Parallelism on Supercomputers and the Message Passing Interface (MPI)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Data-Level Parallelism
Fall 2015 :: CSE 610 – Parallel Computer Architectures Data-Level Parallelism Nima Honarmand Fall 2015 :: CSE 610 – Parallel Computer Architectures Overview • Data Parallelism vs. Control Parallelism – Data Parallelism: parallelism arises from executing essentially the same code on a large number of objects – Control Parallelism: parallelism arises from executing different threads of control concurrently • Hypothesis: applications that use massively parallel machines will mostly exploit data parallelism – Common in the Scientific Computing domain • DLP originally linked with SIMD machines; now SIMT is more common – SIMD: Single Instruction Multiple Data – SIMT: Single Instruction Multiple Threads Fall 2015 :: CSE 610 – Parallel Computer Architectures Overview • Many incarnations of DLP architectures over decades – Old vector processors • Cray processors: Cray-1, Cray-2, …, Cray X1 – SIMD extensions • Intel SSE and AVX units • Alpha Tarantula (didn’t see light of day ) – Old massively parallel computers • Connection Machines • MasPar machines – Modern GPUs • NVIDIA, AMD, Qualcomm, … • Focus of throughput rather than latency Vector Processors 4 SCALAR VECTOR (1 operation) (N operations) r1 r2 v1 v2 + + r3 v3 vector length add r3, r1, r2 vadd.vv v3, v1, v2 Scalar processors operate on single numbers (scalars) Vector processors operate on linear sequences of numbers (vectors) 6.888 Spring 2013 - Sanchez and Emer - L14 What’s in a Vector Processor? 5 A scalar processor (e.g. a MIPS processor) Scalar register file (32 registers) Scalar functional units (arithmetic, load/store, etc) A vector register file (a 2D register array) Each register is an array of elements E.g. 32 registers with 32 64-bit elements per register MVL = maximum vector length = max # of elements per register A set of vector functional units Integer, FP, load/store, etc Some times vector and scalar units are combined (share ALUs) 6.888 Spring 2013 - Sanchez and Emer - L14 Example of Simple Vector Processor 6 6.888 Spring 2013 - Sanchez and Emer - L14 Basic Vector ISA 7 Instr. -
High Performance Computing Through Parallel and Distributed Processing
Yadav S. et al., J. Harmoniz. Res. Eng., 2013, 1(2), 54-64 Journal Of Harmonized Research (JOHR) Journal Of Harmonized Research in Engineering 1(2), 2013, 54-64 ISSN 2347 – 7393 Original Research Article High Performance Computing through Parallel and Distributed Processing Shikha Yadav, Preeti Dhanda, Nisha Yadav Department of Computer Science and Engineering, Dronacharya College of Engineering, Khentawas, Farukhnagar, Gurgaon, India Abstract : There is a very high need of High Performance Computing (HPC) in many applications like space science to Artificial Intelligence. HPC shall be attained through Parallel and Distributed Computing. In this paper, Parallel and Distributed algorithms are discussed based on Parallel and Distributed Processors to achieve HPC. The Programming concepts like threads, fork and sockets are discussed with some simple examples for HPC. Keywords: High Performance Computing, Parallel and Distributed processing, Computer Architecture Introduction time to solve large problems like weather Computer Architecture and Programming play forecasting, Tsunami, Remote Sensing, a significant role for High Performance National calamities, Defence, Mineral computing (HPC) in large applications Space exploration, Finite-element, Cloud science to Artificial Intelligence. The Computing, and Expert Systems etc. The Algorithms are problem solving procedures Algorithms are Non-Recursive Algorithms, and later these algorithms transform in to Recursive Algorithms, Parallel Algorithms particular Programming language for HPC. and Distributed Algorithms. There is need to study algorithms for High The Algorithms must be supported the Performance Computing. These Algorithms Computer Architecture. The Computer are to be designed to computer in reasonable Architecture is characterized with Flynn’s Classification SISD, SIMD, MIMD, and For Correspondence: MISD. Most of the Computer Architectures preeti.dhanda01ATgmail.com are supported with SIMD (Single Instruction Received on: October 2013 Multiple Data Streams). -
