Butterfly Community Temporal Trends and Responses to Resource Availability Along a Hydrologic Gradient of Montane Meadows Jennet C

Total Page:16

File Type:pdf, Size:1020Kb

Butterfly Community Temporal Trends and Responses to Resource Availability Along a Hydrologic Gradient of Montane Meadows Jennet C Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2008 Butterfly community temporal trends and responses to resource availability along a hydrologic gradient of montane meadows Jennet C. Caruthers Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Ecology and Evolutionary Biology Commons Recommended Citation Caruthers, Jennet C., "Butterfly ommc unity temporal trends and responses to resource availability along a hydrologic gradient of montane meadows" (2008). Retrospective Theses and Dissertations. 15359. https://lib.dr.iastate.edu/rtd/15359 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Butterfly community temporal trends and responses to resource availability along a hydrologic gradient of montane meadows by Jennet C. Caruthers A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Ecology and Evolutionary Biology Program of Study Committee: Diane M. Debinski, Major Professor Brian J. Wilsey David L. Otis Iowa State University Ames, Iowa 2008 1453895 1453895 2008 ii DEDICATION To my husband, Hanh, for his patience and his loving support. iii TABLE OF CONTENTS CHAPTER ONE: GENERAL INTRODUCTION 1 Why Study Butterflies 1 Thesis Organization 2 References 4 Figures 6 CHAPTER TWO: BUTTERFLY INDICATORS OF MONTANE MEADOWS ALONG A HYDROLOGICAL GRADIENT: RESPONSES FROM A SPATIAL AND TEMPORAL SCALE 8 Abstract 8 Introduction 9 Methods 10 Results 13 Discussion 14 Conclusion and Acknowledgements 17 References 17 Figures and Tables 21 CHAPTER THREE: BUTTERFLY RESPONSES TO FLORAL AND HOST PLANT RESOURCES IN MONTANE MEADOWS 30 Abstract and Introduction 30 Methods 33 Results 36 Discussion 38 Conclusion and Acknowledgements 42 References 42 Figures and Tables 46 CHAPTER FOUR: GENERAL CONCLUSIONS 54 ACKNOWLEDGEMENTS 56 APPENDIX A: STUDY SITE LOCATION AND DESCRIPTIONS 57 APPENDIX B: LIST OF GALLATIN AND TETON MONTANE MEADOW 61 BUTTERFLY SPECIES APPENDIX C: R CODE 65 APPENDIX D: GYE BUTTERFLY HOST PLANT DATA 69 APPENDIX E: BUTTERFLY ABUNDANCE FOR GALLATIN AND 76 TETON REGIONS. 1 CHAPTER ONE: GENERAL INTRODUCTION Why study butterflies All over the world butterflies are studied to understand everything from the effects of agricultural loss from caterpillar pests to conservation of butterflies as indictors of biodiversity and climate change. Butterfly’s habitats range from urban area flower gardens to alpine mountain tops, and are one of the few “popular” insects to the general public. It is estimated that of the 13,750 species of true butterflies (Papilionoidea) in the world (Elhrich and Raven 1965; Robbins, 1982; Shields, 1989; and Robbins and Opler, 1997), 90% have been described taxonomically (Robbins and Opler, 1997). Butterflies are holometabolous insects, meaning they go through a complete metamorphosis. The existence of these different life stages means that butterflies fall into multiple functional groups, including herbivore and pollinator. Most North American butterflies have at least one generation a year, flying as the adult or imago during a specific time frame with one brood (univoltine) or multiple life cycles per year (multivoltine). The short life span for a generation and the short time span for active stages along with their relative ease of identification within the group of insects have made butterflies a taxonomic group of intense research. Butterfly physiology at any life stage, is intrinsically tied into microclimate as well as the plant community, making them susceptible to climate and anthropogenic changes. Their roles in nature have permitted a plethora of studies about butterflies and their relationships to terrestrial biodiversity and conservation. The Greater Yellowstone Ecosystem (GYE) includes Yellowstone National Park, Grand Teton National park, and portions of surrounding national forests and private lands (Patten, 1991; and Romme and Turner, 1991), the headwaters to three major continental- scale watersheds (Marston and Anderson, 1991), as includes three states (Idaho, Montana, and Wyoming). Elevated levels of CO2 are expected to increase temperatures within the GYE, however there is uncertainty as to how climate change will alter precipitation across the region (Cushman et al., 1988; Romme and Turner, 1991). An estimated 184 butterfly species occur in Montana and 197 in Wyoming (Robbins and Opler, 1997). Utilizing weather station data from the northern and southern regions of the GYE we can see that over the past twenty years weather patterns for precipitation (Figure 1) and temperature (Figure 2) 2 are regionally different and variable. How these