Toadally Frogs Frog Wranglers
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Return Rates of Male Hylid Frogs Litoria Genimaculata, L. Nannotis, L
Vol. 11: 183–188, 2010 ENDANGERED SPECIES RESEARCH Published online April 16 doi: 10.3354/esr00253 Endang Species Res OPENPEN ACCESSCCESS Return rates of male hylid frogs Litoria genimaculata, L. nannotis, L. rheocola and Nyctimystes dayi after toe-tipping Andrea D. Phillott1, 2,*, Keith R. McDonald1, 3, Lee F. Skerratt1, 2 1Amphibian Disease Ecology Group and 2School of Public Health, Tropical Medicine and Rehabilitation Sciences, James Cook University, Townsville, Queensland 4811, Australia 3Threatened Species Branch, Department of Environment and Resource Management, PO Box 975, Atherton, Queensland 4883, Australia ABSTRACT: Toe-tipping is a commonly used procedure for mark-recapture studies of frogs, although it has been criticised for its potential influence on frog behaviour, site fidelity and mortality. We com- pared 24 h return rates of newly toe-tipped frogs to those previously toe-tipped and found no evi- dence of a stress response reflected by avoidance behaviour for 3 species: Litoria genimaculata, L. rheocola and Nyctimystes dayi. L. nannotis was the only studied species to demonstrate a greater reaction to toe-tipping than handling alone; however, return rates (65%) in the 1 to 3 mo after mark- ing were the highest of any species, showing that the reaction did not endure. The comparatively milder short-term response to toe-tipping in N. dayi (24% return rate) may have been caused by the species’ reduced opportunity for breeding. Intermediate-term return rates were relatively high for 2 species, L. nannotis and L. genimaculata, given their natural history, suggesting there were no major adverse effects of toe-tipping. Longer-term adverse effects could not be ruled out for L. -
Ecol 483/583 – Herpetology Lab 3: Amphibian Diversity 2: Anura Spring 2010
Ecol 483/583 – Herpetology Lab 3: Amphibian Diversity 2: Anura Spring 2010 P.J. Bergmann & S. Foldi (Modified from Bonine & Foldi 2008) Lab objectives The objectives of today’s lab are to: 1. Familiarize yourself with Anuran diversity. 2. Learn to identify local frogs and toads. 3. Learn to use a taxonomic key. Today’s lab is the second in which you will learn about amphibian diversity. We will cover the Anura, or frogs and toads, the third and final clade of Lissamphibia. Tips for learning the material Continue what you have been doing in previous weeks. Examine all of the specimens on display, taking notes, drawings and photos of what you see. Attempt to identify the local species to species and the others to their higher clades. Quiz each other to see which taxa are easy for you and which ones give you troubles, and then revisit the difficult ones. Although the Anura has a conserved body plan – all are rather short and rigid bodied, with well- developed limbs, there is an incredible amount of diversity. Pay close attention to some of the special external anatomical traits that characterize the groups of frogs you see today. You will also learn to use a taxonomic key today. This is an important tool for correctly identifying species, especially when they are very difficult to distinguish from other species. 1 Ecol 483/583 – Lab 3: Anura 2010 Exercise 1: Anura diversity General Information Frogs are a monophyletic group comprising the order Anura. Salientia includes both extant and extinct frogs. Frogs have been around since the Triassic (~230 ma). -
BOA2.1 Caecilian Biology and Natural History.Key