2.5 Classification of Parallel Computers
52 // Architectures 2.5 Classification of Parallel Computers 2.5 Classification of Parallel Computers 2.5.1 Granularity In parallel computing, granularity means the amount of computation in relation to communication or synchronisation Periods of computation are typically separated from periods of communication by synchronization events. • fine level (same operations with different data) ◦ vector processors ◦ instruction level parallelism ◦ fine-grain parallelism: – Relatively small amounts of computational work are done between communication events – Low computation to communication ratio – Facilitates load balancing 53 // Architectures 2.5 Classification of Parallel Computers – Implies high communication overhead and less opportunity for per- formance enhancement – If granularity is too fine it is possible that the overhead required for communications and synchronization between tasks takes longer than the computation. • operation level (different operations simultaneously) • problem level (independent subtasks) ◦ coarse-grain parallelism: – Relatively large amounts of computational work are done between communication/synchronization events – High computation to communication ratio – Implies more opportunity for performance increase – Harder to load balance efficiently 54 // Architectures 2.5 Classification of Parallel Computers 2.5.2 Hardware: Pipelining (was used in supercomputers, e.g. Cray-1) In N elements in pipeline and for 8 element L clock cycles =) for calculation it would take L + N cycles; without pipeline L ∗ N cycles Example of good code for pipelineing: §doi =1 ,k ¤ z ( i ) =x ( i ) +y ( i ) end do ¦ 55 // Architectures 2.5 Classification of Parallel Computers Vector processors, fast vector operations (operations on arrays). Previous example good also for vector processor (vector addition) , but, e.g. recursion – hard to optimise for vector processors Example: IntelMMX – simple vector processor. -
A Massively-Parallel Mixed-Mode Computer Designed to Support
This paper appeared in th International Parallel Processing Symposium Proc of nd Work shop on Heterogeneous Processing pages NewportBeach CA April Triton A MassivelyParallel MixedMo de Computer Designed to Supp ort High Level Languages Christian G Herter Thomas M Warschko Walter F Tichy and Michael Philippsen University of Karlsruhe Dept of Informatics Postfach D Karlsruhe Germany Mo dula Abstract Mo dula pronounced Mo dulastar is a small ex We present the architectureofTriton a scalable tension of Mo dula for massively parallel program mixedmode SIMDMIMD paral lel computer The ming The programming mo del of Mo dula incor novel features of Triton are p orates b oth data and control parallelism and allows hronous and asynchronous execution mixed sync Support for highlevel machineindependent pro Mo dula is problemorientedinthesensethatthe gramming languages programmer can cho ose the degree of parallelism and mix the control mo de SIMD or MIMDlike as need Fast SIMDMIMD mode switching ed bytheintended algorithm Parallelism maybe nested to arbitrary depth Pro cedures may b e called Special hardware for barrier synchronization of from sequential or parallel contexts and can them multiple process groups selves generate parallel activity without any restric tions Most Mo dula programs can b e translated into ecient co de for b oth SIMD and MIMD archi A selfrouting deadlockfreeperfect shue inter tectures connect with latency hiding Overview of language extensions The architecture is the outcomeofanintegrated de Mo dula extends Mo dula -
Chapter 5 Multiprocessors and Thread-Level Parallelism