regional differences will affect the GYE butterfly community is uncertain. However a good understanding of these communities will help to establish a basis for future studies investigating climate change. Butterflies are closely associated with the plant community. Most adult butterflies require nectar resources from flowering forbs. The synchrony between flower and adult butterflies phenology can be very narrow (Calabrese et al., in press) and may become a problem with increased rates of climate change as date of first emergence becomes early over time (Inouye et al., 2000). Phytophagous insects, like butterflies, are thought to have coevolved with their larval host plants (Wahlberg, 2001) and are tied to specific species or groups of host plants. Many butterfly species are very nectar and host plant specific, while others are considered nectar opportunistic and can utilize a range of closely related plant species for host plants (Scott, 1986; Grundel et al., 2000; Baz, 2002; Dennis et al., 2004; and Hardy et al., 2007). Whether the butterflies are generalists or specialists, plants are an important resource defining aspects of habitat quality and influence the distribution of butterflies across the landscape (Tudar et al., 2004; and Dennis et al., 2006; Menendez et al., 2007). My research examined the temporal patterns of montane meadow butterfly communities within two regions of the GYE in relation to meadow moisture availability and quantity of floral and larval host plant resources. Ninety species of butterflies have been observed during this work within the GYE montane meadow system since 1997. This research contributes to the knowledge of butterfly community patterns and resource requirements. This work identifies species of conservation concern relative to potential future landscape changes and provides a long-term perspective on butterfly community associations in a relatively pristine system with minimal anthropogenic disturbance (Patten, 1991). Thesis Organization This thesis presents results from a ten-year study within the GYE assembled into four chapters. This chapter presents a general introduction of the different aspects of my thesis research as well as goals and importance of this work. Chapter Two describes the butterfly associations with meadow type based on a naturally occurring moisture gradient. I also 3 identify specific species of butterflies that are indicators for different meadow habitats that can be used to monitor meadow quality or as an umbrella species for conservation purposes. Chapter Three evaluates the relationship between flowering plant richness and abundance as a driver for butterfly abundance in meadow patches. Chapter Four is a summary of conclusions for my thesis research. There are four appendixes included at the end of the thesis. The first appendix, Appendix A, contains a table of all the study sites and their locations given in UTM (Universal Transverse Mercator) coordinates with descriptive directions for finding each site. It also contains maps for each study region with the location of each site. Appendix B contains a list of butterfly species surveyed since 1997 by region and each species total abundance averaged over all surveyes for each region. Appendix C contains code written in R for Chapter Two and Chapter Three statistical analyses. Appendix D contains butterfly larval host plant information, including a list of host plants for each butterfly identified and a figure graphing raw data for host plant percent cover. Appendix E includes a table for each region presenting raw data on butterfly abundance averaged by meadow type for each year the region was surveyed. Jennet C. Caruthers is a graduate student in the interdepartmental program, Ecology and Evolutionary Biology and conducted two years of data collection, as well as data analysis and written preparation of this manuscript. Dr. Diane Debinski, along with a number of other collaborators, organized this project in 1997 and has been involved in data collection each year except for 2001. Dr. Debinski kept funding for this research available for its continuation and provided invaluable guidance and editorial advice over the course of this project. Support for the statistical program R: a language and environment for statistical computing (R Development Core Team, 2007) was provided by Hadley Wickham, Diane Cook, and Phillip Dixon. 4 References Baz, A., 2002. Nectar plant sources for the threatened Apollo butterfly (Parnassius Apollo L. 1758) in populations of central
Recommended publications
  • ANTC Environmental Assessment
