NABU's Follow-Up Biodiversity Assessment at the Kafa Biosphere
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Tadpoles of Eight West and Central African Leptopelis Species (Amphibia: Anura: Arthroleptidae)
Official journal website: Amphibian & Reptile Conservation amphibian-reptile-conservation.org 9(2) [Special Section]: 56–84 (e111). The tadpoles of eight West and Central African Leptopelis species (Amphibia: Anura: Arthroleptidae) 1,*Michael F. Barej, 1Tilo Pfalzgraff,1 Mareike Hirschfeld, 2,3H. Christoph Liedtke, 1Johannes Penner, 4Nono L. Gonwouo, 1Matthias Dahmen, 1Franziska Grözinger, 5Andreas Schmitz, and 1Mark-Oliver Rödel 1Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstr. 43, 10115 Berlin, GERMANY 2Department of Environmental Science (Biogeography), University of Basel, Klingelbergstrasse 27, 4056 Basel, SWITZERLAND 3Ecology, Evolution and Developmental Group, Department of Wetland Ecology, Estación Biológica de Doñana (CSIC), 41092 Sevilla, SPAIN 4Cameroon Herpetology- Conservation Biology Foundation (CAMHERP-CBF), PO Box 8218, Yaoundé, CAMEROON 5Natural History Museum of Geneva, Department of Herpetology and Ichthyology, C.P. 6434, 1211 Geneva 6, SWITZERLAND Abstract.—The tadpoles of more than half of the African tree frog species, genus Leptopelis, are unknown. We provide morphological descriptions of tadpoles of eight species from Central and West Africa. We present the first descriptions for the tadpoles ofLeptopelis boulengeri and L. millsoni. In addition the tadpoles of L. aubryioides, L. calcaratus, L. modestus, L. rufus, L. spiritusnoctis, and L. viridis are herein reinvestigated and their descriptions complemented, e.g., with additional tooth row formulae or new measurements based on larger series of available tadpoles. Key words. Anuran larvae, external morphology, diversity, mitochondrial DNA, DNA barcoding, lentic waters, lotic waters Citation: Barej MF, Pfalzgraff T, Hirschfeld M, Liedtke HC, Penner J, Gonwouo NL, Dahmen M, Grözinger F, Schmitz A, Rödel M-0. 2015. The tadpoles of eight West and Central African Leptopelis species (Amphibia: Anura: Arthroleptidae). -
Bioseries12-Amphibians-Taita-English
0c m 12 Symbol key 3456 habitat pond puddle river stream 78 underground day / night day 9101112131415161718 night altitude high low vegetation types shamba forest plantation prelim pages ENGLISH.indd ii 2009/10/22 02:03:47 PM SANBI Biodiversity Series Amphibians of the Taita Hills by G.J. Measey, P.K. Malonza and V. Muchai 2009 prelim pages ENGLISH.indd Sec1:i 2009/10/27 07:51:49 AM SANBI Biodiversity Series The South African National Biodiversity Institute (SANBI) was established on 1 September 2004 through the signing into force of the National Environmental Management: Biodiversity Act (NEMBA) No. 10 of 2004 by President Thabo Mbeki. The Act expands the mandate of the former National Botanical Institute to include responsibilities relating to the full diversity of South Africa’s fauna and ora, and builds on the internationally respected programmes in conservation, research, education and visitor services developed by the National Botanical Institute and its predecessors over the past century. The vision of SANBI: Biodiversity richness for all South Africans. SANBI’s mission is to champion the exploration, conservation, sustainable use, appreciation and enjoyment of South Africa’s exceptionally rich biodiversity for all people. SANBI Biodiversity Series publishes occasional reports on projects, technologies, workshops, symposia and other activities initiated by or executed in partnership with SANBI. Technical editor: Gerrit Germishuizen Design & layout: Elizma Fouché Cover design: Elizma Fouché How to cite this publication MEASEY, G.J., MALONZA, P.K. & MUCHAI, V. 2009. Amphibians of the Taita Hills / Am bia wa milima ya Taita. SANBI Biodiversity Series 12. South African National Biodiversity Institute, Pretoria. -
