APPENDIX a Biological Diversity Baseline Report for the Del Dios

Total Page:16

File Type:pdf, Size:1020Kb

APPENDIX a Biological Diversity Baseline Report for the Del Dios Draft Del Dios Highlands Preserve RMP May 2009 Technical Appendices APPENDIX A Biological Diversity Baseline Report for the Del Dios Highlands Preserve County of San Diego Biological Diversity Baseline Report for the Del Dios Highlands Preserve County of San Diego Prepared for: Department of Parks and Recreation County of San Diego 9150 Chesapeake Dr., Suite 200 San Diego, CA 92123 Contact: Jennifer Haines Prepared by: Technology Associates 9089 Clairemont Mesa Blvd., Suite 200 San Diego, CA 92123 Contact: Christina Schaefer November 4, 2008 Table of Contents 1.0 INTRODUCTION .....................................................................................................1 1.1 Purpose of the Report...................................................................................................... 1 1.2 Project Location.............................................................................................................. 1 1.3 Project Description.......................................................................................................... 1 2.0 STUDY AREA......................................................................................................... 9 2.1 Geography & Topography .............................................................................................. 9 2.2 Geology and Soils...........................................................................................................9 2.3 Climate.......................................................................................................................... 14 2.4 Fire Cycles .................................................................................................................... 15 2.5 Hydrology ..................................................................................................................... 19 3.0 METHODS .............................................................................................................19 3.1 Background Literature Review..................................................................................... 19 3.2 Biological Field Surveys............................................................................................... 19 3.2.1 Vegetation Communities Mapping............................................................................ 20 3.2.2 Floristic Surveys ........................................................................................................ 21 3.2.3 Lepidoptera Surveys .................................................................................................. 22 3.2.4 Herpetofauna Surveys................................................................................................ 22 3.2.4.1 Terrestrial Herpetofauna Surveys........................................................................ 22 3.2.5 Avian Surveys............................................................................................................ 23 3.2.5.1 Diurnal Point Count Surveys............................................................................... 23 3.2.5.2 Nocturnal Surveys............................................................................................... 27 3.2.6 Mammal Surveys ....................................................................................................... 31 3.2.6.1Bats........................................................................................................................ 31 3.2.6.2 Small Mammals................................................................................................... 35 3.2.6.3 Medium and Large Mammals ............................................................................. 39 4.0 RESULTS AND DISCUSSION..............................................................................45 4.1 Vegetation Communities............................................................................................... 45 4.1.1 Southern Mixed Chaparral (37120) ........................................................................... 49 4.1.2 Diegan Coastal Sage Scrub (32500) .......................................................................... 50 4.1.3 Southern Coast Live Oak Riparian Forest (61310).................................................... 50 4.1.4 Southern Willow Scrub (63320) ................................................................................ 50 4.1.5 Eucalyptus Woodland (11100).................................................................................. 51 4.1.6 Disturbed Habitat (11300) ......................................................................................... 51 4.1.7 Urban/Developed (12000)......................................................................................... 52 4.2 Flora .............................................................................................................................. 52 4.2.1 Sensitive Plant Species .............................................................................................. 52 4.2.1.1 Observed Sensitive Plant Species........................................................................ 53 4.2.1.2 Potentially Occurring Sensitive Plants: Previously Documented........................ 60 4.2.1.3 Potentially Occurring Sensitive Plants: Based on Habitat and Distribution ....... 63 4.3 Fauna............................................................................................................................. 64 4.3.1 Lepidoptera ................................................................................................................ 65 4.3.1.1 Observed Lepidoptera......................................................................................... 