Download Article (Pdf)

Total Page:16

File Type:pdf, Size:1020Kb

Download Article (Pdf) ISSN: 0973-4929, Vol. 12, No. (2) 2017, Pg. 377-388 Current World Environment Journal Website: www.cwejournal.org A Status of Invasive Alien Species Plant diversity in Tehri District Forest Ecosystem of Garhwal Himalayan Region Arti KHANDURI1, SAS BISWAS2, H.B. VASISTHA3, DIGVIJAYSINH RathOD4* and SUMAN KUMAR JHA5 1Department of Forestry, Doon (P.G) College of Agriculture Science and Technology, Dehradun, India. 2Department of Forestry, Dolphin (PG) Institute of Biomedical and Natural Science, Dehradun, India 3Ecology and Environment Division, Forest Research Institute, Dehradun, India. 4Silviculture Division, Forest Research Institute, Dehradun, India. 5Department of Forest Biology and Tree Improvement, College of Forestry, Navsari Agricultural University, Navsari, India. Abstract Invasive alien species that is non-indigenous to an area, and which may have harmful effect on human, animal, plant health as habitat destruction, ARTICLE HISTORY degradation and fragmentation of ecosystems. During the study observed the present status of plant diversity of invasive alien species (IAS) in Tehri Received: 24 May 2017 District of Garhwal Himalaya, Uttarakhand. Data were collected through Accepted: 10 August 2017 extensive field survey and quadrat method. Result observed that 75 Forest Invasive Species (FIS) and 47 weed species documented from the area. Keywords: Among the 75 FIS, 12 species belonging from Asteraceae, 7 species from “Invasive alien species Poaceae, 7 species of Solanaceae, 5 species of Lamiaceae, followed by four (IAS)”, species of each Ranunculaceae and Polygonaceae while the other belongs “Asteraceae”, to Papilionaceae, Cyperacea, Euphorbiaceae and various other angiospermic “Weeds”, families were recorded. Weed Species from 5 different angiospermic families “ P l a n t q u a r a n t i n e ” , “TehriGarhwal”. were recorded. The highest diversity was reported for Asteraceae family. Species diversity of IAS indicated that study area was distinctly dissimilar or unlike in diversity and unhealthy. An investigation of the habitat depicts that herbs prevail (11 species) followed by shrubs (8 species) and trees (2 species). However, major impact of these species on the indigenous flora, change in hydrology and function of ecosystems is yet to be studied. There is an urgent need to develop regional data, information on their ecology, morphology, reproductive biology, phenology and physiology for effective management and control of IAS. Present Study will helpful in further study on developing effective management and control protocol of IAS on spreading outside their natural habitat and most prominent menaces to biodiversity. CONTACT Digvijaysinh Rathod [email protected] Silviculture Division, Forest Research Institute, Dehradun, India. © 2017 The Author(s). Published by Enviro Research Publishers This is an Open Access article licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (https://creativecommons.org/licenses/by-nc-sa/4.0/ ), which permits unrestricted NonCommercial use, distribution, and reproduction in any medium, provided the original work is properly cited. To link to this article: http://dx.doi.org/10.12944/CWE.12.2.21 378 KHANDURI et al., Curr. World Environ., Vol. 12(2), 377-388 (2017) Introduction Some outcomes guided that numbers of individuals The Himalaya mountain region is one of the richest per unit area of human population and human action and most unusual ecosystems on Earth1. Indian have crucial consequences on the plants invasions22, Himalayan region covers about an area of 4,19,873 23. Biological plant invasion have charming effect Km2. The unique physiography, climatic conditions, on ecologist due to their substantial ecological and soil features of the area have resulted in a mixture economical importance from the conservation threat of habitats and a substantial biological diversity. The of plant diversity point of view worldwide24. India is Himalayan region affirms approximately 8000 plant the 7th largest country and one of the mega-diversity species (47.06% of the total flowering plants of India) countries on globe out of 17 most biodiversity- of which 30% are endemics among natives, 10.2% rich countries. With a various types of habitats trees, 8.44% wild edibles and over 15% medicinal. The and different environmental conditions, India is dependence of human and livestock on this rich plant particularly susceptible to attack of invasive species diversity is