    U.S. Department of the Interior Bureau of Land Management Environmental Assessment DOI-BLM-NV-B010-2013-0024-EA Telecommunication Facilities at Kingston, Dyer, and Hickison Summit July 2013 Applicant: Arizona Nevada Tower Corporation 6220 McLeod Drive Ste. 100 Las Vegas, Nevada 89120 Battle Mountain District Bureau of Land Management 50 Bastian Road Battle Mountain, Nevada 89820 Table of Contents Page Chapter 1 Introduction 1 1.1 Introduction 1 1.2 Background 1 1.3 Identifying Information 2 1.4 Location of Proposed Action 2 1.5 Preparing Office 2 1.6 Case File Numbers 2 1.7 Applicant 2 1.8 Proposed Action Summary 3 1.9 Conformance 3 1.10 Purpose & Need 3 1.11 Scoping, Public Involvement & Issues 4 Chapter 2 Proposed Action & Alternatives 11 2.1 Proposed Action 11 2.1.1 Best Management Practices 13 2.2 No Action Alternative 13 2.3 Alternatives Considered but Eliminated from Detailed Analysis 14 Chapter 3 Affected Environment & Environmental Consequences 15 3.1 Project Site Descriptions 15 3.2 Issues 16 3.2.1 Air Quality 18 3.2.1.1 Affected Environment 18 3.2.1.2 Environmental Consequences 18 3.2.2 Cultural/Historical Resources 18 3.2.2.1 Affected Environment 18 3.2.2.2 Environmental Consequences 18 3.2.3 Noxious Weeds/Invasive Non-native Plants 19 3.2.3.1 Affected Environment 19 3.2.3.2 Environmental Consequences 20 3.2.4 Native American Religious Concerns 20 3.2.4.1 Affected Environment 20 3.2.4.2 Environmental Consequences 20 3.2.5 Migratory Birds 21 3.2.5.1 Affected Environment 21 3.2.5.2 Environmental Consequences 22 3.2.6 Solid/Hazardous
    [Show full text]
  • Butterflies and Moths of Ada County, Idaho, United States
    Heliothis ononis Flax Bollworm Moth Coptotriche aenea Blackberry Leafminer Argyresthia canadensis Apyrrothrix araxes Dull Firetip Phocides pigmalion Mangrove Skipper Phocides belus Belus Skipper Phocides palemon Guava Skipper Phocides urania Urania skipper Proteides mercurius Mercurial Skipper Epargyreus zestos Zestos Skipper Epargyreus clarus Silver-spotted Skipper Epargyreus spanna Hispaniolan Silverdrop Epargyreus exadeus Broken Silverdrop Polygonus leo Hammock Skipper Polygonus savigny Manuel's Skipper Chioides albofasciatus White-striped Longtail Chioides zilpa Zilpa Longtail Chioides ixion Hispaniolan Longtail Aguna asander Gold-spotted Aguna Aguna claxon Emerald Aguna Aguna metophis Tailed Aguna Typhedanus undulatus Mottled Longtail Typhedanus ampyx Gold-tufted Skipper Polythrix octomaculata Eight-spotted Longtail Polythrix mexicanus Mexican Longtail Polythrix asine Asine Longtail Polythrix caunus (Herrich-Schäffer, 1869) Zestusa dorus Short-tailed Skipper Codatractus carlos Carlos' Mottled-Skipper Codatractus alcaeus White-crescent Longtail Codatractus yucatanus Yucatan Mottled-Skipper Codatractus arizonensis Arizona Skipper Codatractus valeriana Valeriana Skipper Urbanus proteus Long-tailed Skipper Urbanus viterboana Bluish Longtail Urbanus belli Double-striped Longtail Urbanus pronus Pronus Longtail Urbanus esmeraldus Esmeralda Longtail Urbanus evona Turquoise Longtail Urbanus dorantes Dorantes Longtail Urbanus teleus Teleus Longtail Urbanus tanna Tanna Longtail Urbanus simplicius Plain Longtail Urbanus procne Brown Longtail
    [Show full text]
  • Révision Taxinomique Et Nomenclaturale Des Rhopalocera Et Des Zygaenidae De France Métropolitaine
    Direction de la Recherche, de l’Expertise et de la Valorisation Direction Déléguée au Développement Durable, à la Conservation de la Nature et à l’Expertise Service du Patrimoine Naturel Dupont P, Luquet G. Chr., Demerges D., Drouet E. Révision taxinomique et nomenclaturale des Rhopalocera et des Zygaenidae de France métropolitaine. Conséquences sur l’acquisition et la gestion des données d’inventaire. Rapport SPN 2013 - 19 (Septembre 2013) Dupont (Pascal), Demerges (David), Drouet (Eric) et Luquet (Gérard Chr.). 2013. Révision systématique, taxinomique et nomenclaturale des Rhopalocera et des Zygaenidae de France métropolitaine. Conséquences sur l’acquisition et la gestion des données d’inventaire. Rapport MMNHN-SPN 2013 - 19, 201 p. Résumé : Les études de phylogénie moléculaire sur les Lépidoptères Rhopalocères et Zygènes sont de plus en plus nombreuses ces dernières années modifiant la systématique et la taxinomie de ces deux groupes. Une mise à jour complète est réalisée dans ce travail. Un cadre décisionnel a été élaboré pour les niveaux spécifiques et infra-spécifique avec une approche intégrative de la taxinomie. Ce cadre intégre notamment un aspect biogéographique en tenant compte des zones-refuges potentielles pour les espèces au cours du dernier maximum glaciaire. Cette démarche permet d’avoir une approche homogène pour le classement des taxa aux niveaux spécifiques et infra-spécifiques. Les conséquences pour l’acquisition des données dans le cadre d’un inventaire national sont développées. Summary : Studies on molecular phylogenies of Butterflies and Burnets have been increasingly frequent in the recent years, changing the systematics and taxonomy of these two groups. A full update has been performed in this work.
