *Scyphosphaera apsteini Lohmann *Emiliania huxleyi (Lohmann) (ex Pontosphaera) Sphenolithus abies Deflandre Ericsonia subpertusa Hay & Mohler Sphenolithus anarrhopus Bukry & Bramlette Fasciculithus involutus Bramlette & Sullivan Sphenolithus belemnos Bramlette & Wilcoxon Fasciculithus janii Perch-Nielsen Sphenolithus ciperoensis Bramlette & Wilcoxon Fasciculithus tympaniformis Hay & Mohler Sphenolithus heteromorphus Deflandre *Gephyrocapsa californiensis Kamptner Sphenolithus furcatolithoides Locker *Gephyrocapsa kamptneri Deflandre Sphenolithus moriformis Bronnimann & Stradner *Gephyrocapsa oceanica Kamptner Sphenolithus neoabies Bukry & Bramlette *Gephyrocapsa parallela Beaudry & Hay, n. sp. Sphenolithus pacificus Martini *Gephyrocapsa sinuosa Beaudry & Hay, n. sp. Sphenolithus predistentus Bramlette & Wilcoxon *Gephyrocapsa sp. (isolated rims) Sphenolithus radians Deflandre Glaukolithus diplogrammus (Deflandre) (ex Zygolithus) *Syracosphaera clava Beaudry & Hay, n. sp. Helicopontosphaera ampliaperta (Bramlette & Wilcoxon) *Syracosphaera decussata Beaudry & Hay, n. sp. (ex Helicosphaera) * Syracosphaera histrica Kamptner 626 CALCAREOUS NANNOFOSSILS *Syracosphaera jonesi (Cohen) (ex Cricolithus) Site 146 Syracosphaera labrosa Bukry & Bramlette Calcareous nannoplankton occur in the uppermost part *Syracosphaera pulchra Lohmann of Section 1 and in the core catcher sample of Core 1 * Syracosphaera sp. (Table 1). Both assemblages are similar, and contain Tetralithus aculeus (Stradner) (ex Zygrhablithus) Discoaster brouweri, D. pentaradiatus, D. quinqueramus, Tetralithus cf. mums Martini and other species characteristic of the late Miocene Tetralithus gothicus Deflandre Discoaster quinqueramus Zone. All other samples from Tetralithus gothicus trifidus Stradner Core 1 proved to be barren of these fossils,
Recommended publications
  • Coccolithophore Distribution in the Mediterranean Sea and Relate A
    Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Ocean Sci. Discuss., 11, 613–653, 2014 Open Access www.ocean-sci-discuss.net/11/613/2014/ Ocean Science OSD doi:10.5194/osd-11-613-2014 Discussions © Author(s) 2014. CC Attribution 3.0 License. 11, 613–653, 2014 This discussion paper is/has been under review for the journal Ocean Science (OS). Coccolithophore Please refer to the corresponding final paper in OS if available. distribution in the Mediterranean Sea Is coccolithophore distribution in the A. M. Oviedo et al. Mediterranean Sea related to seawater carbonate chemistry? Title Page Abstract Introduction A. M. Oviedo1, P. Ziveri1,2, M. Álvarez3, and T. Tanhua4 Conclusions References 1Institute of Environmental Science and Technology (ICTA), Universitat Autonoma de Barcelona (UAB), 08193 Bellaterra, Spain Tables Figures 2Earth & Climate Cluster, Department of Earth Sciences, FALW, Vrije Universiteit Amsterdam, FALW, HV1081 Amsterdam, the Netherlands J I 3IEO – Instituto Espanol de Oceanografia, Apd. 130, A Coruna, 15001, Spain 4GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Marine Biogeochemistry, J I Duesternbrooker Weg 20, 24105 Kiel, Germany Back Close Received: 31 December 2013 – Accepted: 15 January 2014 – Published: 20 February 2014 Full Screen / Esc Correspondence to: A. M. Oviedo ([email protected]) Published by Copernicus Publications on behalf of the European Geosciences Union. Printer-friendly Version Interactive Discussion 613 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Abstract OSD The Mediterranean Sea is considered a “hot-spot” for climate change, being char- acterized by oligotrophic to ultra-oligotrophic waters and rapidly changing carbonate 11, 613–653, 2014 chemistry. Coccolithophores are considered a dominant phytoplankton group in these 5 waters.