long-familiar physical process since time of foreign origin. The sketch of invasive plants in India immemorial2,3. The Tehri Dam is tallest dam in India. is now obligating immediate action in practice and Tehri Dam provides common services such as also helpful for invasion plant ecology. food mitigation, water supply for agricultural crop The biological invasion involving the entire earth cultivation, drinking water, electricity production, threatens biodiversity, resource availability, employment opportunity, recreational and tourisms ecosystem dynamics, and people health and country facility in surrounding area. The utilization and economy25.The analyses of the apportioning of subsequent changes in hydrological water body invasive alien species and the kinship with existing has a significantly influencing on river flow and their factors furnish the chances to explore the possible linked biotic and abiotic organisms. Dams are grant factors that lead to their spatial distribution at a credentials to as having fairly large negative effects prominent scale26, 27a. However, seldom observe the on the closely encircling natural ecosystems divesity4. spatial distribution analysis revolve about species In many developing countries tourism was act as with prominent consequence separately from those revenue generate, employment opportunity to local with miserable effects 28, 29b.The scrimpy native people, improved living standards and sustainable diversity privileges to introduce invasion proposed livihood development with buildup good relationship by Elton’s30.Some data-based and model based between people and nature from conservation point studies reports support that diversity decreased of view5, 6,7a. The global trade and tourism are key invisibility31, 32,33,34,35. Investigate on the features of factors concerned with the ecological effects of invasive species and the recipient spatial location altering the environment in developing regions8b, 9. is indispensable for recognizing the action of In the last decades tourisms has rapidly originated invasion36.Therefore, insufficiency of data point worldwide in mountain regions.10, 11. The mountain concerning forest invasivesis a subject of associate tourisms in new emerging area had negative as this creats an off-key of complacency. Devoted results on wetlands, protected areas and natural research antecedence taken to be conceded to area indicated by previous examines concerned to buildup detailed database in perspective of forest recreation ecology12, 13. In past 25 years, Nepal has resources in the state and nation on scientific lines rapidly increased in tourism growth, the positive or and to updating datum. If so, for this conclusion, negative effect of tourism ontogenesis on forest periodical assemblage, Identification and collection resource and alpine vegetation plant diversity has of such species are needed, thus one can find out been well recorded14. and could consider management options to prevent, Human actions have significant determines on the or at least reduce the damaging effects of biological dispersal of exotic plants15, 16, 17, 18. In Central Europe, invasions. And this only can be possible if we have an invasion has been often outcome of interaction the proper knowledge about their presence in the between biological and anthropogenic factors19. area, thus need the base line data, and this could Human interruptions enhance alien extend in gather only through inventory. The objectives of the general20. They are determined that the parameters present study accomplish this research need and in a most excellent way to justify the density of alien provide the basic information for further research plants were the human growth index and imports21. in the same field. KHANDURI et al., Curr. World Environ., Vol. 12(2), 377-388 (2017) 379 Materials and Methods site I (Jardhar VFE), known for its luxuriant forest The present investigation was accomplished in the area, and indigenous agricultural practices, site II District Tehri Garhwal of the Garhwal Himalayan (Dikhol VFE), became central hub for all the social region of Uttarakhand which lies at 300 55’ to 310 18’ activities, followed by site III (Kuttha VFE), this site N latitude and 780 to 790 25’ E longitude in Western became central point for the dam site seeing and Himalaya covering 36000 sq. km. The greatest extent tourism purposes and site IV (Saundkoti VFE) of the region is 180 km N to S and 200 km E to W. valuable natural site, as no any human induced The region is highly mountainous, ranging in altitude pressure is assumed in this site.The concept of from 300-7000m, therefore by considering the village forest exist in the study area, i.e., Tehri, from diverse forms of the area the widely renowned Tehri time immemorial as the forest were aligned to certain Dam site was considered as a reference point and villages upto a certain radial distance to meet the further study was carried out at different elevations. bonafied needs and requirements of the village Specifically four different