65 4.3.1.2 Potentially Occurring Lepidoptera: Previously Documented.............................. 66 4.3.2 Terrestrial Herpetofauna............................................................................................ 66 4.3.2.1 Observed Herpetofauna....................................................................................... 66 4.3.2.2 Potentially Occurring Herpetofauna: Based on Habitat and Distribution ........... 70 Baseline Biodiversity Survey Report November 2008 Del Dios Highlands Preserve i Technology Associates 4.3.3 Avifauna..................................................................................................................... 70 4.3.3.1 Observed Avifauna.............................................................................................. 70 4.3.3.2 Potentially Occurring Avifauna: Previously Documented .................................. 73 4.3.4 Bats ............................................................................................................................ 73 4.3.5 Small Mammals......................................................................................................... 74 4.3.5.1 Observed Small Mammals .................................................................................. 74 4.3.5.2 Potentially Occurring Small Mammals: Based on Habitat and Distribution....... 79 4.3.6 Medium and Large Mammals.................................................................................... 79 4.3.6.1 Observed Medium and Large Mammals ............................................................. 79 4.3.6.2 Potentially Occurring Medium and Large Mammals: Based on Habitat and Distribution.......................................................................................................... 80 4.3.7 Sensitive Wildlife Species ......................................................................................... 81 4.3.7.1 Observed Sensitive Wildlife Species................................................................... 81 4.3.7.2 Potentially Occurring Sensitive Wildlife: Previously Documented.................. 106 4.3.7.3 Potentially Occurring Sensitive Wildlife: Based on Habitat and Distribution.. 107 4.4 Habitat Connectivity and Wildlife Corridors.............................................................. 111 5.0 CONCLUSIONS AND MANAGEMENT RECOMMENDATIONS ......................112 5.1 Vegetation Communities............................................................................................. 112 5.2 Flora ............................................................................................................................ 113 5.3 Lepidoptera ................................................................................................................. 113 5.4 Herpetofauna............................................................................................................... 114 5.5 Avifauna...................................................................................................................... 115 5.6 Mammals..................................................................................................................... 116 5.6.1 Bats .......................................................................................................................... 116 5.6.2 Small Mammals....................................................................................................... 117 5.6.3 Medium and Large Mammals.................................................................................. 117 5.7 Wildlife Corridors....................................................................................................... 118 5.8 Additional Management Recommendations ............................................................... 118 5.8.1 Fire ..........................................................................................................................
Recommended publications
  • Major Lineages Within Apiaceae Subfamily Apioideae: a Comparison of Chloroplast Restriction Site and Dna Sequence Data1
    American Journal of Botany 86(7): 1014±1026. 1999. MAJOR LINEAGES WITHIN APIACEAE SUBFAMILY APIOIDEAE: A COMPARISON OF CHLOROPLAST RESTRICTION SITE AND DNA SEQUENCE DATA1 GREGORY M. PLUNKETT2 AND STEPHEN R. DOWNIE Department of Plant Biology, University of Illinois, Urbana, Illinois 61801 Traditional sources of taxonomic characters in the large and taxonomically complex subfamily Apioideae (Apiaceae) have been confounding and no classi®cation system of the subfamily has been widely accepted. A restriction site analysis of the chloroplast genome from 78 representatives of Apioideae and related groups provided a data matrix of 990 variable characters (750 of which were potentially parsimony-informative). A comparison of these data to that of three recent DNA sequencing studies of Apioideae (based on ITS, rpoCl intron, and matK sequences) shows that the restriction site analysis provides 2.6± 3.6 times more variable characters for a comparable group of taxa. Moreover, levels of divergence appear to be well suited to studies at the subfamilial and tribal levels of Apiaceae. Cladistic and phenetic analyses of the restriction site data yielded trees that are visually congruent to those derived from the other recent molecular studies. On the basis of these comparisons, six lineages and one paraphyletic grade are provisionally recognized as informal groups. These groups can serve as the starting point for future, more intensive studies of the subfamily. Key words: Apiaceae; Apioideae; chloroplast genome; restriction site analysis; Umbelliferae. Apioideae are the largest and best-known subfamily of tem, and biochemical characters exhibit similarly con- Apiaceae (5 Umbelliferae) and include many familiar ed- founding parallelisms (e.g., Bell, 1971; Harborne, 1971; ible plants (e.g., carrot, parsnips, parsley, celery, fennel, Nielsen, 1971).