    [Show full text]
  • Orange Sulphur, Colias Eurytheme, on Boneset
    Orange Sulphur, Colias eurytheme, on Boneset, Eupatorium perfoliatum, In OMC flitrh Insect Survey of Waukegan Dunes, Summer 2002 Including Butterflies, Dragonflies & Beetles Prepared for the Waukegan Harbor Citizens' Advisory Group Jean B . Schreiber (Susie), Chair Principal Investigator : John A. Wagner, Ph . D . Associate, Department of Zoology - Insects Field Museum of Natural History 1400 South Lake Shore Drive Chicago, Illinois 60605 Telephone (708) 485 7358 home (312) 665 7016 museum Email jwdw440(q-), m indsprinq .co m > home wagner@,fmnh .orq> museum Abstract: From May 10, 2002 through September 13, 2002, eight field trips were made to the Harbor at Waukegan, Illinois to survey the beach - dunes and swales for Odonata [dragonfly], Lepidoptera [butterfly] and Coleoptera [beetles] faunas between Midwest Generation Plant on the North and the Outboard Marine Corporation ditch at the South . Eight species of Dragonflies, fourteen species of Butterflies, and eighteen species of beetles are identified . No threatened or endangered species were found in this survey during twenty-four hours of field observations . The area is undoubtedly home to many more species than those listed in this report. Of note, the endangered Karner Blue butterfly, Lycaeides melissa samuelis Nabakov was not seen even though it has been reported from Illinois Beach State Park, Lake County . The larval food plant, Lupinus perennis, for the blue was not observed at Waukegan. The limestone seeps habitat of the endangered Hines Emerald dragonfly, Somatochlora hineana, is not part of the ecology here . One surprise is the. breeding population of Buckeye butterflies, Junonia coenid (Hubner) which may be feeding on Purple Loosestrife . The specimens collected in this study are deposited in the insect collection at the Field Museum .
    [Show full text]
  • List of Animal Species with Ranks October 2017
    Washington Natural Heritage Program List of Animal Species with Ranks October 2017 The following list of animals known from Washington is complete for resident and transient vertebrates and several groups of invertebrates, including odonates, branchipods, tiger beetles, butterflies, gastropods, freshwater bivalves and bumble bees. Some species from other groups are included, especially where there are conservation concerns. Among these are the Palouse giant earthworm, a few moths and some of our mayflies and grasshoppers. Currently 857 vertebrate and 1,100 invertebrate taxa are included. Conservation status, in the form of range-wide, national and state ranks are assigned to each taxon. Information on species range and distribution, number of individuals, population trends and threats is collected into a ranking form, analyzed, and used to assign ranks. Ranks are updated periodically, as new information is collected. We welcome new information for any species on our list. Common Name Scientific Name Class Global Rank State Rank State Status Federal Status Northwestern Salamander Ambystoma gracile Amphibia G5 S5 Long-toed Salamander Ambystoma macrodactylum Amphibia G5 S5 Tiger Salamander Ambystoma tigrinum Amphibia G5 S3 Ensatina Ensatina eschscholtzii Amphibia G5 S5 Dunn's Salamander Plethodon dunni Amphibia G4 S3 C Larch Mountain Salamander Plethodon larselli Amphibia G3 S3 S Van Dyke's Salamander Plethodon vandykei Amphibia G3 S3 C Western Red-backed Salamander Plethodon vehiculum Amphibia G5 S5 Rough-skinned Newt Taricha granulosa
    [Show full text]
  • A Reconnaissance of Population Genetic Variation in Arctic and Subarctic Sulfur Butterflies (Colias Spp.; Lepidoptera, Pieridae)