Recommended publications
  • Medicinal Practices of Sacred Natural Sites: a Socio-Religious Approach for Successful Implementation of Primary
    Medicinal practices of sacred natural sites: a socio-religious approach for successful implementation of primary healthcare services Rajasri Ray and Avik Ray Review Correspondence Abstract Rajasri Ray*, Avik Ray Centre for studies in Ethnobiology, Biodiversity and Background: Sacred groves are model systems that Sustainability (CEiBa), Malda - 732103, West have the potential to contribute to rural healthcare Bengal, India owing to their medicinal floral diversity and strong social acceptance. *Corresponding Author: Rajasri Ray; [email protected] Methods: We examined this idea employing ethnomedicinal plants and their application Ethnobotany Research & Applications documented from sacred groves across India. A total 20:34 (2020) of 65 published documents were shortlisted for the Key words: AYUSH; Ethnomedicine; Medicinal plant; preparation of database and statistical analysis. Sacred grove; Spatial fidelity; Tropical diseases Standard ethnobotanical indices and mapping were used to capture the current trend. Background Results: A total of 1247 species from 152 families Human-nature interaction has been long entwined in has been documented for use against eighteen the history of humanity. Apart from deriving natural categories of diseases common in tropical and sub- resources, humans have a deep rooted tradition of tropical landscapes. Though the reported species venerating nature which is extensively observed are clustered around a few widely distributed across continents (Verschuuren 2010). The tradition families, 71% of them are uniquely represented from has attracted attention of researchers and policy- any single biogeographic region. The use of multiple makers for its impact on local ecological and socio- species in treating an ailment, high use value of the economic dynamics. Ethnomedicine that emanated popular plants, and cross-community similarity in from this tradition, deals health issues with nature- disease treatment reflects rich community wisdom to derived resources.
    [Show full text]
  • Ethnobotany of Colorant Plants in Ethnic Communities In
    thropolog An y Luu-dam et al., Anthropol 2016, 4:1 Anthropology DOI: 10.4172/2332-0915.1000158 ISSN: 2332-0915 Research Article Article OpenOpen Access Access Ethnobotany of Colorant Plants in Ethnic Communities in Northern Vietnam Ngoc Anh Luu-dam1*, Ban K Ninh2 and Yoshinori Sumimura3 1Vietnam National Museum of Nature, Vietnam Academy of Science and Technology (VAST), Vietnam 2Institute of Marine Biochemistry, VAST, Vietnam 3Global Collaboration Centre, Osaka University, Japan Abstract Vietnam is the tropical country, which includes 12,000 flowering plant species in its flora. And Vietnam is a homeland of 54 ethnic minorities with a broad range of experience in using plants for dyeing, especially for food. As a result 43 species belonging to 24 families giving a dye for food were identified. Ethnic people have abundant knowledge in using plants for dyeing food such as processing, preparation, mixing plants to require colors. In the framework of this study, we report on the traditional colorant species in Northern Vietnam and the value of indigenous knowledge in processing and blending plants to achieve required colors. Keywords: Colorant plants, Coloring food, Northern Vietnam, Lung Quang hamlet (Thong Nong commune, Cao Bang Province). Indigenous knowledge Giay people: Lau hamlet (Sapa commune, Lao Cai Province) as Introduction shown in Figures 1 and 2. For a long time, Vietnamese people have used colorant plants and, Thai people: black Thai in Bo, Nhop, Bia and Bang hamlets (Thuan even now, they remain a part of daily life. However, at this time, there Chau commune, Son La Province); Phang-3 hamlets (Muong Phang is no document or evidence precisely recording and describing the commune, Dien Bien Province); white Thai in the Na Muoi hamlet appearance of these plants.