The Biology of Amphibians @ Agnes Scott College Mark Mandica Executive Director The Amphibian Foundation [email protected] 678 379 TOAD (8623) 2.1: Introduction to Caecilians Microcaecilia dermatophaga Synapomorphies of Lissamphibia There are more than 20 synapomorphies (shared characters) uniting the group Lissamphibia Synapomorphies of Lissamphibia Integumen is Glandular Synapomorphies of Lissamphibia Glandular Skin, with 2 main types of glands. Mucous Glands Aid in cutaneous respiration, reproduction, thermoregulation and defense. Granular Glands Secrete toxic and/or noxious compounds and aid in defense Synapomorphies of Lissamphibia Pedicellate Teeth crown (dentine, with enamel covering) gum line suture (fibrous connective tissue, where tooth can break off) basal element (dentine) Synapomorphies of Lissamphibia Sacral Vertebrae Sacral Vertebrae Connects pelvic girdle to The spine. Amphibians have no more than one sacral vertebrae (caecilians have none) Synapomorphies of Lissamphibia Amphicoelus Vertebrae Synapomorphies of Lissamphibia Opercular apparatus Unique to amphibians and Operculum part of the sound conducting mechanism Synapomorphies of Lissamphibia Fat Bodies Surrounding Gonads Fat Bodies Insulate gonads Evolution of Amphibians † † † † Actinopterygian Coelacanth, Tetrapodomorpha †Amniota *Gerobatrachus (Ray-fin Fishes) Lungfish (stem-tetrapods) (Reptiles, Mammals)Lepospondyls † (’frogomander’) Eocaecilia GymnophionaKaraurus Caudata Triadobatrachus Anura (including Apoda Urodela Prosalirus †) Salientia Batrachia Lissamphibia -
Amphibiaweb's Illustrated Amphibians of the Earth
AmphibiaWeb's Illustrated Amphibians of the Earth Created and Illustrated by the 2020-2021 AmphibiaWeb URAP Team: Alice Drozd, Arjun Mehta, Ash Reining, Kira Wiesinger, and Ann T. Chang This introduction to amphibians was written by University of California, Berkeley AmphibiaWeb Undergraduate Research Apprentices for people who love amphibians. Thank you to the many AmphibiaWeb apprentices over the last 21 years for their efforts. Edited by members of the AmphibiaWeb Steering Committee CC BY-NC-SA 2 Dedicated in loving memory of David B. Wake Founding Director of AmphibiaWeb (8 June 1936 - 29 April 2021) Dave Wake was a dedicated amphibian biologist who mentored and educated countless people. With the launch of AmphibiaWeb in 2000, Dave sought to bring the conservation science and basic fact-based biology of all amphibians to a single place where everyone could access the information freely. Until his last day, David remained a tirelessly dedicated scientist and ally of the amphibians of the world. 3 Table of Contents What are Amphibians? Their Characteristics ...................................................................................... 7 Orders of Amphibians.................................................................................... 7 Where are Amphibians? Where are Amphibians? ............................................................................... 9 What are Bioregions? ..................................................................................10 Conservation of Amphibians Why Save Amphibians? ............................................................................. -
Helminths of the Plains Spadefoot, Spea Bombifrons, the Western Spadefoot, Spea Hammondii, and the Great Basin Spadefoot, Spea Intermontana (Pelobatidae)
Western North American Naturalist Volume 62 Number 4 Article 13 10-28-2002 Helminths of the plains spadefoot, Spea bombifrons, the western spadefoot, Spea hammondii, and the Great Basin spadefoot, Spea intermontana (Pelobatidae) Stephen R. Goldberg Whittier College, Whittier, California Charles R. Bursey Pennsylvania State University, Shenago Valley Campus, Sharon, Pennsylvania Follow this and additional works at: https://scholarsarchive.byu.edu/wnan Recommended Citation Goldberg, Stephen R. and Bursey, Charles R. (2002) "Helminths of the plains spadefoot, Spea bombifrons, the western spadefoot, Spea hammondii, and the Great Basin spadefoot, Spea intermontana (Pelobatidae)," Western North American Naturalist: Vol. 62 : No. 4 , Article 13. Available at: https://scholarsarchive.byu.edu/wnan/vol62/iss4/13 This Note is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Western North American Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Western North American Naturalist 62(4), © 2002, pp. 491–495 HELMINTHS OF THE PLAINS SPADEFOOT, SPEA BOMBIFRONS, THE WESTERN SPADEFOOT, SPEA HAMMONDII, AND THE GREAT BASIN SPADEFOOT, SPEA INTERMONTANA (PELOBATIDAE) Stephen R. Goldberg1 and Charles R. Bursey2 Key words: Spea bombifrons, Spea hammondii, Spea intermontana, helminths, Trematoda, Cestoda, Nematoda. The plains spadefoot, Spea bombifrons (Cope, mm ± 2 s, range = 54–61 mm), 8 from Nevada 1863), occurs from southern Alberta, Saskatch- (SVL = 50 mm ± 3 s, range = 47–55 mm), and ewan, and Manitoba to eastern Arizona and 14 from Utah (SVL = 57 mm ± 6 s, range = northeastern Texas south to Chihuahua, Mexico; 44–67 mm). -