    [Show full text]
  • Poaceae Pollen from Southern Brazil: Distinguishing Grasslands (Campos) from Forests by Analyzing a Diverse Range of Poaceae Species
    ORIGINAL RESEARCH published: 06 December 2016 doi: 10.3389/fpls.2016.01833 Poaceae Pollen from Southern Brazil: Distinguishing Grasslands (Campos) from Forests by Analyzing a Diverse Range of Poaceae Species Jefferson N. Radaeski 1, 2, Soraia G. Bauermann 2* and Antonio B. Pereira 1 1 Universidade Federal do Pampa, São Gabriel, Brazil, 2 Laboratório de Palinologia da Universidade Luterana do Brasil–ULBRA, Universidade Luterana do Brazil, Canoas, Brazil This aim of this study was to distinguish grasslands from forests in southern Brazil by analyzing Poaceae pollen grains. Through light microscopy analysis, we measured the size of the pollen grain, pore, and annulus from 68 species of Rio Grande do Sul. Measurements were recorded of 10 forest species and 58 grassland species, representing all tribes of the Poaceae in Rio Grande do Sul. We measured the polar, equatorial, pore, and annulus diameter. Results of statistical tests showed that arboreous forest species have larger pollen grain sizes than grassland and herbaceous forest species, and in particular there are strongly significant differences between arboreous and grassland species. Discriminant analysis identified three distinct groups representing Edited by: each vegetation type. Through the pollen measurements we established three pollen Encarni Montoya, types: larger grains (>46 µm), from the Bambuseae pollen type, medium-sized grains Institute of Earth Sciences Jaume < Almera (CSIC), Spain (46–22 µm), from herbaceous pollen type, and small grains ( 22 µm), from grassland Reviewed by: pollen type. The results of our compiled Poaceae pollen dataset may be applied to the José Tasso Felix Guimarães, fossil pollen of Quaternary sediments. Vale Institute of Technology, Brazil Lisa Schüler-Goldbach, Keywords: pollen morphology, grasses, pampa, South America, Atlantic forest, bamboo pollen Göttingen University, Germany *Correspondence: Jefferson N.
    [Show full text]
  • Plant List for Web Page
    Stanford Working Plant List 1/15/08 Common name Botanical name Family origin big-leaf maple Acer macrophyllum Aceraceae native box elder Acer negundo var. californicum Aceraceae native common water plantain Alisma plantago-aquatica Alismataceae native upright burhead Echinodorus berteroi Alismataceae native prostrate amaranth Amaranthus blitoides Amaranthaceae native California amaranth Amaranthus californicus Amaranthaceae native Powell's amaranth Amaranthus powellii Amaranthaceae native western poison oak Toxicodendron diversilobum Anacardiaceae native wood angelica Angelica tomentosa Apiaceae native wild celery Apiastrum angustifolium Apiaceae native cutleaf water parsnip Berula erecta Apiaceae native bowlesia Bowlesia incana Apiaceae native rattlesnake weed Daucus pusillus Apiaceae native Jepson's eryngo Eryngium aristulatum var. aristulatum Apiaceae native coyote thistle Eryngium vaseyi Apiaceae native cow parsnip Heracleum lanatum Apiaceae native floating marsh pennywort Hydrocotyle ranunculoides Apiaceae native caraway-leaved lomatium Lomatium caruifolium var. caruifolium Apiaceae native woolly-fruited lomatium Lomatium dasycarpum dasycarpum Apiaceae native large-fruited lomatium Lomatium macrocarpum Apiaceae native common lomatium Lomatium utriculatum Apiaceae native Pacific oenanthe Oenanthe sarmentosa Apiaceae native 1 Stanford Working Plant List 1/15/08 wood sweet cicely Osmorhiza berteroi Apiaceae native mountain sweet cicely Osmorhiza chilensis Apiaceae native Gairdner's yampah (List 4) Perideridia gairdneri gairdneri Apiaceae
    [Show full text]
  • Molekularbiologische Untersuchungen Zur Phylogenie Der Cheilanthoiden Farne (Pteridaceae–Cheilanthoideae) Des Südlichen Afrika
    Molekularbiologische Untersuchungen zur Phylogenie der cheilanthoiden Farne (Pteridaceae–Cheilanthoideae) des südlichen Afrika Wolf L. Eiserhardt Staatsexamensarbeit im Fach Biologie Universität Hamburg, Biozentrum Klein Flottbek und Botanischer Garten Hamburg, 2007 Molekularbiologische Untersuchungen zur Phylogenie der cheilanthoiden Farne (Pteridaceae–Cheilanthoideae) des südlichen Afrika Wolf L. Eiserhardt Staatsexamensarbeit im Fach Biologie Gutachter: Prof. Dr. Jens G. Rohwer Dr. Tassilo Feuerer Abgabetermin: 20.12.2007 55 Seiten, 15 Abbildungen, 5 Tabellen. Titelbild: Cheilanthes deltoidea, Zeichnung aus Burrows (1990:141). Inhalt Abkürzungen............................................................................................................... I Abbildungen............................................................................................................... II Tabellen..................................................................................................................... III 1 Einleitung................................................................................................................. 1 1.1 Cheilanthoide Farne........................................................................................... 1 1.2 Taxonomie und Phylogenie............................................................................... 3 1.3 Verbreitungsraum Südafrika.............................................................................. 9 1.4 Zielsetzung und Methodenwahl......................................................................