    [Show full text]
  • ACANTHACEAE 爵床科 Jue Chuang Ke Hu Jiaqi (胡嘉琪 Hu Chia-Chi)1, Deng Yunfei (邓云飞)2; John R
    ACANTHACEAE 爵床科 jue chuang ke Hu Jiaqi (胡嘉琪 Hu Chia-chi)1, Deng Yunfei (邓云飞)2; John R. I. Wood3, Thomas F. Daniel4 Prostrate, erect, or rarely climbing herbs (annual or perennial), subshrubs, shrubs, or rarely small trees, usually with cystoliths (except in following Chinese genera: Acanthus, Blepharis, Nelsonia, Ophiorrhiziphyllon, Staurogyne, and Thunbergia), isophyllous (leaf pairs of equal size at each node) or anisophyllous (leaf pairs of unequal size at each node). Branches decussate, terete to angular in cross-section, nodes often swollen, sometimes spinose with spines derived from reduced leaves, bracts, and/or bracteoles. Stipules absent. Leaves opposite [rarely alternate or whorled]; leaf blade margin entire, sinuate, crenate, dentate, or rarely pinnatifid. Inflo- rescences terminal or axillary spikes, racemes, panicles, or dense clusters, rarely of solitary flowers; bracts 1 per flower or dichasial cluster, large and brightly colored or minute and green, sometimes becoming spinose; bracteoles present or rarely absent, usually 2 per flower. Flowers sessile or pedicellate, bisexual, zygomorphic to subactinomorphic. Calyx synsepalous (at least basally), usually 4- or 5-lobed, rarely (Thunbergia) reduced to an entire cupular ring or 10–20-lobed. Corolla sympetalous, sometimes resupinate 180º by twisting of corolla tube; tube cylindric or funnelform; limb subactinomorphic (i.e., subequally 5-lobed) or zygomorphic (either 2- lipped with upper lip subentire to 2-lobed and lower lip 3-lobed, or rarely 1-lipped with 3 lobes); lobes ascending or descending cochlear, quincuncial, contorted, or open in bud. Stamens epipetalous, included in or exserted from corolla tube, 2 or 4 and didyna- mous; filaments distinct, connate in pairs, or monadelphous basally via a sheath (Strobilanthes); anthers with 1 or 2 thecae; thecae parallel to perpendicular, equally inserted to superposed, spherical to linear, base muticous or spurred, usually longitudinally dehis- cent; staminodes 0–3, consisting of minute projections or sterile filaments.
    [Show full text]
  • Molecular Phylogenetic Analyses Reveal a Close Evolutionary Relationship Between Podosphaera (Erysiphales: Erysiphaceae) and Its Rosaceous Hosts
    Persoonia 24, 2010: 38–48 www.persoonia.org RESEARCH ARTICLE doi:10.3767/003158510X494596 Molecular phylogenetic analyses reveal a close evolutionary relationship between Podosphaera (Erysiphales: Erysiphaceae) and its rosaceous hosts S. Takamatsu1, S. Niinomi1, M. Harada1, M. Havrylenko 2 Key words Abstract Podosphaera is a genus of the powdery mildew fungi belonging to the tribe Cystotheceae of the Erysipha­ ceae. Among the host plants of Podosphaera, 86 % of hosts of the section Podosphaera and 57 % hosts of the 28S rDNA subsection Sphaerotheca belong to the Rosaceae. In order to reconstruct the phylogeny of Podosphaera and to evolution determine evolutionary relationships between Podosphaera and its host plants, we used 152 ITS sequences and ITS 69 28S rDNA sequences of Podosphaera for phylogenetic analyses. As a result, Podosphaera was divided into two molecular clock large clades: clade 1, consisting of the section Podosphaera on Prunus (P. tridactyla s.l.) and subsection Magnicel­ phylogeny lulatae; and clade 2, composed of the remaining member of section Podosphaera and subsection Sphaerotheca. powdery mildew fungi Because section Podosphaera takes a basal position in both clades, section Podosphaera may be ancestral in Rosaceae the genus Podosphaera, and the subsections Sphaerotheca and Magnicellulatae may have evolved from section Podosphaera independently. Podosphaera isolates from the respective subfamilies of Rosaceae each formed different groups in the trees, suggesting a close evolutionary relationship between Podosphaera spp. and their rosaceous hosts. However, tree topology comparison and molecular clock calibration did not support the possibility of co-speciation between Podosphaera and Rosaceae. Molecular phylogeny did not support species delimitation of P. aphanis, P.