    1614 A reconnaissance of population genetic variation in arctic and subarctic sulfur butterflies (Colias spp.; Lepidoptera, Pieridae) Christopher W. Wheat, Ward B. Watt, and Christian L. Boutwell Abstract: Genotype–phenotype–environment interactions in temperate-zone species of Colias Fabricius, 1807 have been well studied in evolutionary terms. Arctic and alpine habitats present a different range of ecological, especially thermal, conditions under which such work could be extended across species and higher clades. To this end, we survey variation in three genes that code for phosphoglucose isomerase (PGI), phosphoglucomutase (PGM), and glucose-6-phosphate dehydrogenase (G6PD) in seven arctic and alpine Colias taxa (one only for G6PD). These genes are highly polymor- phic in all taxa studied. Patterns of variation for the PGI gene in these northern taxa suggest that the balancing selec- tion seen at this gene in temperate-zone taxa may extend throughout northern North America. Comparative study of these taxa may thus give insight into the mechanisms driving genetic differentiation among subspecies, species, and broader clades, supporting the study of both micro- and macro-evolutionary questions. Résumé : L’étude des interactions génotype–phénotype–environnement chez les papillons Colias Fabricius, 1807 de la région tempérée s’est faite dans une perspective évolutive. Les habitats arctiques et alpins offrent une gamme différente de conditions écologiques et, en particulier, thermiques dans lesquelles un tel travail peut s’étendre au niveau des espè- ces et des clades supérieurs. Dans ce but, nous avons étudié la variation de trois gènes — ceux de la phosphoglucose isomérase (PGI), de la phosphoglucomutase (PGM) et de la glucose-6-phosphate déshydrogénase (G6PD) — chez sept taxons de Colias arctiques et alpins (un seul taxon pour G6PD).
    [Show full text]
  • Philmont Butterflies
    PHILMONT AREA BUTTERFLIES Mexican Yellow (Eurema mexicana) Melissa Blue (Lycaeides melissa) Sleepy Orange (Eurema nicippe) Greenish Blue (Plebejus saepiolus) PAPILIONIDAE – Swallowtails Dainty Sulfur (Nathalis iole) Boisduval’s Blue (Icaricia icarioides) Subfamily Parnassiinae – Parnassians Lupine Blue (Icaricia lupini) Rocky Mountain Parnassian (Parnassius LYCAENIDAE – Gossamer-wings smintheus) Subfamily Lycaeninae – Coppers RIODINIDAE – Metalmarks Tailed Copper (Lycaena arota) Mormon Metalmark (Apodemia morma) Subfamily Papilioninae – Swallowtails American Copper (Lycaena phlaeas) Nais Metalmark (Apodemia nais) Black Swallowtail (Papilio polyxenes) Lustrous Copper (Lycaena cupreus) Old World Swallowtail (Papilio machaon) Bronze Copper (Lycaena hyllus) NYMPHALIDAE – Brush-footed Butterflies Anise Swallowtail (Papilio zelicaon) Ruddy Copper (Lycaena rubidus) Subfamily Libytheinae – Snout Butterflies Western Tiger Swallowtail (Papilio rutulus) Blue Copper (Lycaena heteronea) American Snout (Libytheana carinenta) Pale Swallowtail (Papilio eurymedon) Purplish Copper (Lycaena helloides) Two-tailed Swallowtail (Papilio multicaudatus) Subfamily Heliconiinae – Long-wings Subfamily Theclinae – Hairstreaks Gulf Fritillary (Agraulis vanillae) PIERIDAE – Whites & Sulfurs Colorado Hairstreak (Hypaurotis crysalus) Subfamily Pierinae – Whites Great Purple Hairstreak (Atlides halesus) Subfamily Argynninae – Fritillaries Pine White (Neophasia menapia) Southern Hairstreak (Fixsenia favonius) Variegated Fritillary (Euptoieta claudia) Becker’s White (Pontia
    [Show full text]
  • Taxonomy, Distribution and Biology of the Genus Cercyonis (Satyridae)
