Implementation of a Message Passing Interface Into a Cloud-Resolving Model for Massively Parallel Computing

Total Page:16

File Type:pdf, Size:1020Kb

Implementation of a Message Passing Interface Into a Cloud-Resolving Model for Massively Parallel Computing Implementation of a Message Passing Interface into a Cloud-Resolving Model for Massively Parallel Computing Hann-Ming Henry Juang’, Wei-Kuo Tao’, Xiping Zen$’3, Chung-Lin Shie23, Joanne Simpson2and Steve hg4, ’EnvironmentalModeling Center NCEP, NOR4 Washington, DC 2Laboratolyfor Atmospheres NASNGoddard Space Flight Center Greenbelt, MLI 20771, USA 3GoddardEarth Sciences and Technology Center University of Maryland, Baltimore County Baltimore, MD 4Science Systems and Applications Inc. Lanham, MD 20706 June 2,2004 Mon. Wea. Rev. 1 Corresponding author address: Dr. Ham-Ming Henry Juang, Environmental Modeling Center, NCEP, NOAA, W/NP5 Room 204,5200 Auth Road, Camp Springs, MD 20746 Abstract The capability for massively parallel programming (MPP) using a message passing interface (MPI) has been implemented into a three-dimensional version of the Goddard Cumulus Ensemble (GCE) model. The design for the MPP with MPI uses the concept of maintaining similar code structure between the whole domain as well as the portions after decomposition. Hence the model follows the same integration for single and multiple tasks (CPUs). Also, it provides for minimal changes to the on@ code, so it is easily modified andor managed by the model developers and users who have little knowledge of MPP. The entire model domain could be sliced into one- or two-dimensional decomposition with a halo regime, which is overlaid on partial domains. The halo regime requires that no data be fetched across tasks during the computational stage, but it must be updated before the next computational stage through data exchange via MPI. For reproducible purposes, transposing data among tasks is required for spectral transform (Fast Fourier Transform, FFT), which is used in the anelastic version of the model for solving the pressure equation. The performance of the MPI-implemented codes (i.e., the compressible and anelastic versions) was tested on three different computing platforms. The major results are: 1) both versions have speedups of about 99% up to 256 tasks but not for 512 tasks; 2) the anelastic version has better speedup and efficiency because it requires more computations than that of the compressible version; 3) equal or approximately-equal numbers of slices between the x- and y- 1 directions provide the fastest integration due to fewer data exchanges; and 4) one-dimensional slices in the x-direction result in the slowest integration due to the need for more memory relocation for computation. 1. Introduction Cloud-resolving models (CRMs), which are based the non-hydrostatic equations of motion, have been extensively applied to cloud-scale and mesoscale processes during the past four decades (see a brief review by Tao 2003). Table 1 lists the major foci and some (not all) of the key contributors to C& development over the past four decades. Because cloud-scale dynamics are treated explicitly, uncertainties stemming fiom convection that have to be parameterized in large-scale (hydrostatic) models are obviated, or at least mitigated, in CRMs. Also, CRMs solve the equations of motion with much higher spatial and temporal resolution and use more sophisticated and physically realistic parameterizations of cloud microphysical processes (although by no means perfect yet). CRMs also allow explicit interactions between clouds, radiation and surface processes. For this reason, the Global Energy and Water Cycle Experiment (GEWEX) formed the GEWEX Cloud System Study (GCSS), which chose CRMs as the primary approach to improve the representation of moist processes in large- scale models (GCSS Science Plan 1993; Randall et al. 2003). Global models will use a non- hydrostatic fi-amework with horizontal resolutions of 5-10 km one to two decades fkom now. In recent years, exponentially increasing computer power has extended CRM integrations from hours to months (i.e., Wu et al. 1998) and the number of computational grid points fi-om less than a thousand to close to ten million (Grabowski and Moncrieff 2001). 'I I Three-dimensional CRMs are now more prevalent. Much attention is being devoted to precipitating cloud systems where the crucial 1 km scales are resolved in horizontal domains as large as 10,000 km in two-dimensions and 1,000 x 1,000 km2 in three-dmensions. However, many CRMs need to be re-programmed (re-coded) in order to fully utilize the fast advancement of computing technology (i.e., massive parallel processors)'. In this paper, the design for massively parallel programming (MPP) with a message passing interface (MPI) that is implemented into a three-dimensional (3D) version of a CRM, the Goddard Cumulus Ensemble (GCE) model will be presented. The concept of MPI implementation, along with the method of domain decomposition and data-communication to avoid aforementioned risks, will be presented. In section 2, a brief description of the GCE model will be given. The MPI implementation will be described in section 3. The performance of the model with MPI, implementation regarding the model dynamics (anelastic and compressible), stability, speedup, efficiency, reproducibility and wall-clock comparisons among different decompositions, tasks and dimensions using three different computing platforms will be given in section 4. The summary and conclusion are given in section 5 with future model developments. 