    [Show full text]
  • National List of Plant Species That Occur in Wetlands
    ;>\ ....--'. PB89-169940 BIOLOGICAL REPORT 88(26.9) MAY 1988 NATIONAL LIST OF PLANT SPECIES THAT OCCUR IN WETLANDS: . NORTHWEST (REGION 9) " h d W"ldl"f S· In Cooperation with the National and FIS an I I e ervlce Regional Interagency Review Panels U.S. Department of the Interior REPR~EDBY u.s. DEPARTMENTOF COMMERCE NATIONAL TECHNICAL ItEORMATJON SERVICE SPRINGFIELD. VA 22161 S02n-'Ol RE?ORT DOCUMENTATION 11. REPORT NO. PAG, iBioloqical Report 88(26.9) 4. TItle arld SUbtitle National List of Plant Species That Occur in Wetiands: Northwe~t (Region 9). 7. Autllor(s) Porter B. Reed, Jr. 9. Perfonnlnc O,..nl.etton H..... • nd _ .... National Ecology Research Center U.S. Fish and Wildlife Service 11. <:omncttC) or Gr.ntCG) No. Creekside One Bldg., 2627 Redwing Rd. Fort Collins, CO 80526-2899 CGl 12. SIlO....,.;n. O,..nlUtlon H_ .rld Acid.... 13. TYIMI of Repott & Period e-Nd Department of the Interior U.S. Fish and Wildlife Service Research and Development 14. Washington, DC 20240 The National list of Plant Species That Occur in Wetlands represents the combined efforts of many biologists over the last decade to define the wetland flora of the United States. The U.S. Fish and Wildlife Service initially developed the list in order to provide an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (FWS/OBS 79/31) to assist in the field identification of wetlands. Plant species that occur in wetlands, as used in the National List, are defined as species that have demonstrated an ability to achieve maturity and reproduce in an environment where all or portions of the soil within the root zone become, periodically or continuously, saturated or inundated during the growing season.
    [Show full text]
  • SAN DIEGO COUNTY NATIVE PLANTS in the 1830S
    SAN DIEGO COUNTY NATIVE PLANTS IN THE 1830s The Collections of Thomas Coulter, Thomas Nuttall, and H.M.S. Sulphur with George Barclay and Richard Hinds James Lightner San Diego Flora San Diego, California 2013 SAN DIEGO COUNTY NATIVE PLANTS IN THE 1830s Preface The Collections of Thomas Coulter, Thomas Nuttall, and Our knowledge of the natural environment of the San Diego region H.M.S. Sulphur with George Barclay and Richard Hinds in the first half of the 19th century is understandably vague. Referenc- es in historical sources are limited and anecdotal. As prosperity peaked Copyright © 2013 James Lightner around 1830, probably no more than 200 inhabitants in the region could read and write. At most one or two were trained in natural sciences or All rights reserved medicine. The best insights we have into the landscape come from nar- No part of this document may be reproduced or transmitted in any form ratives of travelers and the periodic reports of the missions’ lands. They without permission in writing from the publisher. provide some idea of the extent of agriculture and the general vegeta- tion covering surrounding land. ISBN: 978-0-9749981-4-5 The stories of the visits of United Kingdom naturalists who came in Library of Congress Control Number: 2013907489 the 1830s illuminate the subject. They were educated men who came to the territory intentionally to examine the flora. They took notes and col- Cover photograph: lected specimens as botanists do today. Reviewing their contributions Matilija Poppy (Romneya trichocalyx), Barrett Lake, San Diego County now, we can imagine what they saw as they discovered plants we know.
