Level Design
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Game Level Layout from Design Specification
EUROGRAPHICS 2014 / B. Lévy and J. Kautz Volume 33 (2014), Number 2 (Guest Editors) Game Level Layout from Design Specification Chongyang Ma∗z Nicholas Vining∗ Sylvain Lefebvrey Alla Sheffer∗ ∗ University of British Columbia y ALICE/INRIA z University of Southern California Abstract The design of video game environments, or levels, aims to control gameplay by steering the player through a sequence of designer-controlled steps, while simultaneously providing a visually engaging experience. Traditionally these levels are painstakingly designed by hand, often from pre-existing building blocks, or space templates. In this paper, we propose an algorithmic approach for automatically laying out game levels from user-specified blocks. Our method allows designers to retain control of the gameplay flow via user-specified level connectivity graphs, while relieving them from the tedious task of manually assembling the building blocks into a valid, plausible layout. Our method produces sequences of diverse layouts for the same input connectivity, allowing for repeated replay of a given level within a visually different, new environment. We support complex graph connectivities and various building block shapes, and are able to compute complex layouts in seconds. The two key components of our algorithm are the use of configuration spaces defining feasible relative positions of building blocks within a layout and a graph-decomposition based layout strategy that leverages graph connectivity to speed up convergence and avoid local minima. Together these two tools quickly steer the solution toward feasible layouts. We demonstrate our method on a variety of real-life inputs, and generate appealing layouts conforming to user specifications. Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling—Curve, surface, solid, and object representations 1. -
Persistent Realtim E Building Interior Generation
Persistent Realtime Building Interior G eneration By Evan Hahn A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfilment of the requirements for the degree of Master of Computer Science Ottawa-Carleton Institute for Computer Science School of Computer Science Carleton University Ottawa, Ontario September 2006 © Copyright 2006, Evan Hahn Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Library and Bibliotheque et Archives Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington Ottawa ON K1A 0N4 Ottawa ON K1A 0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-18353-3 Our file Notre reference ISBN: 978-0-494-18353-3 NOTICE: AVIS: The author has granted a non L'auteur a accorde une licence non exclusive exclusive license allowing Library permettant a la Bibliotheque et Archives and Archives Canada to reproduce,Canada de reproduire, publier, archiver, publish, archive, preserve, conserve,sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par I'lnternet, preter, telecommunication or on the Internet,distribuer et vendre des theses partout dans loan, distribute and sell theses le monde, a des fins commerciales ou autres, worldwide, for commercial or non sur support microforme, papier, electronique commercial purposes, in microform,et/ou autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in et des droits moraux qui protege cette these. this thesis. Neither the thesis Ni la these ni des extraits substantiels de nor substantial extracts from it celle-ci ne doivent etre imprimes ou autrement may be printed or otherwise reproduits sans son autorisation. -
Master Thesis
Faculty of Computer Science and Management Field of study: COMPUTER SCIENCE Specialty: Information Systems Design Master Thesis Multithreaded game engine architecture Adrian Szczerbiński keywords: game engine multithreading DirectX 12 short summary: Project, implementation and research of a multithreaded 3D game engine architecture using DirectX 12. The goal is to create a layered architecture, parallelize it and compare the results in order to state the usefulness of multithreading in game engines. Supervisor ...................................................... ............................ ……………………. Title/ degree/ name and surname grade signature The final evaluation of the thesis Przewodniczący Komisji egzaminu ...................................................... ............................ ……………………. dyplomowego Title/ degree/ name and surname grade signature For the purposes of archival thesis qualified to: * a) Category A (perpetual files) b) Category BE 50 (subject to expertise after 50 years) * Delete as appropriate stamp of the faculty Wrocław 2019 1 Streszczenie W dzisiejszych czasach, gdy społeczność graczy staje się coraz większa i stawia coraz większe wymagania, jak lepsza grafika, czy ogólnie wydajność gry, pojawia się potrzeba szybszych i lepszych silników gier, ponieważ większość z obecnych jest albo stara, albo korzysta ze starych rozwiązań. Wielowątkowość jest postrzegana jako trudne zadanie do wdrożenia i nie jest w pełni rozwinięta. Programiści często unikają jej, ponieważ do prawidłowego wdrożenia wymaga wiele pracy. Według mnie wynikający z tego wzrost wydajności jest warty tych kosztów. Ponieważ nie ma wielu silników gier, które w pełni wykorzystują wielowątkowość, celem tej pracy jest zaprojektowanie i zaproponowanie wielowątkowej architektury silnika gry 3D, a także przedstawienie głównych systemów używanych do stworzenia takiego silnika gry 3D. Praca skupia się na technologii i architekturze silnika gry i jego podsystemach wraz ze strukturami danych i algorytmami wykorzystywanymi do ich stworzenia. -
Textile & Fashion Careers Level 2
Textile & Fashion Careers Level 2 Apparel Construction Demonstrate measurement skills, standard and metric. Select patterns. Follow written pattern directions. Demonstrate pattern layout and material cutout. Demonstrate pattern making. Operate machines, equipment and attachments in a safe and efficient manner. Use tools for construction, alteration and repairs. Demonstrate basic construction and alteration skills and techniques. Computer Technology in Textile/Fashion Industry Set up Computer Aided Design (CAD) tables. Grade and digitize patterns. Create models. Design and plot markers. Produce embroidery motif. Interior Design Research and use information to assess product needs. Determine solutions to design problems. Select fabric, considering patterns and textures, for visual effect. Demonstrate basic construction skills needed in product development. Demonstrate basic installation of window treatments. Apply basic techniques to strip and rebuild furniture. Use standard methods of upholstery for furniture and automobiles. Design and construct slipcover products. Fashion Merchandising and Retail Describe the dynamics of the fashion industry. Explain economic concepts. Explain apparel production, business strategy, sales and distribution. Analyze retail business fundamentals. Compare strategies for retail success. Evaluate principles and methods of advertising. Analyze the global perspectives of the textile/fashion industry. Entrepreneurial Skills Describe types of small business. Analyze components of success in business. Evaluate methods for meeting customer needs. Evaluate regulations and laws related to self-employment. Utilize handcraft and entrepreneurial skills to meet business objectives. PERSONAL QUALITIES Work Effort Safety Habits Work Area Organization On Task Behavior Responsibility Initiative Team Work Respect Interpersonal Skills . -
Inside the Video Game Industry
Inside the Video Game Industry GameDevelopersTalkAbout theBusinessofPlay Judd Ethan Ruggill, Ken S. McAllister, Randy Nichols, and Ryan Kaufman Downloaded by [Pennsylvania State University] at 11:09 14 September 2017 First published by Routledge Th ird Avenue, New York, NY and by Routledge Park Square, Milton Park, Abingdon, Oxon OX RN Routledge is an imprint of the Taylor & Francis Group, an Informa business © Taylor & Francis Th e right of Judd Ethan Ruggill, Ken S. McAllister, Randy Nichols, and Ryan Kaufman to be identifi ed as authors of this work has been asserted by them in accordance with sections and of the Copyright, Designs and Patents Act . All rights reserved. No part of this book may be reprinted or reproduced or utilised in any form or by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying and recording, or in any information storage or retrieval system, without permission in writing from the publishers. Trademark notice : Product or corporate names may be trademarks or registered trademarks, and are used only for identifi cation and explanation without intent to infringe. Library of Congress Cataloging in Publication Data Names: Ruggill, Judd Ethan, editor. | McAllister, Ken S., – editor. | Nichols, Randall K., editor. | Kaufman, Ryan, editor. Title: Inside the video game industry : game developers talk about the business of play / edited by Judd Ethan Ruggill, Ken S. McAllister, Randy Nichols, and Ryan Kaufman. Description: New York : Routledge is an imprint of the Taylor & Francis Group, an Informa Business, [] | Includes index. Identifi ers: LCCN | ISBN (hardback) | ISBN (pbk.) | ISBN (ebk) Subjects: LCSH: Video games industry. -
Defend the City
COMPUTER GAMES LABORATORY DOCUMENTATION Defend the City By ToBeUmbenannt Prepared By: Last Updated: Josef Stumpfegger 11/01/2020 Sergey Mitchenko Winfried Baumann Defend the City Documentation TABLE OF CONTENTS GAME IDEA PROPOSAL 4 GAME DESCRIPTION 4 TECHNICAL ACHIEVEMENT 8 "BIG IDEA" BULLSEYE 8 SCHEDULE & TASKS 8 LAYERED TASK BREAKDOWN 8 TIMELINE 9 ASSESSMENT 10 PROTOTYPE REPORT 11 PROTOTYPING GOALS 11 MODELED GAME 11 GENERAL RULES 11 ACTORS 11 ENEMY BEHAVIOR 12 BUILDINGS AND THEIR PURPOSE 14 TRAPS 15 LEVEL DESIGN 15 WHAT WE’VE LEARNED 17 INFLUENCES ON THE GAME 18 INTERIM REPORT 18 PROGRESS REPORT 19 CHARACTER 19 TRAPS 20 AI 20 DESTRUCTIBLE ENVIRONMENT 21 LEVEL DESIGN 21 GENERAL GAMEPLAY 22 CHALLENGES AND PROBLEMS 22 TODOS FOR NEXT MILESTONE 23 ALPHA RELEASE REPORT 23 PROGRESS REPORT 23 TRAPS 23 22222 2 Page 2 of 42 Defend the City Documentation UI 25 AI 26 DESTRUCTIBLE ENVIRONMENT 27 CHALLENGES AND PROBLEMS 27 TODOS FOR NEXT MILESTONE 27 PLAYTESTING 28 CHANGES BEFORE PLAYTESTING 28 PLAYTESTING REPORT 30 SETTING 30 QUESTIONS 30 OBSERVATIONS 31 RESULTS AND CHANGES 33 ADDITIONAL FEEDBACK 35 CONCLUSION 36 THE FINAL PRODUCT 36 EXPERIENCE 38 COURSE PERSONAL IMPRESSION 38 33333 3 Page 3 of 42 Defend the City Documentation Game Idea Proposal Game Description Our game takes place in medieval times setting combined with some fantasy aspects. You control in a standard 3rd person fashion a hero, whose task is to protect the kingdom from a series of attacks on different cities of bloodthirsty creatures. The attack is continuous but sometimes offers some time where the soldiers of the city can defend on their own while you prepare some additional defenses to assist you when the attacks intensify again. -
Development of a 2D Lateral Action Videogame for Android Platforms
Escola Politècnica Superior Universitat de Girona Development of a 2D lateral action videogame for Android platforms. Desenvolupament d’un videojoc d’acció lateral per a plataformes Android. Projecte/Treball Fi de Carrera GEINF. Pla 2016 Document: Memòria Autor: Robert Bosch Director: Gustavo Patow Departament: Informàtica, Matemàtica Aplicada i Estadística Àrea: LSI Convocatoria: JUNY/2016 Contents 1 Introduction6 1.1 Introduction . .6 1.2 Personal motivations . .7 1.3 Project motivations . .7 1.4 Project purposes . .7 1.5 Objectives . .7 1.6 Structure of this memory . .8 2 Feasibility study9 2.1 Resources needed to develop this project . .9 2.1.1 Developer requirements . .9 2.1.2 Player requirements . .9 2.2 Initial budget . 10 2.3 Human resources . 10 2.4 Technological viability . 11 2.4.1 Economic viability . 11 2.4.2 Human costs . 11 2.4.3 Equipment costs . 11 2.4.4 Total costs . 11 3 Methodology 12 4 Planning 14 4.1 Working plan . 14 4.2 Planned tasks . 14 4.2.1 Planning . 14 4.2.2 Learning . 14 4.2.3 Implementation . 14 4.2.4 Verification . 15 4.2.5 Documentation . 15 4.3 Estimated scheduling . 16 4.4 Expected results of every task . 17 4.4.1 Planning . 17 4.4.2 Learning . 17 4.4.3 Implementation . 17 4.4.4 Verification . 17 4.4.5 Documentation . 17 5 Framework 18 5.1 Videogame engines . 18 5.2 Examples of videogame engines . 18 5.2.1 Unreal Engine . 18 2 Contents Contents 5.2.2 CryEngine . 19 5.2.3 GameMaker . -
Gourmet Typography Training