2. Goddard Cumulus Ensemble (GCE) model 2, I GCE model description and applications 1 IBM Blue Gene Lite supercomputer (estimated to be 5-10 times more powem than the Japanese Earth Simulator by IBM representatives) will be delivered in 12 months with 65,000 CPU nodes and as many as 1 The Goddard Cumulus Ensemble (GCE) model has been developed and improved at NASNGoddard Space Flight Center over the past two decades. The development and main features of the GCE model have been extensively published by Tao and Simpson (1993) and Tao et al. (2003a). Recent improvements and testing were presented in Ferrier (1994), Tao et al. (1996), Wang et al. (1996), Lynn et al. (1998), Baker et al. (2001) and Tao et al. (2003b). A Kessler-type two-category liquid water (cloud water and rain) microphysical formulation is mainly used with a choice of two three-class ice formulations (3ICE), namely that by Lin et al. (1983) and the Lin scheme modified to adopt slower graupel fall speeds as reported by Rutledge and Hobbs (1984). An improved four-class, multiple-moment ice scheme (4ICE) has also been developed (Ferrier 1994) and tested for several convective systems in different geographic locations (Ferrier et al. 1995). The 41CE scheme only requires minimal tuning compared to the 31CE schemes. Recently, two detailed spectral-bin microphysical schemes (Khain et al. 2000; Chen and Lamb 1999) were also implemented into the GCE model. The formulation for the explicit spectral-bin microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets and several types of ice particles. Each type is described by a special size distribution function containing many categories (i.e., 33 bins). Atmospheric aerosols are also described using number density size-distribution functions. Significant computation is required in applying this explicit spectral-bin microphysics to study cloud-aerosol interactions and nucleation scavenging of aerosols, as well as the impact of different concentrations and size distributions 655,361 CPU nodes with optimal parallel efficiency leaving a lot of room for future supercomputer 3 ?r P of aerosol particles upon cloud formation. These new microphysics, however, require the use of a multi-dimensional Positive Definite Advection Transport Algorithm (MPDATA, Smolarkiewicz and Grabowski 1990) to avoid ttdecouplingt'between mass and number concentration2. The positive definite advection scheme also produces more light precipitation, which is in better agreement with observations (Johnson et al. 2002; Lang et al. 2003). Solar and infrared radiative transfer processes (Chou and Suarez 1999; Chou et al. 1999) have been included, and their impact on cloud development as well as several hypotheses associated with cloud-radiation interaction have been assessed (Tao et al. 1996; Sui et al. 1998). A sophisticated seven-layer soiYvegetation land process model has also been implemented into the GCE model &ynn et al. 1998). Subgrid-scale (turbulent) processes in the WEmodel are parameterized using a scheme based on Klemp and Wilhelmson (1978) and Soong and Ogura (1980), and the effects of both dry and moist processes on the generation of subgrid-scale kinetic energy have been incorporated. Table 2 shows the major characteristics of the GCE model. The application of the WE model to the study of precipitation processes can be generalized into fourteen categories (see Table 2 in Tao 2003). They are: 1) the mechanisms associated with cloud-cloud interactions and mergers (Tao and Simpson 1984, 1989a), 2) Q 1 and 42 Budgets and their individual components in different geographic locations (Soong and development with microchips. 2 Decoupling means that a grid point has mass without number concentration or has number concentration without mass. The decoupling is caused by large phase errors associated with the spatially centered (second or fourth order) advection scheme. Tao 1980; Tao and Soong 1986), 3) statistical characteristics of clouds, convective updrafts I and downdrafts (Tao et al. 1987), 4) role of the horizontal pressure grabent force on I l momentum transport and budget (Soong and Tao 1984; Tao et al. 1999, 5) ice processes and their role in stratiform rain formation and the associated mass, Q1 and 42 budgets (Tao and Simpson 1989b, Tao et al. 1989), 6) the redistribution of trace gases by convection and enhancement of 03production in the tropics (Scala et al. 1990; Pickering et al. 1992%b; and a review by Thompson et al. 1997), 7) precipitation efficiency (Ferrier et al. 1996; Tao et al. 2004), 8) cloud radiation interaction and their impact on diurnal variation of precipitation (Tao et al. 1996), 9) the horizontal transport of hydrometeors and water vapor fiom convective towers into the stratiform region (Tao et al.