Congolius, a New Genus of African Reed Frog Endemic to The
www.nature.com/scientificreports OPEN Congolius, a new genus of African reed frog endemic to the central Congo: A potential case of convergent evolution Tadeáš Nečas1,2*, Gabriel Badjedjea3, Michal Vopálenský4 & Václav Gvoždík1,5* The reed frog genus Hyperolius (Afrobatrachia, Hyperoliidae) is a speciose genus containing over 140 species of mostly small to medium-sized frogs distributed in sub-Saharan Africa. Its high level of colour polymorphism, together with in anurans relatively rare sexual dichromatism, make systematic studies more difcult. As a result, the knowledge of the diversity and taxonomy of this genus is still limited. Hyperolius robustus known only from a handful of localities in rain forests of the central Congo Basin is one of the least known species. Here, we have used molecular methods for the frst time to study the phylogenetic position of this taxon, accompanied by an analysis of phenotype based on external (morphometric) and internal (osteological) morphological characters. Our phylogenetic results undoubtedly placed H. robustus out of Hyperolius into a common clade with sympatric Cryptothylax and West African Morerella. To prevent the uncovered paraphyly, we place H. robustus into a new genus, Congolius. The review of all available data suggests that the new genus is endemic to the central Congolian lowland rain forests. The analysis of phenotype underlined morphological similarity of the new genus to some Hyperolius species. This uniformity of body shape (including cranial shape) indicates that the two genera have either retained ancestral morphology or evolved through convergent evolution under similar ecological pressures in the African rain forests. African reed frogs, Hyperoliidae Laurent, 1943, are presently encompassing almost 230 species in 17 genera. -
Amphibiaweb's Illustrated Amphibians of the Earth
AmphibiaWeb's Illustrated Amphibians of the Earth Created and Illustrated by the 2020-2021 AmphibiaWeb URAP Team: Alice Drozd, Arjun Mehta, Ash Reining, Kira Wiesinger, and Ann T. Chang This introduction to amphibians was written by University of California, Berkeley AmphibiaWeb Undergraduate Research Apprentices for people who love amphibians. Thank you to the many AmphibiaWeb apprentices over the last 21 years for their efforts. Edited by members of the AmphibiaWeb Steering Committee CC BY-NC-SA 2 Dedicated in loving memory of David B. Wake Founding Director of AmphibiaWeb (8 June 1936 - 29 April 2021) Dave Wake was a dedicated amphibian biologist who mentored and educated countless people. With the launch of AmphibiaWeb in 2000, Dave sought to bring the conservation science and basic fact-based biology of all amphibians to a single place where everyone could access the information freely. Until his last day, David remained a tirelessly dedicated scientist and ally of the amphibians of the world. 3 Table of Contents What are Amphibians? Their Characteristics ...................................................................................... 7 Orders of Amphibians.................................................................................... 7 Where are Amphibians? Where are Amphibians? ............................................................................... 9 What are Bioregions? ..................................................................................10 Conservation of Amphibians Why Save Amphibians? ............................................................................. -