August 2008 Issue 96
NEWSLETTER No. 96 THE FROG AND TADPOLE STUDY GROUP OF NSW INC The Year of the Frog Email [email protected] August 2008 PO Box 296 Rockdale NSW 2216 Website www.fats.org.au ABN 34 282 154 794 Pseudophryne covacevichae photo by Wendy Grimm Arrive at 6.30pm for a 7.00 pm start. AGM commences 7pm followed by our usual meeting Friday 1st August 2008 end of Jamieson St. (off Holker Street), Follow the signs to Building 22 Homebush Bay, Sydney Olympic Park Accessible by bus or train. Call us for details. Photo taken near Millaa Millaa on the Atherton tablelands The FATS Annual General Meeting commences on Friday at 7pm 1/8/08, for about 30 minutes and followed by our usual meeting. CONTENTS Main speakers 3 large glass tanks for sale, make us an offer, see p12 Mark Semeniuk p2-3 and Arthur White st MEETING FORMAT for 1 August 2008 Map of Arthur’s trip p4 Media clippings p4 6.30 pm Lots of White Lips, Gracilentas, Perons, Green Tree Frogs, Fallaxes and Rubellas need homes. Please bring your FATS Pharyngula p5 membership card, donation & amphibian licence to the meeting Bacteria could stop frog killer p6-7 and take home a lost froggy friend. Hiccups 7.00 pm Welcome and AGM have a purpose for tadpoles p8 7.30 pm Announcements. Cane toads on Oz p9 7.45 pm The main speaker is David Nelson :- “Bufo for breakfast. Greenwash, How Cane Toads affect native predators and their prey” bottled water and Coca Cola p10 9.00 pm Field trip reports and five favourite slides. -
Constraints on the Timescale of Animal Evolutionary History
Palaeontologia Electronica palaeo-electronica.org Constraints on the timescale of animal evolutionary history Michael J. Benton, Philip C.J. Donoghue, Robert J. Asher, Matt Friedman, Thomas J. Near, and Jakob Vinther ABSTRACT Dating the tree of life is a core endeavor in evolutionary biology. Rates of evolution are fundamental to nearly every evolutionary model and process. Rates need dates. There is much debate on the most appropriate and reasonable ways in which to date the tree of life, and recent work has highlighted some confusions and complexities that can be avoided. Whether phylogenetic trees are dated after they have been estab- lished, or as part of the process of tree finding, practitioners need to know which cali- brations to use. We emphasize the importance of identifying crown (not stem) fossils, levels of confidence in their attribution to the crown, current chronostratigraphic preci- sion, the primacy of the host geological formation and asymmetric confidence intervals. Here we present calibrations for 88 key nodes across the phylogeny of animals, rang- ing from the root of Metazoa to the last common ancestor of Homo sapiens. Close attention to detail is constantly required: for example, the classic bird-mammal date (base of crown Amniota) has often been given as 310-315 Ma; the 2014 international time scale indicates a minimum age of 318 Ma. Michael J. Benton. School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K. [email protected] Philip C.J. Donoghue. School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K. [email protected] Robert J. -
The Case of the Missing Frogs by Bryan Hamilton Why Are There No