Recommended publications
  • 2.5 Classification of Parallel Computers
    52 // Architectures 2.5 Classification of Parallel Computers 2.5 Classification of Parallel Computers 2.5.1 Granularity In parallel computing, granularity means the amount of computation in relation to communication or synchronisation Periods of computation are typically separated from periods of communication by synchronization events. • fine level (same operations with different data) ◦ vector processors ◦ instruction level parallelism ◦ fine-grain parallelism: – Relatively small amounts of computational work are done between communication events – Low computation to communication ratio – Facilitates load balancing 53 // Architectures 2.5 Classification of Parallel Computers – Implies high communication overhead and less opportunity for per- formance enhancement – If granularity is too fine it is possible that the overhead required for communications and synchronization between tasks takes longer than the computation. • operation level (different operations simultaneously) • problem level (independent subtasks) ◦ coarse-grain parallelism: – Relatively large amounts of computational work are done between communication/synchronization events – High computation to communication ratio – Implies more opportunity for performance increase – Harder to load balance efficiently 54 // Architectures 2.5 Classification of Parallel Computers 2.5.2 Hardware: Pipelining (was used in supercomputers, e.g. Cray-1) In N elements in pipeline and for 8 element L clock cycles =) for calculation it would take L + N cycles; without pipeline L ∗ N cycles Example of good code for pipelineing: §doi =1 ,k ¤ z ( i ) =x ( i ) +y ( i ) end do ¦ 55 // Architectures 2.5 Classification of Parallel Computers Vector processors, fast vector operations (operations on arrays). Previous example good also for vector processor (vector addition) , but, e.g. recursion – hard to optimise for vector processors Example: IntelMMX – simple vector processor.