Status, Trends and Future Dynamics of Biodiversity and Ecosystems Underpinning Nature’S Contributions to People 1
CHAPTER 3 . STATUS, TRENDS AND FUTURE DYNAMICS OF BIODIVERSITY AND ECOSYSTEMS UNDERPINNING NATURE’S CONTRIBUTIONS TO PEOPLE 1 CHAPTER 2 CHAPTER 3 STATUS, TRENDS AND FUTURE DYNAMICS CHAPTER OF BIODIVERSITY AND 3 ECOSYSTEMS UNDERPINNING NATURE’S CONTRIBUTIONS CHAPTER TO PEOPLE 4 Coordinating Lead Authors Review Editors: Marie-Christine Cormier-Salem (France), Jonas Ngouhouo-Poufoun (Cameroon) Amy E. Dunham (United States of America), Christopher Gordon (Ghana) 3 CHAPTER This chapter should be cited as: Cormier-Salem, M-C., Dunham, A. E., Lead Authors Gordon, C., Belhabib, D., Bennas, N., Dyhia Belhabib (Canada), Nard Bennas Duminil, J., Egoh, B. N., Mohamed- (Morocco), Jérôme Duminil (France), Elahamer, A. E., Moise, B. F. E., Gillson, L., 5 Benis N. Egoh (Cameroon), Aisha Elfaki Haddane, B., Mensah, A., Mourad, A., Mohamed Elahamer (Sudan), Bakwo Fils Randrianasolo, H., Razaindratsima, O. H., Eric Moise (Cameroon), Lindsey Gillson Taleb, M. S., Shemdoe, R., Dowo, G., (United Kingdom), Brahim Haddane Amekugbe, M., Burgess, N., Foden, W., (Morocco), Adelina Mensah (Ghana), Ahmim Niskanen, L., Mentzel, C., Njabo, K. Y., CHAPTER Mourad (Algeria), Harison Randrianasolo Maoela, M. A., Marchant, R., Walters, M., (Madagascar), Onja H. Razaindratsima and Yao, A. C. Chapter 3: Status, trends (Madagascar), Mohammed Sghir Taleb and future dynamics of biodiversity (Morocco), Riziki Shemdoe (Tanzania) and ecosystems underpinning nature’s 6 contributions to people. In IPBES (2018): Fellow: The IPBES regional assessment report on biodiversity and ecosystem services for Gregory Dowo (Zimbabwe) Africa. Archer, E., Dziba, L., Mulongoy, K. J., Maoela, M. A., and Walters, M. (eds.). CHAPTER Contributing Authors: Secretariat of the Intergovernmental Millicent Amekugbe (Ghana), Neil Burgess Science-Policy Platform on Biodiversity (United Kingdom), Wendy Foden (South and Ecosystem Services, Bonn, Germany, Africa), Leo Niskanen (Finland), Christine pp. -
Morphological Evolution and Modularity of the Caecilian Skull Carla Bardua1,2* , Mark Wilkinson1, David J
Bardua et al. BMC Evolutionary Biology (2019) 19:30 https://doi.org/10.1186/s12862-018-1342-7 RESEARCH ARTICLE Open Access Morphological evolution and modularity of the caecilian skull Carla Bardua1,2* , Mark Wilkinson1, David J. Gower1, Emma Sherratt3 and Anjali Goswami1,2 Abstract Background: Caecilians (Gymnophiona) are the least speciose extant lissamphibian order, yet living forms capture approximately 250 million years of evolution since their earliest divergences. This long history is reflected in the broad range of skull morphologies exhibited by this largely fossorial, but developmentally diverse, clade. However, this diversity of form makes quantification of caecilian cranial morphology challenging, with highly variable presence or absence of many structures. Consequently, few studies have examined morphological evolution across caecilians. This extensive variation also raises the question of degree of conservation of cranial modules (semi-autonomous subsets of highly-integrated traits) within this clade, allowing us to assess the importance of modular organisation in shaping morphological evolution. We used an intensive surface geometric morphometric approach to quantify cranial morphological variation across all 32 extant caecilian genera. We defined 16 cranial regions using 53 landmarks and 687 curve and 729 surface sliding semilandmarks. With these unprecedented high-dimensional data, we analysed cranial shape and modularity across caecilians assessing phylogenetic, allometric and ecological influences on cranial evolution, as well as investigating the relationships among integration, evolutionary rate, and morphological disparity. Results: We found highest support for a ten-module model, with greater integration of the posterior skull. Phylogenetic signal was significant (Kmult =0.87,p < 0.01), but stronger in anterior modules, while allometric influences were also significant (R2 =0.16,p < 0.01), but stronger posteriorly. -