    [Show full text]
  • The Coccolithophore Family Calciosoleniaceae with Report of A
    The coccolithophore family Calciosoleniaceae with report of a new species: Calciosolenia subtropicus from the southern Indian Ocean Shramik Patil, Rahul Mohan, Syed Jafar, Sahina Gazi, Pallavi Choudhari, Xavier Crosta To cite this version: Shramik Patil, Rahul Mohan, Syed Jafar, Sahina Gazi, Pallavi Choudhari, et al.. The coccolithophore family Calciosoleniaceae with report of a new species: Calciosolenia subtropicus from the southern Indian Ocean. Micropaleontology, Micropaleontology Press, 2019. hal-02323185 HAL Id: hal-02323185 https://hal.archives-ouvertes.fr/hal-02323185 Submitted on 22 Oct 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The coccolithophore family Calciosoleniaceae with report of a new species: Calciosolenia subtropicus from the southern Indian Ocean Shramik Patil1, Rahul Mohan1, Syed A. Jafar2, Sahina Gazi1, Pallavi Choudhari1 and Xavier Crosta3 1National Centre for Polar and Ocean Research (NCPOR), Headland Sada, Vasco-da-Gama, Goa-403804, India email: [email protected] 2Flat 5-B, Whispering Meadows, Haralur Road, Bangalore-560 102, India 3UMR-CNRS 5805 EPOC, Université de Bordeaux, Allée Geoffroy Saint Hilaire, 33615 Pessac Cedex, France ABSTRACT: The families Calciosoleniaceae, Syracosphaeraceae and Rhabdosphaeraceae belong to the order Syracosphaerales and constitute a significant component of extant coccolithophore species, sharing similar ultrastructural bauplans.
    [Show full text]
  • Observations on Syracosphaera Rhombica Sp. Nov
    Disponible en ligne sur ScienceDirect www.sciencedirect.com Revue de micropaléontologie 59 (2016) 233–237 Coccolithophores in modern oceans Observations on Syracosphaera rhombica sp. nov. Observations sur Syracosphaera rhombica sp. nov. a b c,∗ Harald Andruleit , Aisha Ejura Agbali , Richard W. Jordan a Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), Stilleweg 2, 30655 Hannover, Germany b Earth, Ocean and Atmospheric Science, Florida State University, P.O. Box 3064520, Tallahassee, FL 32306-4520, USA c Department of Earth & Environmental Sciences, Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata 990-8560, Japan Abstract A spherical coccosphere and two collapsed coccospheres composed of monomorphic rhombic coccoliths were encountered in 2005 in the Java upwelling system of the SE Indian Ocean, while a further two specimens with elongate coccospheres were recently found in the Gulf of Mexico. All of the specimens were collected from the lower photic zone (75–160 m). The coccoliths possess a proximal flange, a slightly flared wall with a serrated distal margin, and a relatively plain central area structure comprised only of overlapping laths. The taxon appears to be an undescribed species of the Syracosphaera nodosa group, so we describe it herein as Syracosphaera rhombica sp. nov. © 2016 Published by Elsevier Masson SAS. Keywords: Coccolithophorid; Gulf of Mexico; Indian Ocean; Lower photic zone; Syracosphaera Résumé Une coccosphère sphérique (ainsi que deux coccosphères effondrées) composée de coccolithes rhombiques monomorphiques a été rencontrée en 2005 dans le système de remontée d’eaux profondes de Java dans l’océan Indien du Sud-Est, tandis que deux autres spécimens avec coccosphères allongées ont été récemment trouvées dans le golfe du Mexique.