presents GOURMET TYPOGRAPHY TRAINING Take control of your type instead of letting it control you! Gourmet Typography Training teaches and demonstrates the expert-level typographic skills and aesthetics that are rarely taught in schools or fully understood by professionals. Fill in the gaps in your typographic know-how and learn how to “see” type like you’ve never seen it before. Why Gourmet Typography Training? Every creative professional, regardless of specialty, can benefit from learning to communicate more effectively with type. Whether you are a beginner or seasoned pro, Gourmet Typography Training will sharpen your eye and give you practical, usable skills that will visibly improve the beauty, clarity and effectiveness of all your typographic projects. Subjects covered include: Who will benefit? What makes a good typeface Visual communicators of all kinds, including: OpenType demystified Graphic designers Type crimes: Are you a type criminal? Art directors Fine-tuning type, including alignment, Creative directors hyphenation, hung punctuation, etc. Creative services directors Tracking, kerning, and word spacing Web designers Tips for more professional typography Package designers Type on the Web, Web fonts Production specialists Type in motion Typographers Keyboard shortcuts and time-saving tips Web programmers and developers Every creative professional regardless of specialty can learn to communicate more effectively with type! For more information, call The Type Studio at 203.227.5929 or email us at [email protected]. www.thetypestudio.com (page 1 of 2) What they are saying about Ilene’s Gourmet Typography Training... “Your course was great! Since taking it, “I recently attended your Gourmet “As a working professional in the advertis- I can’t help but look at every book title, Typography workshop and wanted to ing industry with 10 years of creative magazine headline, and even company thank you again for an amazing day. -
Multiplayer Online Games Insecurity (Neverfeelsafewhileplayingonline)
MULTIPLAYER ONLINE GAMES INSECURITY (NEVER FEEL SAFE WHILE PLAYING ONLINE) Luigi Auriemma1 and Donato Ferrante2 ReVuln http://revuln.com [email protected] http://twitter.com/revuln 25 January 2013 Abstract Multiplayer online games security is an underestimated field, with an insane amount of players playing online games and companies push- ing out new games at an incredible rate. In this ecosystem finding vulnera- bilities in games turns to be a really attractive work. 1W HY ATTACKING GAMES? There are two main entities in multiplayer games: players and companies. Players play games for fun, companies make games for money. For each of these two entities there are different possible subsets of attackers. Let’s start by considering players. 1.1A TTACKING PLAYERS Some of the people who may be interested in attacking players systems while they play online games include: Script kiddies - people without any technical knowledge. They browse the • internet looking for ready-to-use attacking tools, and then they use such tools to attack players. Primarily, their final goal is to generate Denial Of Service (DoS) conditions against players systems. Others - this category is composed by several entities. We may find people • testing exploits, or people trying to build a games-based malware botnet. Others also include people interested in deploying "applications" on remote systems. 1.2A TTACKING COMPANIES As stated previously, companies make games for money. This is their business. Because of this possible attackers for game companies include: Script kiddies - this category of attackers makes no distinction between play- • ers or companies. They attack both for fun. -
PROCEDURAL CONTENT GENERATION for GAME DESIGNERS a Dissertation
UNIVERSITY OF CALIFORNIA SANTA CRUZ EXPRESSIVE DESIGN TOOLS: PROCEDURAL CONTENT GENERATION FOR GAME DESIGNERS A dissertation submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in COMPUTER SCIENCE by Gillian Margaret Smith June 2012 The Dissertation of Gillian Margaret Smith is approved: ________________________________ Professor Jim Whitehead, Chair ________________________________ Associate Professor Michael Mateas ________________________________ Associate Professor Noah Wardrip-Fruin ________________________________ Professor R. Michael Young ________________________________ Tyrus Miller Vice Provost and Dean of Graduate Studies Copyright © by Gillian Margaret Smith 2012 TABLE OF CONTENTS List of Figures .................................................................................................................. ix