Missouri's Toads and Frogs Booklet
TOADSMissouri’s andFROGS by Jeffrey T. Briggler and Tom R. Johnson, Herpetologists www.MissouriConservation.org © 1982, 2008 Missouri Conservation Commission Equal opportunity to participate in and benefit from programs of the Missouri Department of Conservation is available to all individuals without regard to their race, color, national origin, sex, age or disability. Questions should be directed to the Department of Conservation, P.O. Box 180, Jefferson City, MO 65102, (573) 751-4115 (voice) or 800-735-2966 (TTY), or to the U.S. Fish and Wildlife Service Division of Federal Assistance, 4401 N. Fairfax Drive, Mail Stop: MBSP-4020, Arlington, VA 22203. Cover photo: Eastern gray treefrog by Tom R. Johnson issouri toads and frogs are colorful, harmless, vocal and valuable. Our forests, prairies, rivers, swamps and marshes are Mhome to a multitude of toads and frogs, but few people know how many varieties we have, how to tell them apart, or much about their natural history. Studying these animals and sharing their stories with fellow Missourians is one of the most pleasurable and rewarding aspects of our work. Toads and frogs are amphibians—a class Like most of vertebrate animals that also includes amphibians, salamanders and the tropical caecilians, which are long, slender, wormlike and legless. frogs and Missouri has 26 species and subspecies (or toads have geographic races) of toads and frogs. Toads and frogs differ from salamanders by having an aquatic relatively short bodies and lacking tails at adulthood. Being an amphibian means that tadpole stage they live two lives: an aquatic larval or tadpole and a semi- stage and a semi-aquatic or terrestrial adult stage. -
Diversification of African Tree Frogs (Genus Leptopelis) in the Highlands of Ethiopia
Received: 27 August 2017 | Revised: 25 February 2018 | Accepted: 12 March 2018 DOI: 10.1111/mec.14573 ORIGINAL ARTICLE Diversification of African tree frogs (genus Leptopelis) in the highlands of Ethiopia Jacobo Reyes-Velasco1 | Joseph D. Manthey1 | Xenia Freilich2 | Stephane Boissinot1 1New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, UAE Abstract 2Department of Biology, Queens College, The frog genus Leptopelis is composed of ~50 species that occur across sub-Saharan City University of New York, Flushing, NY, Africa. The majority of these frogs are typically arboreal; however, a few species USA have evolved a fossorial lifestyle. Most species inhabit lowland forests, but a few Correspondence species have adapted to high elevations. Five species of Leptopelis occupy the Ethio- Stephane Boissinot, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, UAE. pian highlands and provide a good opportunity to study the evolutionary transition Email: [email protected] from an arboreal to a fossorial lifestyle, as well as the diversification in this biodiver- sity hot spot. We sequenced 14 nuclear and three mitochondrial genes, and gener- ated thousands of SNPs from ddRAD sequencing to study the evolutionary relationships of Ethiopian Leptopelis. The five species of highland Leptopelis form a monophyletic group, which diversified during the late Miocene and Pliocene. We found strong population structure in the fossorial species L. gramineus, with levels of genetic differentiation between populations similar to those found between arbo- real species. This could indicate that L. gramineus is a complex of cryptic species. We propose that after the original colonization of the Ethiopian highlands by the ancestor of the L. -