    [Show full text]
  • Living Coccolithophores from the Eastern Equatorial Indian Ocean During the Spring Intermonsoon: Indicators of Hydrography
    Living coccolithophores from the eastern equatorial Indian Ocean during the spring intermonsoon: Indicators of hydrography *Jun Sun 1, 2,3, Haijiao Liu 1,2,3, Xiaodong Zhang2,3, Cuixia Zhang2,3, Shuqun Song4 1 Institute of Marine Science and Technology, Shandong University, 27 Shanda Nan Road, Jinan 250110, PR China 2 Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin University of Science and Technology, Tianjin 300457, PR China 3 College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin 300457, PR China 4 CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China *Correspondence to: Jun Sun ([email protected]) Abstract. We studied the biodiversity of autotrophic calcareous coccolithophore assemblages at 30 locations in the eastern equatorial Indian Ocean (EEIO) (80°-94°E, 6°N-5°S) and evaluated the importance of regional hydrology. We found 25 taxa of coccospheres and 17 taxa of coccoliths. The coccolithophore community was dominated by Gephyrocapsa oceanica, Emiliania huxleyi, Florisphaera profunda, Umbilicosphaera sibogae, and Helicosphaera carteri. The abundance of coccoliths and coccospheres ranged from 0.192×103 to 161.709×103 coccoliths l-1 and 0.192 ×103 to 68.365×103 cells l-1, averaged at 22.658×103 coccoliths l-1 and 9.386×103 cells l-1, respectively. Biogenic PIC, POC, and rain ratio mean values were 0.498 μgC l-1, 1.047 μgC l-1, and 0.990 respectively. High abundances of both coccoliths and coccospheres in the surface ocean layer occurred north of the equator.
    [Show full text]
  • Surface Seawater Plankton Sampling for Coccolithophores Undertaken During IODP Expedition 359
    Betzler, C., Eberli, G.P., Alvarez Zarikian, C.A., and the Expedition 359 Scientists Proceedings of the International Ocean Discovery Program Volume 359 publications.iodp.org doi:10.14379/iodp.proc.359.111.2017 Contents 1 Abstract Data report: surface seawater plankton 1 Introduction sampling for coccolithophores undertaken 1 Materials and methods 3 Results 1 during IODP Expedition 359 5 Biogeography 6 Acknowledgments Jeremy R. Young, Santi Pratiwi, Xiang Su, and the Expedition 359 Scientists2 6 References 7 Appendix Keywords: International Ocean Discovery Program, IODP, JOIDES Resolution, Expedition 359, Indian Ocean transect, Maldives, coccolithophores Abstract Darwin, Australia, to the Maldives (Figure F1A). This transit pre- sented a valuable opportunity to sample the equatorial assemblages Data on extant coccolithophore assemblages from plankton to determine broad patterns of coccolithophore distribution and samples collected during International Ocean Discovery Program compare them with those recorded previously, notably by Kleijne et Expedition 359 to the Maldives is presented. Samples include 12 al. (1989). Sampling continued within the Maldives drilling area to collected during passage across the Indian Ocean from Darwin, (1) determine whether assemblages within the Maldives show evi- Australia, to the Maldives and 40 collected in the Maldives. Assem- dence of ecological restriction or modified assemblages related to blages were analyzed by light and scanning electron microscopy, the particular environment of the atoll chain, (2) investigate repro- and detailed assemblage data are presented. Comparison with pre- ducibility of assemblage data by repeat sampling within a limited vious data from the region suggests that there are consistent distinc- area over an extended period, and (3) investigate the potential of the tive aspects to Indian Ocean assemblages.