    1969 Journal of the Lepidopterists' Society 165 TAXONOMY, DISTRIBUTION AND BIOLOGY OF THE GENUS CERCYONIS (SATYRIDAE). 1. CHARACTERISTICS OF THE GENUS THOMAS C. EMMEL Department of Zoology, The University of Florida, Gainesville Evolution of butterflies in the satyrid genus Cercyonis has produced a complex of species groups and variable populations in North America that has not been reviewed thoroughly since the last century. The pur­ pose of this paper and others to follow in the series is to provide a critical, modern synthesis of taxonomic, distributional and biological information on all species and subspecies within the genus, based on extensive studies by the author from 1960 to the present. In future papers, each species group will be treated intensively, with plates of both sexes of adults of all subspecies, larvae, pupae, figures of eggs, genitalia, androconia, antennae and other important morphological characters, and chromosomes. Genetic data and hyblidization crosses will also be summarized in the present series from mateIial to be pub­ lished in full elsewhere. TAXONOMY The Nearctic genus Cercyonis has had over thirty specific, subspecif'ic, or varietal names applied to it, and no taxonomic revision has been at­ tempted since the 1880s (Edwards, 1880). On the basis of extensive field work, examination of over 5,000 adult C ercyonis specimens, rearing of many of the named forms, and studies of external and internal morphology of all these forms, the following new taxonomic treatment is proposed.l 1. Cercyonis sthenele (Boisduval, 1852) a. sthenele sthenele (Boisduval, 1852) b. sthenele silvestris (Edwards, 1861) c. sthenele paulus (Edwards, 1879) behrii (Grinnell, 19(5) d.
    [Show full text]
  • CRP-SAFE for Karner Blue Butterflies Recommendations for Wisconsin Landowners and Conservationists
    CRP-SAFE for Karner Blue Butterflies Recommendations for Wisconsin Landowners and Conservationists August 2013 The Xerces Society for Invertebrate Conservation www.xerces.org Acknowledgements We thank Scott Swengel, Scott Hoffman Black, Jane Anklam, Andrew Bourget and John Sippl for helpful comments on earlier versions of this document, and additional USDA FSA and NRCS Altoona Service Center staff, UW-Eau Claire Office of Research and Sponsored Projects and undergraduate researchers for their collaboration and support. We also thank Karner blue CRP- SAFE participants for their participation in the conservation program. Authors Dr. Paula Kleintjes Neff University of Wisconsin – Eau Claire Department of Biology Eric Mader Assistant Pollinator Program Director The Xerces Society for Invertebrate Conservation Editing and layout Kaitlyn Rich, Matthew Shepherd, Hailey Walls, Ashley Minnerath. Photo credits Thank you to the photographers who generously allowed use of their images. Copyright of all photographs remains with the photographers. Cover main: Karner blue butterfly. William Bouton. Cover bottom left: Lupine field. Eric Mader, The Xerces Society. Cover bottom right: CRP-SAFE field. Paula Kleintjes Neff. Copyright © 2013 The Xerces Society for Invertebrate Conservation 628 NE Broadway Suite 200, Portland, OR 97232 855-232-6639 www.xerces.org The Xerces Society is a nonprofit organization that protects wildlife through the conservation of invertebrates and their habitat. Established in 1971, the Society is at the forefront of invertebrate protection worldwide. The Xerces Society is an equal opportunity employer. 2 Date Last Modified: August 30, 2013 CRP-SAFE for Karner Blue Butterflies Recommendations for Wisconsin Landowners and Conservationists Introduction Nearly 2,000 acres of habitat for the federally endangered Karner blue butterfly Lycaeides( melisssa samuelis) have been established in western Wisconsin through the CRP-SAFE program since 2008.