Figs1 Speciestree Seqcap
Phrynomantis microps Microhylidae Breviceps adspersus Brevicipitidae Hemisus marmoratus Hemisotidae Leptopelis rufus Cardioglossa gracilis Arthtroleptis poecilinotus Leptodactylodon ovatus Arthroleptidae Nyctibates corrugatus Trichobatrachus robustus Scotobleps gabonicus Acanthixalus spinosus Acanthixalus sonjae Semnodactylus wealli Paracassina obscura Paracassina kounhiensis Kassininae Phlyctimantis maculata Phlyctimantis verrucosus Phlyctimantis boulengeri Phlyctimantis leonardi Kassina kuvangensis Kassina fusca Kassina lamottei Kassina senegalensis Kassina decorata Kassina maculosa Kassina arboricola Hyperoliidae Kassina cochranae Opisthothylax immaculatus Afrixalus enseticola Tachycnemis seychellensis Heterixalus luteostriatus Malagasy-Seychelles Heterixalus alboguttatus Species Afrixalus vibekensis Afrixalus weidholzi Afrixalus lacustris Afrixalus dorsimaculatus 1 Afrixalus dorsimaculatus 2 Afrixalus knysae Afrixalus spinifrons Hyperoliinae Afrixalus delicatus Afrixalus sylvaticus Afrixalus brachycnemis Afrixalus laevis Afrixalus lacteus Afrixalus fornasini Afrixalus wittei Afrixalus osorioi Afrixalus paradorsalis paradorsalis 2 Afrixalus paradorsalis paradorsalis 1 Afrixalus paradorsalis manengubensis Afrixalus nigeriensis Afrixalus vittiger 1 Afrixalus vittiger 2 Afrixalus dorsalis 3 Afrixalus dorsalis 1 Afrixalus quadrivittatus 1 Afrixalus quadrivittatus 2 Afrixalus dorsalis 2 Afrixalus fulvovittatus 2 Afrixalus fulvovittatus 1 Morerella cyanophthalma Cryptothylax greshoffii Hyperolius semidiscus Hyperolius parkeri Hyperolius -
Miocene Plio-Pleistocene Oligocene Eocene Paleocene Cretaceous
Phrynomantis microps Hemisus sudanensis Hemisus marmoratus Balebreviceps hillmani Breviceps mossambicus Breviceps adspersus Breviceps montanus Breviceps fuscus Breviceps gibbosus Breviceps macrops Breviceps namaquensis Breviceps branchi Spelaeophryne methneri Probreviceps loveridgei Probreviceps uluguruensis Probreviceps durirostris Probreviceps sp. Nguru Probreviceps sp. Rubeho Probreviceps sp. Kigogo Probreviceps sp. Udzungwa Probreviceps rungwensis Probreviceps macrodactylus Callulina shengena Callulina laphami Callulina dawida Callulina kanga Callulina sp lowland Callulina sp Rubeho Callulina hanseni Callulina meteora Callulina stanleyi Callulina kisiwamsitu Callulina kreffti Nyctibates corrugatus Scotobleps gabonicus Astylosternus laticephalus Astylosternus occidentalis Trichobatrachus robustus Astylosternus diadematus Astylosternus schioetzi Astylosternus batesi Leptodactylodon mertensi Leptodactylodon erythrogaster Leptodactylodon perreti Leptodactylodon axillaris Leptodactylodon polyacanthus Leptodactylodon bicolor Leptodactylodon bueanus Leptodactylodon ornatus Leptodactylodon boulengeri Leptodactylodon ventrimarmoratus Leptodactylodon ovatus Leptopelis parkeri Leptopelis macrotis Leptopelis millsoni Leptopelis rufus Leptopelis argenteus Leptopelis yaldeni Leptopelis vannutellii Leptopelis susanae Leptopelis gramineus Leptopelis kivuensis Leptopelis ocellatus Leptopelis spiritusnoctis Leptopelis viridis Leptopelis aubryi Leptopelis natalensis Leptopelis palmatus Leptopelis calcaratus Leptopelis brevirostris Leptopelis notatus -
Chytrid Fungus in Frogs from an Equatorial African Montane Forest in Western Uganda