    [Show full text]
  • A Massively-Parallel Mixed-Mode Computer Designed to Support
    This paper appeared in th International Parallel Processing Symposium Proc of nd Work shop on Heterogeneous Processing pages NewportBeach CA April Triton A MassivelyParallel MixedMo de Computer Designed to Supp ort High Level Languages Christian G Herter Thomas M Warschko Walter F Tichy and Michael Philippsen University of Karlsruhe Dept of Informatics Postfach D Karlsruhe Germany Mo dula Abstract Mo dula pronounced Mo dulastar is a small ex We present the architectureofTriton a scalable tension of Mo dula for massively parallel program mixedmode SIMDMIMD paral lel computer The ming The programming mo del of Mo dula incor novel features of Triton are p orates b oth data and control parallelism and allows hronous and asynchronous execution mixed sync Support for highlevel machineindependent pro Mo dula is problemorientedinthesensethatthe gramming languages programmer can cho ose the degree of parallelism and mix the control mo de SIMD or MIMDlike as need Fast SIMDMIMD mode switching ed bytheintended algorithm Parallelism maybe nested to arbitrary depth Pro cedures may b e called Special hardware for barrier synchronization of from sequential or parallel contexts and can them multiple process groups selves generate parallel activity without any restric tions Most Mo dula programs can b e translated into ecient co de for b oth SIMD and MIMD archi A selfrouting deadlockfreeperfect shue inter tectures connect with latency hiding Overview of language extensions The architecture is the outcomeofanintegrated de Mo dula extends Mo dula
    [Show full text]
  • Massively Parallel Computing with CUDA
    Massively Parallel Computing with CUDA Antonino Tumeo Politecnico di Milano 1 GPUs have evolved to the point where many real world applications are easily implemented on them and run significantly faster than on multi-core systems. Future computing architectures will be hybrid systems with parallel-core GPUs working in tandem with multi-core CPUs. Jack Dongarra Professor, University of Tennessee; Author of “Linpack” Why Use the GPU? • The GPU has evolved into a very flexible and powerful processor: • It’s programmable using high-level languages • It supports 32-bit and 64-bit floating point IEEE-754 precision • It offers lots of GFLOPS: • GPU in every PC and workstation What is behind such an Evolution? • The GPU is specialized for compute-intensive, highly parallel computation (exactly what graphics rendering is about) • So, more transistors can be devoted to data processing rather than data caching and flow control ALU ALU Control ALU ALU Cache DRAM DRAM CPU GPU • The fast-growing video game industry exerts strong economic pressure that forces constant innovation GPUs • Each NVIDIA GPU has 240 parallel cores NVIDIA GPU • Within each core 1.4 Billion Transistors • Floating point unit • Logic unit (add, sub, mul, madd) • Move, compare unit • Branch unit • Cores managed by thread manager • Thread manager can spawn and manage 12,000+ threads per core 1 Teraflop of processing power • Zero overhead thread switching Heterogeneous Computing Domains Graphics Massive Data GPU Parallelism (Parallel Computing) Instruction CPU Level (Sequential
    [Show full text]
  • CS 677: Parallel Programming for Many-Core Processors Lecture 1
    1 CS 677: Parallel Programming for Many-core Processors Lecture 1 Instructor: Philippos Mordohai Webpage: mordohai.github.io E-mail: [email protected] Objectives • Learn how to program massively parallel processors and achieve – High performance – Functionality and maintainability – Scalability across future generations • Acquire technical knowledge required to achieve the above goals – Principles and patterns of parallel programming – Processor architecture features and constraints – Programming API, tools and techniques 2 Important Points • This is an elective course. You chose to be here. • Expect to work and to be challenged. • If your programming background is weak, you will probably suffer. • This course will evolve to follow the rapid pace of progress in GPU programming. It is bound to always be a little behind… 3 Important Points II • At any point ask me WHY? • You can ask me anything about the course in class, during a break, in my office, by email. – If you think a homework is taking too long or is wrong. – If you can’t decide on a project. 4 Logistics • Class webpage: http://mordohai.github.io/classes/cs677_s20.html • Office hours: Tuesdays 5-6pm and by email • Evaluation: – Homework assignments (40%) – Quizzes (10%) – Midterm (15%) – Final project (35%) 5 Project • Pick topic BEFORE middle of the semester • I will suggest ideas and datasets, if you can’t decide • Deliverables: – Project proposal – Presentation in class – Poster in CS department event – Final report (around 8 pages) 6 Project Examples • k-means • Perceptron • Boosting – General – Face detector (group of 2) • Mean Shift • Normal estimation for 3D point clouds 7 More Ideas • Look for parallelizable problems in: – Image processing – Cryptanalysis – Graphics • GPU Gems – Nearest neighbor search 8 Even More… • Particle simulations • Financial analysis • MCMC • Games/puzzles 9 Resources • Textbook – Kirk & Hwu.