    [Show full text]
  • Plant Inventory at Missouri National Recreational River
    Inventory of Butterflies at Fort Union Trading Post and Knife River Indian Villages National Historic Sites in 2004 --<o>-- Final Report Submitted by: Ronald Alan Royer, Ph.D. Burlington, North Dakota 58722 Submitted to: Northern Great Plains Inventory & Monitoring Coordinator National Park Service Mount Rushmore National Memorial Keystone, South Dakota 57751 October 1, 2004 Executive Summary This document reports inventory of butterflies at Knife River Indian Villages National Historic Site (NHS) and Fort Union Trading Post NHS, both administered by the National Park Service in the state of North Dakota. Field work consisted of strategically timed visits throughout Summer 2004. The inventory employed “checklist” counting based on the author's experience with habitat for the various species expected from each site. This report is written in two separate parts, one for each site. Each part contains an annotated species list for that site. For possible later GIS use, noteworthy species encounters are reported by UTM coordinates, all of which are provided conveniently in a table within the report narrative for each site. An annotated listing is also included for each species at each site. Each of these provides a brief description of typical habitat, principal larval host(s), and information on adult phenology. This information is followed by abbreviated citations for published works in which more detailed information may be located. Recommendations are then made for each site on the basis of endemism, prairie butterfly conservation and
    [Show full text]
  • MOTHS and BUTTERFLIES LEPIDOPTERA DISTRIBUTION DATA SOURCES (LEPIDOPTERA) * Detailed Distributional Information Has Been J.D
    MOTHS AND BUTTERFLIES LEPIDOPTERA DISTRIBUTION DATA SOURCES (LEPIDOPTERA) * Detailed distributional information has been J.D. Lafontaine published for only a few groups of Lepidoptera in western Biological Resources Program, Agriculture and Agri-food Canada. Scott (1986) gives good distribution maps for Canada butterflies in North America but these are generalized shade Central Experimental Farm Ottawa, Ontario K1A 0C6 maps that give no detail within the Montane Cordillera Ecozone. A series of memoirs on the Inchworms (family and Geometridae) of Canada by McGuffin (1967, 1972, 1977, 1981, 1987) and Bolte (1990) cover about 3/4 of the Canadian J.T. Troubridge fauna and include dot maps for most species. A long term project on the “Forest Lepidoptera of Canada” resulted in a Pacific Agri-Food Research Centre (Agassiz) four volume series on Lepidoptera that feed on trees in Agriculture and Agri-Food Canada Canada and these also give dot maps for most species Box 1000, Agassiz, B.C. V0M 1A0 (McGugan, 1958; Prentice, 1962, 1963, 1965). Dot maps for three groups of Cutworm Moths (Family Noctuidae): the subfamily Plusiinae (Lafontaine and Poole, 1991), the subfamilies Cuculliinae and Psaphidinae (Poole, 1995), and ABSTRACT the tribe Noctuini (subfamily Noctuinae) (Lafontaine, 1998) have also been published. Most fascicles in The Moths of The Montane Cordillera Ecozone of British Columbia America North of Mexico series (e.g. Ferguson, 1971-72, and southwestern Alberta supports a diverse fauna with over 1978; Franclemont, 1973; Hodges, 1971, 1986; Lafontaine, 2,000 species of butterflies and moths (Order Lepidoptera) 1987; Munroe, 1972-74, 1976; Neunzig, 1986, 1990, 1997) recorded to date.
    [Show full text]
  • CA Checklist of Butterflies of Tulare County
    Checklist of Buerflies of Tulare County hp://www.natureali.org/Tularebuerflychecklist.htm Tulare County Buerfly Checklist Compiled by Ken Davenport & designed by Alison Sheehey Swallowtails (Family Papilionidae) Parnassians (Subfamily Parnassiinae) A series of simple checklists Clodius Parnassian Parnassius clodius for use in the field Sierra Nevada Parnassian Parnassius behrii Kern Amphibian Checklist Kern Bird Checklist Swallowtails (Subfamily Papilioninae) Kern Butterfly Checklist Pipevine Swallowtail Battus philenor Tulare Butterfly Checklist Black Swallowtail Papilio polyxenes Kern Dragonfly Checklist Checklist of Exotic Animals Anise Swallowtail Papilio zelicaon (incl. nitra) introduced to Kern County Indra Swallowtail Papilio indra Kern Fish Checklist Giant Swallowtail Papilio cresphontes Kern Mammal Checklist Kern Reptile Checklist Western Tiger Swallowtail Papilio rutulus Checklist of Sensitive Species Two-tailed Swallowtail Papilio multicaudata found in Kern County Pale Swallowtail Papilio eurymedon Whites and Sulphurs (Family Pieridae) Wildflowers Whites (Subfamily Pierinae) Hodgepodge of Insect Pine White Neophasia menapia Photos Nature Ali Wild Wanderings Becker's White Pontia beckerii Spring White Pontia sisymbrii Checkered White Pontia protodice Western White Pontia occidentalis The Butterfly Digest by Cabbage White Pieris rapae Bruce Webb - A digest of butterfly discussion around Large Marble Euchloe ausonides the nation. Frontispiece: 1 of 6 12/26/10 9:26 PM Checklist of Buerflies of Tulare County hp://www.natureali.org/Tularebuerflychecklist.htm
    [Show full text]