    [Show full text]
  • Specimen Records for North American Lepidoptera (Insecta) in the Oregon State Arthropod Collection. Lycaenidae Leach, 1815 and Riodinidae Grote, 1895
    Catalog: Oregon State Arthropod Collection 2019 Vol 3(2) Specimen records for North American Lepidoptera (Insecta) in the Oregon State Arthropod Collection. Lycaenidae Leach, 1815 and Riodinidae Grote, 1895 Jon H. Shepard Paul C. Hammond Christopher J. Marshall Oregon State Arthropod Collection, Department of Integrative Biology, Oregon State University, Corvallis OR 97331 Cite this work, including the attached dataset, as: Shepard, J. S, P. C. Hammond, C. J. Marshall. 2019. Specimen records for North American Lepidoptera (Insecta) in the Oregon State Arthropod Collection. Lycaenidae Leach, 1815 and Riodinidae Grote, 1895. Catalog: Oregon State Arthropod Collection 3(2). (beta version). http://dx.doi.org/10.5399/osu/cat_osac.3.2.4594 Introduction These records were generated using funds from the LepNet project (Seltmann) - a national effort to create digital records for North American Lepidoptera. The dataset published herein contains the label data for all North American specimens of Lycaenidae and Riodinidae residing at the Oregon State Arthropod Collection as of March 2019. A beta version of these data records will be made available on the OSAC server (http://osac.oregonstate.edu/IPT) at the time of this publication. The beta version will be replaced in the near future with an official release (version 1.0), which will be archived as a supplemental file to this paper. Methods Basic digitization protocols and metadata standards can be found in (Shepard et al. 2018). Identifications were confirmed by Jon Shepard and Paul Hammond prior to digitization. Nomenclature follows that of (Pelham 2008). Results The holdings in these two families are extensive. Combined, they make up 25,743 specimens (24,598 Lycanidae and 1145 Riodinidae).
    [Show full text]
  • Biological Resources Report
    Biological Resources Letter Report for the Rancho Sierra Property, APN 404-430-45 County of San Diego, California [County Project # PDS2015-TM-5601; Log No. PDS2015-ER-15-14-004] Prepared for: The County of San Diego Department of Planning and Development Services 5510 Overland Avenue San Diego, CA 92123 Project Proponent: Mr. Brad Bailey 10035 Prospect Avenue, Suite 101 Santee, CA 92071 (619)244-4979 Prepared By: Gretchen Cummings Cummings and Associates P.O. Box 1209 Ramona, CA 92065 (760)440-0349 Revised 28 December 2016 Revised 8 September 2015 Revised 1 May 2015 21 May 2014 Job Number 1698.21D SDC PDS RCVD 02-15-18 TM5601 Biological Resource Letter Report for the Rancho Sierra Property, APN 404-430-45 County of San Diego, California [County Project #PDS2015-TM-5601; Log No. PDS2015-ER-15-14-004] Prepared For: The County of San Diego Department of Planning and Development Services 5510 Overland Avenue San Diego, CA 92123 Project Proponents: Mr. Brad Bailey 10035 Prospect Ave, Suite 101 Santee, CA 92071 (619)244-4979 Prepared By: Gretchen Cummings Cummings and Associates P.O. Box 1209 Ramona, CA 92065 (760)440-0349 Revised 28 December 2016 Revised 8 September 2015 Revised 1 May 2015 21 May 2014 Job Number 1698.21D Table of Contents Summary. 3 1.0 Introduction, Project Description, Location and Setting. 3 2.0 Regional Context . 4 3.0 Habitats/Vegetation Communities . 4 4.0 Special Status Species. 6 5.0 Jurisdictional Wetlands and Waterways . 11 6.0 Other Unique Features/Resources. 11 7.0 Significance of Project Impacts and Proposed Mitigation .