Computer Architecture A Quantitative Approach, Fifth Edition Chapter 5 Multiprocessors and Thread-Level Parallelism Copyright © 2012, Elsevier Inc. All rights reserved. 1 Contents 1. Introduction 2. Centralized SMA – shared memory architecture 3. Performance of SMA 4. DMA – distributed memory architecture 5. Synchronization 6. Models of Consistency Copyright © 2012, Elsevier Inc. All rights reserved. 2 1. Introduction. Why multiprocessors? Need for more computing power Data intensive applications Utility computing requires powerful processors Several ways to increase processor performance Increased clock rate limited ability Architectural ILP, CPI – increasingly more difficult Multi-processor, multi-core systems more feasible based on current technologies Advantages of multiprocessors and multi-core Replication rather than unique design. Copyright © 2012, Elsevier Inc. All rights reserved. 3 Introduction Multiprocessor types Symmetric multiprocessors (SMP) Share single memory with uniform memory access/latency (UMA) Small number of cores Distributed shared memory (DSM) Memory distributed among processors. Non-uniform memory access/latency (NUMA) Processors connected via direct (switched) and non-direct (multi- hop) interconnection networks Copyright © 2012, Elsevier Inc. All rights reserved. 4 Important ideas Technology drives the solutions. Multi-cores have altered the game!! Thread-level parallelism (TLP) vs ILP. Computing and communication deeply intertwined. Write serialization exploits broadcast communication -
Chapter 5 Thread-Level Parallelism
Chapter 5 Thread-Level Parallelism Instructor: Josep Torrellas CS433 Copyright Josep Torrellas 1999, 2001, 2002, 2013 1 Progress Towards Multiprocessors + Rate of speed growth in uniprocessors saturated + Wide-issue processors are very complex + Wide-issue processors consume a lot of power + Steady progress in parallel software : the major obstacle to parallel processing 2 Flynn’s Classification of Parallel Architectures According to the parallelism in I and D stream • Single I stream , single D stream (SISD): uniprocessor • Single I stream , multiple D streams(SIMD) : same I executed by multiple processors using diff D – Each processor has its own data memory – There is a single control processor that sends the same I to all processors – These processors are usually special purpose 3 • Multiple I streams, single D stream (MISD) : no commercial machine • Multiple I streams, multiple D streams (MIMD) – Each processor fetches its own instructions and operates on its own data – Architecture of choice for general purpose mps – Flexible: can be used in single user mode or multiprogrammed – Use of the shelf µprocessors 4 MIMD Machines 1. Centralized shared memory architectures – Small #’s of processors (≈ up to 16-32) – Processors share a centralized memory – Usually connected in a bus – Also called UMA machines ( Uniform Memory Access) 2. Machines w/physically distributed memory – Support many processors – Memory distributed among processors – Scales the mem bandwidth if most of the accesses are to local mem 5 Figure 5.1 6 Figure 5.2 7 2. Machines w/physically distributed memory (cont) – Also reduces the memory latency – Of course interprocessor communication is more costly and complex – Often each node is a cluster (bus based multiprocessor) – 2 types, depending on method used for interprocessor communication: 1. -
Introduction to Multi-Threading and Vectorization Matti Kortelainen Larsoft Workshop 2019 25 June 2019 Outline
Introduction to multi-threading and vectorization Matti Kortelainen LArSoft Workshop 2019 25 June 2019 Outline Broad introductory overview: • Why multithread? • What is a thread? • Some threading models – std::thread – OpenMP (fork-join) – Intel Threading Building Blocks (TBB) (tasks) • Race condition, critical region, mutual exclusion, deadlock • Vectorization (SIMD) 2 6/25/19 Matti Kortelainen | Introduction to multi-threading and vectorization Motivations for multithreading Image courtesy of K. Rupp 3 6/25/19 Matti Kortelainen | Introduction to multi-threading and vectorization Motivations for multithreading • One process on a node: speedups from parallelizing parts of the programs – Any problem can get speedup if the threads can cooperate on • same core (sharing L1 cache) • L2 cache (may be shared among small number of cores) • Fully loaded node: save memory and other resources – Threads can share objects -> N threads can use significantly less memory than N processes • If smallest chunk of data is so big that only one fits in memory at a time, is there any other option? 4 6/25/19 Matti Kortelainen | Introduction to multi-threading and vectorization What is a (software) thread? (in POSIX/Linux) • “Smallest sequence of programmed instructions that can be managed independently by a scheduler” [Wikipedia] • A thread has its own – Program counter – Registers – Stack – Thread-local memory (better to avoid in general) • Threads of a process share everything else, e.g. – Program code, constants – Heap memory – Network connections – File handles -