    [Show full text]
  • Lamiales – Synoptical Classification Vers
    Lamiales – Synoptical classification vers. 2.6.2 (in prog.) Updated: 12 April, 2016 A Synoptical Classification of the Lamiales Version 2.6.2 (This is a working document) Compiled by Richard Olmstead With the help of: D. Albach, P. Beardsley, D. Bedigian, B. Bremer, P. Cantino, J. Chau, J. L. Clark, B. Drew, P. Garnock- Jones, S. Grose (Heydler), R. Harley, H.-D. Ihlenfeldt, B. Li, L. Lohmann, S. Mathews, L. McDade, K. Müller, E. Norman, N. O’Leary, B. Oxelman, J. Reveal, R. Scotland, J. Smith, D. Tank, E. Tripp, S. Wagstaff, E. Wallander, A. Weber, A. Wolfe, A. Wortley, N. Young, M. Zjhra, and many others [estimated 25 families, 1041 genera, and ca. 21,878 species in Lamiales] The goal of this project is to produce a working infraordinal classification of the Lamiales to genus with information on distribution and species richness. All recognized taxa will be clades; adherence to Linnaean ranks is optional. Synonymy is very incomplete (comprehensive synonymy is not a goal of the project, but could be incorporated). Although I anticipate producing a publishable version of this classification at a future date, my near- term goal is to produce a web-accessible version, which will be available to the public and which will be updated regularly through input from systematists familiar with taxa within the Lamiales. For further information on the project and to provide information for future versions, please contact R. Olmstead via email at [email protected], or by regular mail at: Department of Biology, Box 355325, University of Washington, Seattle WA 98195, USA.
    [Show full text]
  • A Preliminary Study of Retinacular Sh Scotland and Vollesen (Acanthacea
    International Research Journal of Biological Sciences __________________________ _______ E-ISSN 2278-3202 Vol. 5(2), 30-35, February (201 6) Int. Res. J. Biological Sci. A preliminary study of Retinacular shape Variation in Acanthoideae Sensu Scotland and Vollesen (Acanthaceae) and its Phylogenetic significance Saikat Naskar Department of Botany, Barasat Govt. College, Barasat, Kolkata, 700124, India [email protected] Available online at: www.isca.in, www.isca.me Received 31 st December 2015, revised 14 th January 2016, accepted 1st February 201 6 Abstract Retinacula are synapomorphic for Acanthoideae clade. Morphometric study of retinacula from the members of Acanthoideae has been done to understand the significance of its shape variation in phylogentic context. The monophyly of the sub -tribes Andrographina e and Barleriinae of Acanthoideae are supported by their unique kinds of retinacular shape. The overlapping distribution of the species of Ruellinae and Justiciinae in 2D scattered plot based on retinacular shape is also supported th e link between these two sub-tribes which was established by molecular phylogenetic studies. Therefore retinacular shape variations within Acanthoideae are important for its phylogenetic interpretation. Keywords: Reticaula, Shape variation, Acanthoideae. Introduction propel seeds away from the parent plants when fruit dehisce 8. The structural or shape variation of retinacula within the The sub-family Acanthoideae sensu Scotland and Vollesen members of Acanthoideae and its significance in phylogeny are (Acanthaceae) is characterized by the presence of Retinacula. not studied yet even though it is considered as sole 1 Lindau classified Acanthaceae into four subfamilies of which morphological synapomorphic character in Acanthoideae clade. Acanthoideae contains more than 95 percent of total species.
    [Show full text]
  • A Synoptical Classification of the Lamiales
    Lamiales – Synoptical classification vers. 2.0 (in prog.) Updated: 13 December, 2005 A Synoptical Classification of the Lamiales Version 2.0 (in progress) Compiled by Richard Olmstead With the help of: D. Albach, B. Bremer, P. Cantino, C. dePamphilis, P. Garnock-Jones, R. Harley, L. McDade, E. Norman, B. Oxelman, J. Reveal, R. Scotland, J. Smith, E. Wallander, A. Weber, A. Wolfe, N. Young, M. Zjhra, and others [estimated # species in Lamiales = 22,000] The goal of this project is to produce a working infraordinal classification of the Lamiales to genus with information on distribution and species richness. All recognized taxa will be clades; adherence to Linnaean ranks is optional. Synonymy is very incomplete (comprehensive synonymy is not a goal of the project, but could be incorporated). Although I anticipate producing a publishable version of this classification at a future date, my near-term goal is to produce a web-accessible version, which will be available to the public and which will be updated regularly through input from systematists familiar with taxa within the Lamiales. For further information on the project and to provide information for future versions, please contact R. Olmstead via email at [email protected], or by regular mail at: Department of Biology, Box 355325, University of Washington, Seattle WA 98195, USA. Lamiales – Synoptical classification vers. 2.0 (in prog.) Updated: 13 December, 2005 Acanthaceae (~201/3510) Durande, Notions Elém. Bot.: 265. 1782, nom. cons. – Synopsis compiled by R. Scotland & K. Vollesen (Kew Bull. 55: 513-589. 2000); probably should include Avicenniaceae. Nelsonioideae (7/ ) Lindl. ex Pfeiff., Nomencl.