    [Show full text]
  • Apiaceae) Based on Phylogenetic Analyses of Nuclear (ITS) and Plastid (Rps16 Intron) DNA Sequences
    South African Journal of Botany 2004, 70(3): 407–416 Copyright © NISC Pty Ltd Printed in South Africa — All rights reserved SOUTH AFRICAN JOURNAL OF BOTANY ISSN 0254–6299 A molecular systematic investigation of Cymopterus and its allies (Apiaceae) based on phylogenetic analyses of nuclear (ITS) and plastid (rps16 intron) DNA sequences F-J Sun and SR Downie* Department of Plant Biology, University of Illinois, Urbana 61801, United States of America * Corresponding author, email: [email protected] Received 5 September 2003, accepted in revised form 7 November 2003 Considerable controversy exists with regard to the maximum likelihood methods. For those trees exhibit- proper delimitation of Cymopterus (Apiaceae subfamily ing the greatest resolution, the results revealed that the Apioideae) and its relationship to the other perennial perennial, endemic apioid genera of North America endemic umbellifers of western North America. (north of Mexico) comprise a weakly supported mono- Previous molecular systematic studies using nuclear phyletic group, with Angelica constituting its sister line- (rDNA ITS) and, for subsets of taxa, plastid (rps16 intron age. Cymopterus is confirmed as highly polyphyletic. and trnF-trnL-trnT) DNA sequences have revealed that The rps16 intron yielded substantially fewer parsimony the genus Cymopterus is polyphyletic, with its species informative characters than those of the ITS region and inextricably linked with those of Aletes, Lomatium, when analysed, separately or in combination, with ITS Musineon, Oreoxis, Pseudocymopterus, Pteryxia, data, resulted in trees of poor resolution. Only one pre- Tauschia, and several other genera of the region. viously identified species group of Cymopterus is sup- Herein, in an effort to increase resolution of relation- ported as monophyletic; this group coincides with sec- ships, we procured rps16 intron sequence data from 74 tion Phellopterus, and is recognised by its showy, accessions of Cymopterus and its allies so that ITS and basally connate bractlets.
    [Show full text]
  • Summer 2003 - 61 President’S Message
    THE HARDY FERN FOUNDATION P.O. Box 166 Medina, WA 98039-0166 Web site: www.hardvferns.org The Hardy Fern Foundation was founded in 1989 to establish a comprehen¬ sive collection of the world’s hardy ferns for display, testing, evaluation, public education and introduction to the gardening and horticultural community. Many rare and unusual species, hybrids and varieties are being propagated from spores and tested in selected environments for their different degrees of hardiness and ornamental garden value. The primary fern display and test garden is located at, and in conjunction with, The Rhododendron Species Botanical Garden at the Weyerhaeuser Corpo¬ rate Headquarters, in Federal Way, Washington. Satellite fern gardens are at the Stephen Austin Arboretum, Nacogdoches, Texas, Birmingham Botanical Gardens, Birmingham, Alabama, California State University at Sacramento, Sacramento, California, Coastal Maine Botanical Garden, Boothbay, Maine, Dallas Arboretum, Dallas, Texas, Denver Botanic Gardens. Denver, Colorado, Georgeson Botanical Garden, University of Alaska, Fairbanks, Alaska, Harry P. Leu Garden, Orlando, Florida, Inniswood Metro Gardens, Columbus, Ohio, Lewis Ginter Botanical Garden, Richmond, Virginia, New York Botanical Garden, Bronx, New York, and Strybing Arboretum, San Francisco, California. The fern display gardens are at Bainbridge Island Library, Bainbridge Island, WA, Lakewold, Tacoma, Washington, Les Jardins de Metis, Quebec, Canada, University of Northern Colorado, Greeley, Colorado, and Whitehall Historic Home and Garden, Louisville, KY. Hardy Fern Foundation members participate in a spore exchange, receive a quarterly newsletter and have first access to ferns as they are ready for distribution. Cover Design by Willanna Bradner HARDY FERN FOUNDATION QUARTERLY THE HARDY FERN FOUNDATION QUARTERLY Volume 13 No.