    [Show full text]
  • A Sea of Lilliputians
    1 5/27/08 A Sea of Lilliputians by Marie-Pierre Aubry Department of Earth and Planetary Sciences Rutgers University 610 Taylor Road, Piscataway, New Jersey 08854-8066 and Department of Geology and Geophysics Woods Hole Oceanographic Institution Woods Hole Ma 02543 Fax: 732 445 3374, [email protected] Abstract Smaller size is generally seen as a negative response of organisms to stressful environmental conditions, associated with low diversity and species dominance. The mean size of the coccolithophorids decreased through the Neogene, leading to the prediction that their extant representatives are characterized by poor diversification and low specialization. The study of the (exo)coccospheres of selected taxa in the order Syracosphaerales negates this prediction, revealing that on the contrary some extant lineages are highly diversified and remarkably specialized. Whereas the general role of coccoliths remains indeterminate, this analysis suggests that some highly derived coccoliths may be modified for the collection of food particles, including picoplankton, thus implying that mixotrophy may characterize these lineages. In the extant coccolithophorids, species richness of genera is inversely correlated with the size of cells, definitive evidence that small size is part of a morphologic strategy rather than a sign of evolutionary failure. Because of their extreme minuteness, the extant nannoplankton can be well compared to Lilliputians, but the trend toward size decrease in Neogene lineages is not attributable to the Lilliput effect described by Urbanek (1993). 2 5/27/08 Key words: Extant coccolithophorids, Neogene, size, exococcospheres, functional morphology, mixotrophy. 1. Introduction Cope’s law, which in its broadest concept states that the size of organisms increases as lineages diversify, is generally regarded as prevalent among organisms despite a considerable debate as to its significance (e.g., Stanley, 1973, Gould, 1997, Jablonski, 1997, Alroy, 1998, Trammer, 2002).
    [Show full text]
  • Calcareous Nannoplankton As a Tracer of the Marine Influence on the NW Coast of Portugal Over the Last 14 000 Years
    J. Nannoplankton Res. 27 (2), 2005, pp.159-172 © 2005 International Nannoplankton Association 159 ISSN 1210-8049 Printed by Cambridge University Press, UK Calcareous nannoplankton as a tracer of the marine influence on the NW coast of Portugal over the last 14 000 years C. Guerreiro Centre of Geology, University of Lisbon, Building C6, 6.4.67, Campo Grande, 1749-016 Lisboa, Portugal; [email protected] M. Cachão Centre of Geology, University of Lisbon, Building C6, 6.4.67, Campo Grande, 1749-016 Lisboa, Portugal & Department of Geology, Faculty of Sciences, University of Lisbon, Building C6, 6.4.55, Campo Grande, 1749-016 Lisboa, Portugal T. Drago INIAP, IPIMAR, CRIPSUL, 8700-305 Olhão, Portugal Manuscript received 22nd March, 2005; revised manuscript accepted 19th August, 2005 Abstract A calcareous nannoplankton taphonomic and palaeoecological study was performed on cores from the Minho and Douro Estuaries (NW Portugal) and from the NW Portuguese middle continental shelf. Because certain nannoplankton species are taphonomically resistant to the highly energetic and aggressive conditions between the estuaries and the shelf, their sedimentary record acts as an oceanic tracer in such coastal domains. For the Late Quaternary, this allows interpretation of eustatic variation from the induced sequence of palaeoenvironmental changes. Palaeogeographically, the time-series pattern of nannofossil abundances in these coastal sediments is inter- preted as follows: (1) persistently high amounts of nannofossils (2x107 nannofossils/g) are related to marine envi- ronmental conditions, produced by post-glacial flooding of pre-existing valleys; (2) the gradual increase in intermit- tency of nannofossil abundances through time indicates a regressive trend, first due to recovery of the estuarine con- ditions, followed by a total absence of nannofossils, indicating evolution towards complete emersion either by flu- vial (Core CPF1) or barrier-beach sediments (Cores M1, M2, D1A and D1B).
    [Show full text]
  • Haptophyte Diversity and Vertical Distribution Explored by 18S And
    Received Date : 15-Sep-2016 Revised Date : 06-Dec-2016 Accepted Date : 07-Dec-2016 Article type : Original Article Gran-Stadniczeñko et al.--- Haptophyta Diversity and Distribution by Metabarcoding Haptophyte Diversity and Vertical Distribution Explored by 18S and 28S Ribosomal RNA Gene Metabarcoding and Scanning Electron Microscopy Sandra Gran-Stadniczeñko*a, Luka Šupraha*b, Elianne D. Eggea and Bente Edvardsena *equal contribution a Department of Biosciences, University of Oslo, PO Box 1066 Blindern, 0316 Oslo, Norway Article b Department of Earth Sciences, Uppsala University, Villavägen 16, SE-75236 Uppsala, Sweden Corresponding author S. Gran-Stadniczeñko, Department of Biosciences, University of Oslo, P. O. Box 1066 Blindern, 0316 Oslo, Norway Telephone number: +47-22-85-73-65, FAX number: 0047 22 85 47 26 e-mail: [email protected] ABSTRACT Haptophyta encompasses more than 300 species of mostly marine pico- and nanoplanktonic flagellates. Our aims were to investigate the Oslofjorden haptophyte diversity and vertical distribution by metabarcoding, and to improve the approach to study haptophyte community composition, richness and proportional abundance by comparing two rRNA markers and scanning electron microscopy (SEM). Samples were collected in August 2013 at the Outer Oslofjorden, Norway. Total RNA/cDNA was amplified by haptophyte-specific primers targeting the V4 region of the 18S, and the D1-D2 region of the 28S rRNA. Taxonomy was assigned using curated haptophyte This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record.