    [Show full text]
  • Flora of Kwangtung and Hongkong (China) Being an Account of The
    ASIA Oldtnell Htttneraity ffitbrarg CHARLES WILLIAM WASON COLLECTION CHINA AND THE CHINESE THE GIFT OF CHARLES WILLIAM WASON CLASS OF 1876 1918 CORNELL UNIVERSITY LIBRARY 3 1924 073 202 933 The original of tiiis book is in tine Cornell University Library. There are no known copyright restrictions in the United States on the use of the text. http://www.archive.org/details/cu31924073202933 P.EW Bulletin, Add. Series X 762, 1-30 bSI^11/ 73. SOD-IOJI- To -filce. page- 1 . J [All Bights Reserved.] EOYAL BOTMIC GARDENS, KEW. BULLETIN OF MISCELLANEOUS INEOEIATIOK ADDITIONAL SERIES X. ELORA OE KWAiaTUia AO H0I&K0I6- (OHIIA) BEING AN ACCOUNT OP THE FLOWERING PLA.NTS, FERNS AND FERN ALLIES TOGETHER WITH KEYS FOR THEIR DETERMINATION PRECEDED BY A MAP AND INTRODTJCTrON, BY STEPHEN TROYTE DUNN, B.A., F.L.S., sometime Superintendent of the Botanical and Forestry Department, Hongkong ; AND WILLIAM JAMES TUTCHER, F.L.S., Superintendent of the Botanical and Forestry Department, Hongkong. LONDON: PUBLISHED BY HIS MAJESTY'S STATIONERY OFFICE. To be purchased, either directly or through any Bookseller, from WjifMAN AND SONS, Ltd., Feitbr Lane, E.G.; or OLIVER AND BOYD, Tweeddale Court, Edinburgh; or E. PONSONBY, Ltd., 116, Graeton Street, Dublin. printed by DARLING AND SON, Ltd., Bacon Street, E. 1912. Price is. 6d. G: PREFACE. The first and, up till now, the only work by which plants from any part of the Celestial Empire could be identified was Bentham's Flora Hongkongensis published in 1861. This Flora dealt only with the small island of Hongkong on the S.E.
    [Show full text]
  • I CONTENTS…………………………………………………………………………………………I-Ii Executive S
    CONTENTS…………………………………………………………………………………………i-ii Executive Summary ............................................................................................................................ iii 1 Introduction ................................................................................................................................... 1 1.1 Significance of Biodiversity Inventory……………………………………………………...1 1.2 Utility and Purpose of this study…………………………………………………………….1 1.3 Conservation Values and Why To Assess Kumbhalgarh Wildlife Sanctuary?……………...3 1.4 Objectives……………………………………………………………………………………3 2 Study Area ..................................................................................................................................... 4 3 Methods Used ................................................................................................................................ 6 3.1 Secondary Information………………………………………………………………………6 3.2 Mapping the Landcover/ Land use and Forests……………………………………………...6 3.3 Field Data Collection………………………………………………………………………...6 4 Mapping of Physical Features .................................................................................................... 12 4.1 Vegetation Mapping………………………………………………………………………..12 4.2 Mapping of Aspects………………………………………………………………………...12 4.3 Mapping of Slope Classes………………………………………………………………….15 5 Inventory of Biodiversity ............................................................................................................ 17 5.1 Secondary Information – Literature Survey………………………………………………..17
    [Show full text]
  • New Distributional Records for the Flora of Tripura, India and Their Ethno-Medicinal Uses
    Bioscience Discovery, 7(2):116-120, July - 2016 © RUT Printer and Publisher Print & Online, Open Access, Research Journal Available on http://jbsd.in ISSN: 2229-3469 (Print); ISSN: 2231-024X (Online) Research Article New distributional records for the flora of Tripura, India and their ethno-medicinal uses Bimal Debnath*, Dipan Sarma, Chiranjit Paul and Amal Debnath Plant Diversity and Forest Biotechnology Laboratory, Department of Forestry and Biodiversity, Tripura University, Suryamaninagar-799022, Tripura, Northeast India *Email: [email protected] Article Info Abstract Received: 19-06-2016, The present study is providing the additional distributional records of three Revised: 30-06-2016, species namely Dicliptera paniculata (Forssk.) I. Darbysh, Senna hirsuta (L.) H. Accepted: 02-07-2016 S. Irwin and Barneby and Asystasia gangetica (L.) T. Anderson, and their ethno- medicinal importance from various part of Tripura for the first time. Out of these Keywords: three new species Asystasia is the new genus addition to the family Acanthaceae Dicliptera paniculata, in the flora of the state. Detailed description, photographs, distributional and Asystasia gangetica, Senna ecological details are provided. hirsuta, New record, Ethno- medicinal Usages, INTRODUCTION They carry a vast deal of traditional knowledge on In the present age systematic documentation of the uses of plant and plant product since long back. biodiversity has given the instantaneous research They have an unfathomable confidence on their priority. To this end, the first and foremost research folklore medicines for their primary treatment of urgency is to scientifically record the taxonomic different ailments. Human impacts have often local diversity and distribution of life forms of the flora extirpations force and reduce the levels of native and fauna at local, regional, and global scales biodiversity (Sukumaran and Parthiban, 2014).