The Case of the Missing Frogs By Bryan Hamilton Why are there no frogs in Great Basin National Park? Great Basin National Park seems like a perfect refuge for frogs, with plenty of water--ten perennial streams, hundreds of springs, and six alpine lakes, but apparently there are no amphibians. During 2002, an amphibian inventory was conducted within Great Basin National Park. Crews surveyed perennial streams, springs, and alpine lakes, but did not observe any adult amphibians, tadpoles, or egg masses. The reasons for this are unclear, but apparently frog distribution depends on more than just abundant water. Lack of suitable breeding habitat is a major limiting factor in amphibian distribution. Most amphibians require still or extremely slow moving water to lay their eggs in. High gradient streams in the Park do not provide appropriate breeding habitat. The hundreds of springs in the Park may provide this habitat, however, no amphibians were found at the dozens of springs surveyed this year. Isolation from source populations is another limiting factor. Streams leave the Park and then quickly disappear underground. Amphibian populations near the Park are not directly connected to these streams. Thus no corridors exist between the Park and nearby amphibian populations. One amphibian species that does not require aquatic corridors for migration is the Great Basin Spadefoot (Spea intermontana), commonly referred to as a "toad." Spadefoots are distinguished from "true toads" (members of the family Bufonidae) by a black wedge shaped spade on their hind feet, used for burrowing. Spadefoots move considerable distances over land during spring and summer rains, travelling to breeding sites. -
Missouri's Toads and Frogs Booklet
TOADSMissouri’s andFROGS by Jeffrey T. Briggler and Tom R. Johnson, Herpetologists www.MissouriConservation.org © 1982, 2008 Missouri Conservation Commission Equal opportunity to participate in and benefit from programs of the Missouri Department of Conservation is available to all individuals without regard to their race, color, national origin, sex, age or disability. Questions should be directed to the Department of Conservation, P.O. Box 180, Jefferson City, MO 65102, (573) 751-4115 (voice) or 800-735-2966 (TTY), or to the U.S. Fish and Wildlife Service Division of Federal Assistance, 4401 N. Fairfax Drive, Mail Stop: MBSP-4020, Arlington, VA 22203. Cover photo: Eastern gray treefrog by Tom R. Johnson issouri toads and frogs are colorful, harmless, vocal and valuable. Our forests, prairies, rivers, swamps and marshes are Mhome to a multitude of toads and frogs, but few people know how many varieties we have, how to tell them apart, or much about their natural history. Studying these animals and sharing their stories with fellow Missourians is one of the most pleasurable and rewarding aspects of our work. Toads and frogs are amphibians—a class Like most of vertebrate animals that also includes amphibians, salamanders and the tropical caecilians, which are long, slender, wormlike and legless. frogs and Missouri has 26 species and subspecies (or toads have geographic races) of toads and frogs. Toads and frogs differ from salamanders by having an aquatic relatively short bodies and lacking tails at adulthood. Being an amphibian means that tadpole stage they live two lives: an aquatic larval or tadpole and a semi- stage and a semi-aquatic or terrestrial adult stage. -
Early Tetrapod Relationships Revisited
Biol. Rev. (2003), 78, pp. 251–345. f Cambridge Philosophical Society 251 DOI: 10.1017/S1464793102006103 Printed in the United Kingdom Early tetrapod relationships revisited MARCELLO RUTA1*, MICHAEL I. COATES1 and DONALD L. J. QUICKE2 1 The Department of Organismal Biology and Anatomy, The University of Chicago, 1027 East 57th Street, Chicago, IL 60637-1508, USA ([email protected]; [email protected]) 2 Department of Biology, Imperial College at Silwood Park, Ascot, Berkshire SL57PY, UK and Department of Entomology, The Natural History Museum, Cromwell Road, London SW75BD, UK ([email protected]) (Received 29 November 2001; revised 28 August 2002; accepted 2 September 2002) ABSTRACT In an attempt to investigate differences between the most widely discussed hypotheses of early tetrapod relation- ships, we assembled a new data matrix including 90 taxa coded for 319 cranial and postcranial characters. We have incorporated, where possible, original observations of numerous taxa spread throughout the major tetrapod clades. A stem-based (total-group) definition of Tetrapoda is preferred over apomorphy- and node-based (crown-group) definitions. This definition is operational, since it is based on a formal character analysis. A PAUP* search using a recently implemented version of the parsimony ratchet method yields 64 shortest trees. Differ- ences between these trees concern: (1) the internal relationships of aı¨stopods, the three selected species of which form a trichotomy; (2) the internal relationships of embolomeres, with Archeria -