    [Show full text]
  • Core Processors
    UNIVERSITY OF CALIFORNIA Los Angeles Parallel Algorithms for Medical Informatics on Data-Parallel Many-Core Processors A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Computer Science by Maryam Moazeni 2013 © Copyright by Maryam Moazeni 2013 ABSTRACT OF THE DISSERTATION Parallel Algorithms for Medical Informatics on Data-Parallel Many-Core Processors by Maryam Moazeni Doctor of Philosophy in Computer Science University of California, Los Angeles, 2013 Professor Majid Sarrafzadeh, Chair The extensive use of medical monitoring devices has resulted in the generation of tremendous amounts of data. Storage, retrieval, and analysis of such data require platforms that can scale with data growth and adapt to the various behavior of the analysis and processing algorithms. In recent years, many-core processors and more specifically many-core Graphical Processing Units (GPUs) have become one of the most promising platforms for high performance processing of data, due to the massive parallel processing power they offer. However, many of the algorithms and data structures used in medical and bioinformatics systems do not follow a data-parallel programming paradigm, and hence cannot fully benefit from the parallel processing power of ii data-parallel many-core architectures. In this dissertation, we present three techniques to adapt several non-data parallel applications in different dwarfs to modern many-core GPUs. First, we present a load balancing technique to maximize parallelism in non-serial polyadic Dynamic Programming (DP), which is a family of dynamic programming algorithms with more non-uniform data access pattern. We show that a bottom-up approach to solving the DP problem exploits more parallelism and therefore yields higher performance.
    [Show full text]
  • Massively Parallel Computers: Why Not Prirallel Computers for the Masses?
    Maslsively Parallel Computers: Why Not Prwallel Computers for the Masses? Gordon Bell Abstract In 1989 I described the situation in high performance computers including several parallel architectures that During the 1980s the computers engineering and could deliver teraflop power by 1995, but with no price science research community generally ignored parallel constraint. I felt SIMDs and multicomputers could processing. With a focus on high performance computing achieve this goal. A shared memory multiprocessor embodied in the massive 1990s High Performance looked infeasible then. Traditional, multiple vector Computing and Communications (HPCC) program that processor supercomputers such as Crays would simply not has the short-term, teraflop peak performanc~:goal using a evolve to a teraflop until 2000. Here's what happened. network of thousands of computers, everyone with even passing interest in parallelism is involted with the 1. During the first half of 1992, NEC's four processor massive parallelism "gold rush". Funding-wise the SX3 is the fastest computer, delivering 90% of its situation is bright; applications-wise massit e parallelism peak 22 Glops for the Linpeak benchmark, and Cray's is microscopic. While there are several programming 16 processor YMP C90 has the greatest throughput. models, the mainline is data parallel Fortran. However, new algorithms are required, negating th~: decades of 2. The SIMD hardware approach of Thinking Machines progress in algorithms. Thus, utility will no doubt be the was abandoned because it was only suitable for a few, Achilles Heal of massive parallelism. very large scale problems, barely multiprogrammed, and uneconomical for workloads. It's unclear whether The Teraflop: 1992 large SIMDs are "generation" scalable, and they are clearly not "size" scalable.