Journal of Wildlife Diseases, 43(3), 2007, pp. 521–524 # Wildlife Disease Association 2007 Chytrid Fungus in Frogs from an Equatorial African Montane Forest in Western Uganda Tony L. Goldberg,1,2,3 Anne M. Readel,2 and Mary H. Lee11Department of Pathobiology, University of Illinois, 2001 South Lincoln Avenue, Urbana, Illinois 61802, USA; 2 Program in Ecology and Evolutionary Biology, University of Illinois, 235 NRSA, 607 East Peabody Drive, Champaign, Illinois 61820, USA; 3 Corresponding author (email: [email protected]) ABSTRACT: Batrachochytrium dendrobatidis, grassland, woodland, lakes and wetlands, the causative agent of chytridiomycosis, was colonizing forest, and plantations of exotic found in 24 of 109 (22%) frogs from Kibale trees (Chapman et al., 1997; Chapman National Park, western Uganda, in January and June 2006, representing the first account of the and Lambert, 2000). Mean daily minimum fungus in six species and in Uganda. The and maximum temperatures in Kibale presence of B. dendrobatidis in an equatorial were recorded as 14.9 C and 20.2 C, African montane forest raises conservation respectively, from 1990 to 2001, with concerns, considering the high amphibian mean annual rainfall during the same diversity and endemism characteristic of such areas and their ecological similarity to other period of 1749 mm, distributed across regions of the world experiencing anuran distinct, bimodal wet and dry seasons declines linked to chytridiomycosis. (Chapman et al., 1999, 2005). Kibale has Key words: Africa, amphibians, Anura, experienced marked climate change over Batrachochytrium dendrobatidis,Chytridio- the last approximately 30 yr, with increas- mycota, Uganda. ing annual rainfall, increasing maximum mean monthly temperatures, and decreas- Chytridiomycosis, an emerging infec- ing minimum mean monthly temperatures tious disease caused by the fungus Ba- trachochytrium dendrobatidis, is a major (Chapman et al., 2005). -
A Preliminary Survey of the Amphibian Fauna of Kisangani Ecoregion
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by ZENODO JOURNAL OF ADVANCED BOTANY AND ZOOLOGY Journal homepage: http://scienceq.org/Journals/JABZ.php Research Article Open Access A Preliminary Survey of the Amphibian Fauna of Kisangani Ecoregion, Democratic Republic of the Congo BG Badjedjea1, BJ Akuboy2, MF Masudi2, JA Asimonyio2, KP Museu3, Koto-te-Nyiwa Ngbolua4 1 Department of Ecology and Aquatic Biodiversity Resources, Biodiversity Monitoring Centre, University of Kisangani, P.O. Box 2012 Kisangani, Democratic Republic of the Congo. 2 Department of Ecology and Terrestrial Biodiversity Resources, Biodiversity Monitoring Centre, University of Kisangani, P.O. Box 2012 Kisangani, Democratic Republic of the Congo. 3 Geological and Mining Research Centre (CRGM), Kinshasa, Democratic Republic of the Congo 4 Department of Biology, Faculty of Science, University of Kinshasa, P.O. Box 190 Kinshasa XI, Democratic Republic of the Congo *Corresponding author: Prof. Dr. Koto-te-NyiwaNgbolua, Tel: +243 81 68 79 527, E-mail: [email protected] Received: September 10, 2015, Accepted: November 2, 2015, Published: November 2, 2015. ABSTRACT A preliminary study on amphibians was conducted in three selected sites of Kisangani region and surroundings in the Orientale Province (Democratic Republic of the Congo). In this part of the country, data on herpetological diversity are scarce; therefore, knowledge of the biodiversity of amphibians in the Kisangani region and its surroundings is still incomplete. A survey was conducted in three protected areas in the Orientale Province of Democratic Republic of the Congo, namely Tshuapa–Lomami– Lualaba Conservation Landscape, Hunting Reserve of Rubi-Télé, and Uma forest with the aim of identifying amphibian fauna biodiversity of such regions.