    [Show full text]
  • Andaman & Nicobar Islands, India
    RESEARCH Vol. 21, Issue 68, 2020 RESEARCH ARTICLE ISSN 2319–5746 EISSN 2319–5754 Species Floristic Diversity and Analysis of South Andaman Islands (South Andaman District), Andaman & Nicobar Islands, India Mudavath Chennakesavulu Naik1, Lal Ji Singh1, Ganeshaiah KN2 1Botanical Survey of India, Andaman & Nicobar Regional Centre, Port Blair-744102, Andaman & Nicobar Islands, India 2Dept of Forestry and Environmental Sciences, School of Ecology and Conservation, G.K.V.K, UASB, Bangalore-560065, India Corresponding author: Botanical Survey of India, Andaman & Nicobar Regional Centre, Port Blair-744102, Andaman & Nicobar Islands, India Email: [email protected] Article History Received: 01 October 2020 Accepted: 17 November 2020 Published: November 2020 Citation Mudavath Chennakesavulu Naik, Lal Ji Singh, Ganeshaiah KN. Floristic Diversity and Analysis of South Andaman Islands (South Andaman District), Andaman & Nicobar Islands, India. Species, 2020, 21(68), 343-409 Publication License This work is licensed under a Creative Commons Attribution 4.0 International License. General Note Article is recommended to print as color digital version in recycled paper. ABSTRACT After 7 years of intensive explorations during 2013-2020 in South Andaman Islands, we recorded a total of 1376 wild and naturalized vascular plant taxa representing 1364 species belonging to 701 genera and 153 families, of which 95% of the taxa are based on primary collections. Of the 319 endemic species of Andaman and Nicobar Islands, 111 species are located in South Andaman Islands and 35 of them strict endemics to this region. 343 Page Key words: Vascular Plant Diversity, Floristic Analysis, Endemcity. © 2020 Discovery Publication. All Rights Reserved. www.discoveryjournals.org OPEN ACCESS RESEARCH ARTICLE 1.
    [Show full text]
  • CONTACT INFORMATION South African National Biodiversity
    CONTACT INFORMATION South African National Biodiversity Institute, Private Bag X101, Pretoria, 0001 South Africa +27 12 843 5000 [email protected] Or visit our website: http://biodiversityadvisor.sanbi.org/literature ii SANBI Bookshop ⁞ 2019 CATALOGUE CONTENTS African Biodiversity and Conservation ....................................................... 1 Bothalia .................................................................................. 1 Flora of southern Africa. 8 Flowering Plants of Africa ................................................................... 8 SANBI Biodiversity Series ................................................................... 10 Strelitzia .................................................................................. 16 Suricata ................................................................................... 26 Ad hoc publications ....................................................................... 28 Posters ................................................................................... 31 Calendars. 31 Bookshop products ....................................................................... 32 Order form. 33 All publications listed published by the South African National Biodiversity Institute (formerly NBI) (unless indicated otherwise) New publications SANBI Bookshop ⁞ 2019 CATALOGUE 1 AFRICAN BIODIVERSITY AND CONSERVATION Bothalia has changed its name and expanded its scope. It is now called African Biodiversity and Conservation and it covers both plants and animals. It
    [Show full text]