    [Show full text]
  • Introduction to Parallel Computing
    INTRODUCTION TO PARALLEL COMPUTING Plamen Krastev Office: 38 Oxford, Room 117 Email: [email protected] FAS Research Computing Harvard University OBJECTIVES: To introduce you to the basic concepts and ideas in parallel computing To familiarize you with the major programming models in parallel computing To provide you with with guidance for designing efficient parallel programs 2 OUTLINE: Introduction to Parallel Computing / High Performance Computing (HPC) Concepts and terminology Parallel programming models Parallelizing your programs Parallel examples 3 What is High Performance Computing? Pravetz 82 and 8M, Bulgarian Apple clones Image credit: flickr 4 What is High Performance Computing? Pravetz 82 and 8M, Bulgarian Apple clones Image credit: flickr 4 What is High Performance Computing? Odyssey supercomputer is the major computational resource of FAS RC: • 2,140 nodes / 60,000 cores • 14 petabytes of storage 5 What is High Performance Computing? Odyssey supercomputer is the major computational resource of FAS RC: • 2,140 nodes / 60,000 cores • 14 petabytes of storage Using the world’s fastest and largest computers to solve large and complex problems. 5 Serial Computation: Traditionally software has been written for serial computations: To be run on a single computer having a single Central Processing Unit (CPU) A problem is broken into a discrete set of instructions Instructions are executed one after another Only one instruction can be executed at any moment in time 6 Parallel Computing: In the simplest sense, parallel
    [Show full text]
  • Massively Parallel Processor Architectures for Resource-Aware Computing
    Massively Parallel Processor Architectures for Resource-aware Computing Vahid Lari, Alexandru Tanase, Frank Hannig, and J¨urgen Teich Hardware/Software Co-Design, Department of Computer Science Friedrich-Alexander University Erlangen-N¨urnberg (FAU), Germany {vahid.lari, alexandru-petru.tanase, hannig, teich}@cs.fau.de Abstract—We present a class of massively parallel processor severe, when considering massively parallel architectures, with architectures called invasive tightly coupled processor arrays hundreds to thousands of resources, all working with real-time (TCPAs). The presented processor class is a highly parame- requirements. terizable template, which can be tailored before runtime to fulfill costumers’ requirements such as performance, area cost, As a remedy, we present a domain-specific class of mas- and energy efficiency. These programmable accelerators are well sively parallel processor architectures called invasive tightly suited for domain-specific computing from the areas of signal, coupled processor arrays (TCPA), which offer built-in and image, and video processing as well as other streaming processing scalable resource management. The term “invasive” stems from applications. To overcome future scaling issues (e. g., power con- sumption, reliability, resource management, as well as application a novel paradigm called invasive computing [3], for designing parallelization and mapping), TCPAs are inherently designed and programming future massively parallel computing systems in a way to support self-adaptivity and resource awareness at (e.g., heterogeneous MPSoCs). The main idea and novelty of hardware level. Here, we follow a recently introduced resource- invasive computing is to introduce resource-aware program- aware parallel computing paradigm called invasive computing ming support in the sense that a given application gets the where an application can dynamically claim, execute, and release ability to explore and dynamically spread its computations resources.
    [Show full text]
  • Real-Time Network Traffic Simulation Methodology with a Massively Parallel Computing Architecture
    TRANSPORTATION RESEA RCH RECORD 1358 13 Advanced Traffic Management System: Real-Time Network Traffic Simulation Methodology with a Massively Parallel Computing Architecture THANAVAT }UNCHAYA, GANG-LEN CHANG, AND ALBERTO SANTIAGO The advent of parallel computing architectures presents an op­ of these ATMS developments would ensure optimal net­ portunity fo r lra nspon a tion professionals 1 imulate a large- ca le workwise performance. tra ffi c network with sufficienily fa t response time for real-time The anticipated benefits of these control methods depend opcrarion. Howeve r, ii neccssira tc ·. a fundament al change in the on the complex interactions among principal traffic system modeling algorithm LO tuke full ad va ntage of parallel computing. • uch a methodology t imulare tra ffic n twork with the Con­ components. These systems include driver behavior, level of nection Machine, a massively parallel computer, is described . The congestion, dynamic nature of traffic patterns, and the net­ basic parallel computing architectures are introdu ed, along with work's geometric configuration. It is crucial to the design of a list of commercially available parall el comput ers. This is fol ­ these strategies that a comprehensive understanding of the lowed by an in-depth presentation of the proposed simulation complex interrelations between these key system components meth odology with a massively parallel computer. The propo ed traffic simulation model ha. an inherent path-proces ing capa­ be established. Because it is often difficult for theoretical bilit y to represent drivers ' roure choice behavior at the individual­ formulations to take all such complexities into account, traffic vehicle level.
    [Show full text]
  • Massively Parallel Message Passing: Time to Start from Scratch?