List of Tables ................................................................................................................ xvii Abstract ...................................................................................................................... xviii Acknowledgments ......................................................................................................... xx Chapter 1: Introduction ....................................................................................................1 1 Procedural Content Generation ................................................................................. 6 1.1 Game Design................................................................................................... -
Level Design Histories and Futures”
Level Design in a Day: “Level Design Histories and Futures” Robert Yang @radiatoryang About this talk ● Concepts and language to help you be critical about “level design” ● Not about “how to do level design” ● Heavy bias toward 3D character-based games (like everyone else) (The PERFECT level designer?) (one can dream...) Four (4) possible dimensions of contemporary level design ● as a material, as data ● as industrial process ● as architectural space ● as community politics 1:1: LevelLevel designdesign asas MATERIALS,MATERIALS, CONSTRUCTION,CONSTRUCTION, andand DATADATA “LEVEL” = a bunch of data (asset) that references a bunch of other data (other assets) “LEVEL EDITOR” = software that enables human visualization and modification of this data LEVEL EDITOR HISTORY: text editor as level editor LEVEL EDITOR HISTORY: studying tool interfaces / workflow LEVEL EDITOR HISTORY: one 2D floorplan pane AutoCAD (1982) DoomEd (~1992?) LEVEL EDITOR HISTORY: the asset browser Hammer (2004) Hammer (2006?) LEVEL EDITOR HISTORY: 3 pane, 3D preview + floorplan + elevation QuakeEd (1996) (great ancestor of “Radiant” level editors) LEVEL EDITOR HISTORY: mouse-look / WASD more emphasis on 3D camera view, more emphasis on “wandering” as workflow LEVEL EDITOR HISTORY: 4 pane, 3D preview + 2D ortho views 3D Studio (1990) Worldcraft (Hammer) (1996-2012?) Unreal Dev Kit (UE3, 2009) LEVEL EDITOR HISTORY: (from left to right:) - Unity one big interactive 3D view - Unreal 4 - SketchUp to rule them all and in the darkness bind them - Trenchbroom (Quake 1) - CryEngine3 -
A Doom-Based AI Research Platform for Visual Reinforcement Learning
ViZDoom: A Doom-based AI Research Platform for Visual Reinforcement Learning Michał Kempka, Marek Wydmuch, Grzegorz Runc, Jakub Toczek & Wojciech Jaskowski´ Institute of Computing Science, Poznan University of Technology, Poznan,´ Poland [email protected] Abstract—The recent advances in deep neural networks have are third-person perspective games, which does not match a led to effective vision-based reinforcement learning methods that real-world mobile-robot scenario. Last but not least, although, have been employed to obtain human-level controllers in Atari for some Atari 2600 games, human players are still ahead of 2600 games from pixel data. Atari 2600 games, however, do not resemble real-world tasks since they involve non-realistic bots trained from scratch, the best deep reinforcement learning 2D environments and the third-person perspective. Here, we algorithms are already ahead on average. Therefore, there is propose a novel test-bed platform for reinforcement learning a need for more challenging reinforcement learning problems research from raw visual information which employs the first- involving first-person-perspective and realistic 3D worlds. person perspective in a semi-realistic 3D world. The software, In this paper, we propose a software platform, ViZDoom1, called ViZDoom, is based on the classical first-person shooter video game, Doom. It allows developing bots that play the game for the machine (reinforcement) learning research from raw using the screen buffer. ViZDoom is lightweight, fast, and highly visual information. The environment is based on Doom, the customizable via a convenient mechanism of user scenarios. In famous first-person shooter (FPS) video game. It allows de- the experimental part, we test the environment by trying to veloping bots that play Doom using only the screen buffer.