Parallel Programming
Parallel Programming Parallel Programming Parallel Computing Hardware Shared memory: multiple cpus are attached to the BUS all processors share the same primary memory the same memory address on different CPU’s refer to the same memory location CPU-to-memory connection becomes a bottleneck: shared memory computers cannot scale very well Parallel Programming Parallel Computing Hardware Distributed memory: each processor has its own private memory computational tasks can only operate on local data infinite available memory through adding nodes requires more difficult programming Parallel Programming OpenMP versus MPI OpenMP (Open Multi-Processing): easy to use; loop-level parallelism non-loop-level parallelism is more difficult limited to shared memory computers cannot handle very large problems MPI(Message Passing Interface): require low-level programming; more difficult programming scalable cost/size can handle very large problems Parallel Programming MPI Distributed memory: Each processor can access only the instructions/data stored in its own memory. The machine has an interconnection network that supports passing messages between processors. A user specifies a number of concurrent processes when program begins. Every process executes the same program, though theflow of execution may depend on the processors unique ID number (e.g. “if (my id == 0) then ”). ··· Each process performs computations on its local variables, then communicates with other processes (repeat), to eventually achieve the computed result. In this model, processors pass messages both to send/receive information, and to synchronize with one another. Parallel Programming Introduction to MPI Communicators and Groups: MPI uses objects called communicators and groups to define which collection of processes may communicate with each other. -
Massively Parallel Computing with CUDA
Massively Parallel Computing with CUDA Antonino Tumeo Politecnico di Milano 1 GPUs have evolved to the point where many real world applications are easily implemented on them and run significantly faster than on multi-core systems. Future computing architectures will be hybrid systems with parallel-core GPUs working in tandem with multi-core CPUs. Jack Dongarra Professor, University of Tennessee; Author of “Linpack” Why Use the GPU? • The GPU has evolved into a very flexible and powerful processor: • It’s programmable using high-level languages • It supports 32-bit and 64-bit floating point IEEE-754 precision • It offers lots of GFLOPS: • GPU in every PC and workstation What is behind such an Evolution? • The GPU is specialized for compute-intensive, highly parallel computation (exactly what graphics rendering is about) • So, more transistors can be devoted to data processing rather than data caching and flow control ALU ALU Control ALU ALU Cache DRAM DRAM CPU GPU • The fast-growing video game industry exerts strong economic pressure that forces constant innovation GPUs • Each NVIDIA GPU has 240 parallel cores NVIDIA GPU • Within each core 1.4 Billion Transistors • Floating point unit • Logic unit (add, sub, mul, madd) • Move, compare unit • Branch unit • Cores managed by thread manager • Thread manager can spawn and manage 12,000+ threads per core 1 Teraflop of processing power • Zero overhead thread switching Heterogeneous Computing Domains Graphics Massive Data GPU Parallelism (Parallel Computing) Instruction CPU Level (Sequential -
CS650 Computer Architecture Lecture 10 Introduction to Multiprocessors