    Massively Parallel Message Passing: Time to Start from Scratch? Anthony Skjellum, PhD University of Alabama at Birmingham Department of Computer and Information Sciences College of Arts and Sciences Birmingham, AL, USA [email protected] Abstract primitive abstractions do not do enough to abstract how operations are performed compared to what is to be performed. Extensions Yes: New requirements have invalidated the use of MPI and to and attempts to standardize with distributed shared memory (cf, other similar library-type message passing systems at full scale on MPI-2 one-sided primitives [10]) have been included, but are systems of 100's of millions of cores. Uses on substantial subsets currently somewhat incompatible with PGAS languages and sys- of these systems should remain viable, subject to limitations. tems [15], and furthermore MPI isn't easy to mutually convert No: If the right set of implementation and application deci- with BSP-style notations or semantics either [16]. Connection sions are made, and runtime strategies put in place, existing MPI with publish-subscribe models [17] used in military / space-based notations can used within exascale systems at least to a degree. fault-tolerant message passing systems are absent (see also [18]). Maybe: Implications of instantiating “MPI worlds” as islands The hypothesis of this paper is that new requirements arising inside exascale systems cannot damage overall scalability too in exascale computation have at least partly invalidated the use of much, or they will inhibit exascalability, and thus fail. the parallel model expressed and implied by MPI and other simi- lar library-type message passing systems at full scale on systems Categories and Subject Descriptors F.1.2.
    [Show full text]
  • An Event-Driven Massively Parallel Fine-Grained Processor Array
    An Event-Driven Massively Parallel Fine-Grained Processor Array Declan Walsh and Piotr Dudek School of Electrical and Electronic Engineering The University of Manchester, UK [email protected]; [email protected] Abstract—A multi-core event-driven parallel processor array connected to its four nearest direct neighbours and only local design is presented. Using relatively simple 8-bit processing cores communications are performed. This network topology and a 2D mesh network topology, the architecture focuses on reduces the long wire interconnects which also reduces power reducing the area occupation of a single processor core. A large and enables operations at higher frequencies. number of these processor cores can be implemented on a single The SIMD implementations are useful for performing tasks integrated chip to create a MIMD architecture capable of providing a powerful processing performance. Each processor which require data-level parallelism. However, for tasks which core is an event-driven processor which can enter an idle mode require more complex processing than simple pixel-parallel when no data is changing locally. An 8 × 8 prototype processor operators, e.g., event-driven networks [12], message-passing array is implemented in a 65 nm CMOS process in 1,875 µm × inference networks [13], or even some low-level image 1,875 µm. This processor array is capable of performing 5.12 processing operations [14, 15], SIMD processing may not be GOPS operating at 80 MHz with an average power consumption optimal and a more flexible MIMD (Multiple Instruction of 75.4 mW. Multiple Data) solution is more suitable.
    [Show full text]
  • A Massively Parallel Digital Learning Processor
    A Massively Parallel Digital Learning Processor Hans Peter Graf Srihari Cadambi Igor Durdanovic [email protected] [email protected] [email protected] Venkata Jakkula Murugan Sankardadass Eric Cosatto Srimat Chakradhar [email protected] [email protected] [email protected] [email protected] NEC Laboratories, America 4 Independence Way, Suite 200; Princeton, NJ 07738, USA Abstract We present a new, massively parallel architecture for accelerating machine learning algorithms, based on arrays of vector processing elements (VPEs) with variable-resolution arithmetic. Groups of VPEs operate in SIMD (single instruction multiple data) mode, and each group is connected to an independent memory bank. The memory bandwidth thus scales with the number of VPEs, while the main data flows are local, keeping power dissipation low. With 256 VPEs, implemented on two FPGAs (field programmable gate array) chips, we obtain a sustained speed of 19 GMACS (billion multiply- accumulate per sec.) for SVM training, and 86 GMACS for SVM classification. This performance is more than an order of magnitude higher than that of any FPGA implementation reported so far. The speed on one FPGA is similar to the fastest speeds published on a Graphics Processor for the MNIST problem, despite a clock rate that is an order of magnitude lower. Tests with Convolutional Neural Networks show similar compute performances. This massively parallel architecture is particularly attractive for embedded applications, where low power dissipation is critical. 1 Introduction Machine learning demands higher and higher compute-performance, but serial processors are not improving that much anymore - at least not as quickly as they used to.
    [Show full text]