    [Show full text]
  • Report on the Conservation Status of Tauschia Tenuissima in Idaho
    REPORT ON THE CONSERVATION STATUS OF TAUSCHIA TENUISSIMA IN IDAHO by Christine C. Lorain Natural Heritage Section Nongame/Endangered Wildlife Program Bureau of Wildlife March 1990 Idaho Department of Fish and Game 600 South Walnut, P.O. Box 25 Boise, Idaho 83707 Jerry M. Conley, Director Status Survey Report prepared for Idaho Department of parks and Recreation through Section 6 funding from U.S. Fish and Wildlife Service, Region 1 REPORT ON THE CONSERVATION STATUS OF TAUSCHIA TENUISSIMA IN IDAHO Taxon name: Tauschia tenuissima (Geyer ex Hook.) Math. & Const. Common name: Leiberg's tauschia Family: Apiaceae (Umbelliferae) States where taxon occurs: U.S.A.; Idaho and Washington Current Federal Status: Category 3c Recommended Federal Status: Category 3c Author of report: Christine C. Lorain Original date of report: 19 March 1990 Date of most recent revision: N/A Institution to Whom Further Information and Comments Should be Sent: Idaho Natural Heritage Program Idaho Depart. of Fish and Game 600 S. Walnut St. P.O. Box 25 Boise, Idaho 83707 i ABSTRACT Leiberg's tauschia (Tauschia tenuissima) is an inconspicuous, early spring perennial and a regional endemic to northern Idaho and possibly northeastern Washington. It is considered extirpated in Washington. In Idaho, Leiberg's tauschia occurs in meadows within Benewah, Latah, Shoshone, and Clearwater Counties. The majority of these populations are located in private meadows, often surrounded by National Forest. Five populations occurred on lands administered by the Clearwater National Forest. A status inventory for Leiberg's tauschia in Idaho, was conducted by the Idaho Department of Fish and Game's Natural Heritage Program during the spring of 1989.
    [Show full text]
  • Sample Report for Floristic Inventories
    A PRELIMINARY INVENTORY OF THE VASCULAR AND NON-VASCULAR FLORA OF THE ___________ RANCH, WHARTON COUNTY, TEXAS, USA Principal Investigators Dale A. Kruse Curator, S. M. Tracy Herbarium, Texas A&M University Austin R. Kelly Herbarium Assistant, S. M. Tracy Herbarium, Texas A&M University Undergraduate Student Participants ___________ Additional Contributor ___________ OVERVIEW The following is a report of the findings from a plant survey of the ___________ Ranch, 9919 ___________, Wharton County, Texas. Wharton County is almost entirely within the Gulf Prairies and Marshes Ecoregion, with the exception of a small portion in the extreme western part of the county, which is in the Post Oak Savannah Ecoregion. The following description of the region is adapted from Hatch, et al. (1990). The Gulf Prairies and Marshes Ecoregion, covering approximately 500,000 acres, are a narrow strip of lowlands adjacent to the Gulf coast and barrier islands, which extend from Mexico to Louisiana. The Gulf Prairies include the nearly flat plain extending 30 to 80 miles inland from the Gulf Marshes. The Gulf Marshes are a low, wet, marshy coastal area, commonly covered with saline water, and range from sea level to a few feet in elevation. The Gulf Prairies are nearly level and virtually un-dissected plains having slow surface drainage and elevations from sea level to 250 feet. Soils of the Gulf Marshes are dark, poorly drained sandy loams and clays, and light neutral sands, typically showing little textural change with depth. The loamy and clayey soils are commonly saline and sodic. Prairie soils are dark, neutral to slightly acid clay loams and clays in the northeastern parts.
    [Show full text]