    [Show full text]
  • Protista (PDF)
    1 = Astasiopsis distortum (Dujardin,1841) Bütschli,1885 South Scandinavian Marine Protoctista ? Dingensia Patterson & Zölffel,1992, in Patterson & Larsen (™ Heteromita angusta Dujardin,1841) Provisional Check-list compiled at the Tjärnö Marine Biological * Taxon incertae sedis. Very similar to Cryptaulax Skuja Laboratory by: Dinomonas Kent,1880 TJÄRNÖLAB. / Hans G. Hansson - 1991-07 - 1997-04-02 * Taxon incertae sedis. Species found in South Scandinavia, as well as from neighbouring areas, chiefly the British Isles, have been considered, as some of them may show to have a slightly more northern distribution, than what is known today. However, species with a typical Lusitanian distribution, with their northern Diphylleia Massart,1920 distribution limit around France or Southern British Isles, have as a rule been omitted here, albeit a few species with probable norhern limits around * Marine? Incertae sedis. the British Isles are listed here until distribution patterns are better known. The compiler would be very grateful for every correction of presumptive lapses and omittances an initiated reader could make. Diplocalium Grassé & Deflandre,1952 (™ Bicosoeca inopinatum ??,1???) * Marine? Incertae sedis. Denotations: (™) = Genotype @ = Associated to * = General note Diplomita Fromentel,1874 (™ Diplomita insignis Fromentel,1874) P.S. This list is a very unfinished manuscript. Chiefly flagellated organisms have yet been considered. This * Marine? Incertae sedis. provisional PDF-file is so far only published as an Intranet file within TMBL:s domain. Diplonema Griessmann,1913, non Berendt,1845 (Diptera), nec Greene,1857 (Coel.) = Isonema ??,1???, non Meek & Worthen,1865 (Mollusca), nec Maas,1909 (Coel.) PROTOCTISTA = Flagellamonas Skvortzow,19?? = Lackeymonas Skvortzow,19?? = Lowymonas Skvortzow,19?? = Milaneziamonas Skvortzow,19?? = Spira Skvortzow,19?? = Teixeiromonas Skvortzow,19?? = PROTISTA = Kolbeana Skvortzow,19?? * Genus incertae sedis.