Amphibians of the Jordan River Compiled by Dan Potts, Local Naturalist, Revised 2011
Amphibians of the Jordan River compiled by Dan Potts, local naturalist, revised 2011 SALAMANDERS (AMBYSTOMIDAE) Arizona tiger salamander Ambystoma tigrinum nebulosum rare SPADEFOOT TOADS (PELOBATIDAE) Great Basin spadefoot (toad) Spea intermontana uncommon TRUE TOADS (BUFONIDAE) Boreal (Western) toad Bufo boreas boreas common Western Woodhouses toad Bufo woodhousei woodhousei common TREE TOADS (HYLIDAE) Boreal (Striped) chorus frog Pseudacris triseriata maculata common TRUE FROGS (RANIDAE) Northern leopard frog Rana pipiens brachycephala rare Spotted frog Rana pretiosa pretiosa rare, endangered species Bullfrog Rana catesbeiana common, exotic, nuisance species Green frog Rana clamitans rare, exotic Ecology Most amphibians are no longer as common on the Jordan River, nor around the world as they once were. There have been major declines in many species. For example, where vast numbers of leopard frogs could be found on the banks of the Jordan only twenty years ago, I have been unable to find even a single individual for years! On the other hand, populations of introduced exotic species like the bull frog are apparently expanding. A few like the striped chorus frog seem to be holding their own. Cars, and predators like foxes and domestic and introduced exotics like cats and raccoons have all played a part in some of these declines. Some species may be especially sensitive to chemicals like the herbicide Roundup, the depletion of earth’s protective ozone layer, and a disease called kitrid which have all been implicated in the demise of many species worldwide. Only three natives and the one exotic (see above) are currently common in the river’s corridor. One species is endangered, others are threatened as amphibians in general appear to a be the veritable Acanary in the mine@ for predicting the ecological demise of many ground-based vertebrates, unless we clean up our act and start caring for them. -
Southern Brown Tree Frog
Our Wildlife Fact Sheet Southern Brown Tree Frog Southern Brown Tree Frogs are one of Victoria’s common frog species. Scientific name Litoria ewingi Did you know? The Southern Brown Tree Frog is an agile hunter. It can leap to catch insects in mid flight. Their large sticky toes make them great climbers. Figure 1. Southern Brown Tree Frog metamorphs © A. Houston Female Southern Brown Tree Frogs can lay up to 600 DSE 2008 eggs at a time. Distribution It takes between 12 and 26 weeks for Southern Brown Southern Brown Tree Frogs occur in southern Victoria, tadpoles to turn into frogs. Tasmania and along the south coast of New South Wales. Description They are found across most of southern, central and Southern Brown Tree Frogs grow up to about 50 mm in north-eastern Victoria, but do not occur in the north- length. west corner of the state. In north-central Victoria and in Their colour is true to their name as they are brown on parts of the state’s north-east they are replaced by the their backs. The backs of their thighs are yellowish to closely-related Plains Brown Tree Frog (Litoria bright orange, and they have a white grainy belly. They paraewingi). also have a distinctive white stripe from the eye to their fore-leg. Their skin is smooth with small lumps. They have webbing on their feet that goes half way up their toes while their fingers have no webbing at all. Breeding males have a light brown vocal sac. Diet Southern Brown Tree Frogs feed mainly on flying insects such as mosquitoes, moths and flies.