    [Show full text]
  • Extant Rhabdosphaeraceae (Coccolitho- Phorids, Class Prymnesiophyceae) from the Indian Ocean, Red Sea, Mediterranean Sea and North Atlantic Ocean
    Kleijne, Extant Rhabdosphaeraceae (coccolithophorids), Scripta Geol., 100 (1992) 1 Extant Rhabdosphaeraceae (coccolitho- phorids, class Prymnesiophyceae) from the Indian Ocean, Red Sea, Mediterranean Sea and North Atlantic Ocean Annelies Kleijne Kleijne, A. Extant Rhabdosphaeraceae (coccolithophorids, class Prymnesiophyceae) from the Indian Ocean, Red Sea, Mediterranean Sea and North Atlantic Ocean. — Scripta Geol., 100: 1-63, 5 figs., 8 pls. Leiden, September 1992. Rhabdosphaerids were consistently present as a minor constituent of the 1985 summer coccolithophorid flora in surface waters of the Indian Ocean, Red Sea, Mediterranean Sea and North Atlantic. Sixteen taxa are identified, belonging to seven genera, includ- ing the two new combinations Cyrtosphaera aculeata and C. cucullata and the new species C. lecaliae sp. nov. of Cyrtosphaera gen. nov., and the new combination Anacanthoica cidaris. An emended description is given for the genus Acanthoica, of which the new species A. biscayensis and a type in open nomenclature are described. All species are illustrated by SEM-micrographs and their occurrences are mapped. The most frequently occurring species were Palusphaera vandeli, present in low numbers along the entire sampling transect, Discosphaera tubifera in the warm oligotrophic water of the Red Sea, Rhabdosphaera clavigera in the somewhat colder water of the Mediterranean Sea, and Algirosphaera robusta in the Indian Ocean, indicative for upwelling conditions. Annelies Kleijne, Geomarine Center, Institute for Earth Sciences, Vrije
    [Show full text]
  • Novel Heterococcolithophores, Holococcolithophores and Life Cycle Combinations from the Families Syracosphaeraceae and Papposphaeraceae and the Genus Florisphaera
    J. Micropalaeontology, 40, 75–99, 2021 https://doi.org/10.5194/jm-40-75-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Novel heterococcolithophores, holococcolithophores and life cycle combinations from the families Syracosphaeraceae and Papposphaeraceae and the genus Florisphaera Sabine Keuter1,2, Jeremy R. Young3, Gil Koplovitz1, Adriana Zingone4, and Miguel J. Frada1,2 1The Interuniversity Institute for Marine Sciences in Eilat, POB 469, 88103 Eilat, Israel 2Dept. of Ecology, Evolution and Behavior – Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, 91904 Jerusalem, Israel 3Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, UK 4Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy Correspondence: Miguel J. Frada ([email protected]) and Jeremy R. Young ([email protected]) Received: 14 April 2021 – Revised: 18 June 2021 – Accepted: 22 June 2021 – Published: 18 August 2021 Abstract. Coccolithophores are a diverse group of calcifying phytoplankton, which are responsible for a large part of the modern oceanic carbonate production. Here, we describe novel or poorly known coccolithophores and novel life cycle combination coccospheres detected in samples collected either in the Gulf of Aqaba in the northern Red Sea or in the Gulf of Naples in the western Mediterranean. These include Syracosphaera win- teri, for which detached coccoliths have previously been recorded but both a formal description and taxonomic affiliation were lacking, and five undescribed sets of combination cells linking HET and HOL forms for S. pul- chra, S. mediterranea, S. azureaplaneta, S. lamina and S. orbicula. We also propose the replacement name S.
    [Show full text]
  • Download Full Article in PDF Format
    Cryptogamie, Algologie, 2014, 35 (4): 353-377 © 2014 Adac. Tous droits réservés Morphospecies versus phylospecies concepts for evaluating phytoplankton diversity: the case of the Coccolithophores Jeremy R. YOUNGa*, Hui LIUc, Ian PROBERT b, Stéphane ARIS-BROSOUd & Colomban de VARGASe aEarth Sciences, University College London, Gower St, London WC1E 6BT, England bUPMC Université Paris 06 & CNRS, UMR 7144, FR2424 Roscoff Culture Collection, Station Biologique de Roscoff, 29682, Roscoff, France cInstitute of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ 08901, USA dDepartments of Biology and of Mathematics & Statistics, University of Ottawa, Ontario, Canada K1N 6 eUPMC Université Paris 06 & CNRS, UMR 7144, Equipe EPEP – Evolution du Plancton et Ecosystèmes Pélagiques, Station Biologique de Roscoff, 29682, Roscoff, France Abstract – Genetic approaches to exploring in situ marine phytoplankton assemblages have revealed previously unsuspected diversity at different taxonomic levels. However, the phylogenetic species concept has rarely been compared to classical morphologically based taxonomy, which forms the basis of most current ecological, physiological, and paleontological knowledge of phytoplankton. Here we use the coccolithophores as a case study to test the relationship between these two taxonomic approaches. Analysis of 217 coccolithophore LSU rDNA sequences and 729 specimens observed by light and electron microscopy obtained from three water samples (Atlantic Ocean, Pacific Ocean and Mediterranean Sea) demonstrated
    [Show full text]