NJIT Computer Science Dept CS650 Computer Architecture CS650 Computer Architecture Lecture 10 Introduction to Multiprocessors and PC Clustering Andrew Sohn Computer Science Department New Jersey Institute of Technology Lecture 10: Intro to Multiprocessors/Clustering 1/15 12/7/2003 A. Sohn NJIT Computer Science Dept CS650 Computer Architecture Key Issues Run PhotoShop on 1 PC or N PCs Programmability • How to program a bunch of PCs viewed as a single logical machine. Performance Scalability - Speedup • Run PhotoShop on 1 PC (forget the specs of this PC) • Run PhotoShop on N PCs • Will it run faster on N PCs? Speedup = ? Lecture 10: Intro to Multiprocessors/Clustering 2/15 12/7/2003 A. Sohn NJIT Computer Science Dept CS650 Computer Architecture Types of Multiprocessors Key: Data and Instruction Single Instruction Single Data (SISD) • Intel processors, AMD processors Single Instruction Multiple Data (SIMD) • Array processor • Pentium MMX feature Multiple Instruction Single Data (MISD) • Systolic array • Special purpose machines Multiple Instruction Multiple Data (MIMD) • Typical multiprocessors (Sun, SGI, Cray,...) Single Program Multiple Data (SPMD) • Programming model Lecture 10: Intro to Multiprocessors/Clustering 3/15 12/7/2003 A. Sohn NJIT Computer Science Dept CS650 Computer Architecture Shared-Memory Multiprocessor Processor Prcessor Prcessor Interconnection network Main Memory Storage I/O Lecture 10: Intro to Multiprocessors/Clustering 4/15 12/7/2003 A. Sohn NJIT Computer Science Dept CS650 Computer Architecture Distributed-Memory Multiprocessor Processor Processor Processor IO/S MM IO/S MM IO/S MM Interconnection network IO/S MM IO/S MM IO/S MM Processor Processor Processor Lecture 10: Intro to Multiprocessors/Clustering 5/15 12/7/2003 A. -
CS 677: Parallel Programming for Many-Core Processors Lecture 1
1 CS 677: Parallel Programming for Many-core Processors Lecture 1 Instructor: Philippos Mordohai Webpage: mordohai.github.io E-mail: [email protected] Objectives • Learn how to program massively parallel processors and achieve – High performance – Functionality and maintainability – Scalability across future generations • Acquire technical knowledge required to achieve the above goals – Principles and patterns of parallel programming – Processor architecture features and constraints – Programming API, tools and techniques 2 Important Points • This is an elective course. You chose to be here. • Expect to work and to be challenged. • If your programming background is weak, you will probably suffer. • This course will evolve to follow the rapid pace of progress in GPU programming. It is bound to always be a little behind… 3 Important Points II • At any point ask me WHY? • You can ask me anything about the course in class, during a break, in my office, by email. – If you think a homework is taking too long or is wrong. – If you can’t decide on a project. 4 Logistics • Class webpage: http://mordohai.github.io/classes/cs677_s20.html • Office hours: Tuesdays 5-6pm and by email • Evaluation: – Homework assignments (40%) – Quizzes (10%) – Midterm (15%) – Final project (35%) 5 Project • Pick topic BEFORE middle of the semester • I will suggest ideas and datasets, if you can’t decide • Deliverables: – Project proposal – Presentation in class – Poster in CS department event – Final report (around 8 pages) 6 Project Examples • k-means • Perceptron • Boosting – General – Face detector (group of 2) • Mean Shift • Normal estimation for 3D point clouds 7 More Ideas • Look for parallelizable problems in: – Image processing – Cryptanalysis – Graphics • GPU Gems – Nearest neighbor search 8 Even More… • Particle simulations • Financial analysis • MCMC • Games/puzzles 9 Resources • Textbook – Kirk & Hwu. -
Parallel Computer Architecture
Parallel Computer Architecture Introduction to Parallel Computing CIS 410/510 Department of Computer and Information Science Lecture 2 – Parallel Architecture Outline q Parallel architecture types q Instruction-level parallelism q Vector processing q SIMD q Shared memory ❍ Memory organization: UMA, NUMA ❍ Coherency: CC-UMA, CC-NUMA q Interconnection networks q Distributed memory q Clusters q Clusters of SMPs q Heterogeneous clusters of SMPs Introduction to Parallel Computing, University of Oregon, IPCC Lecture 2 – Parallel Architecture 2 Parallel Architecture Types • Uniprocessor • Shared Memory – Scalar processor Multiprocessor (SMP) processor – Shared memory address space – Bus-based memory system memory processor … processor – Vector processor bus processor vector memory memory – Interconnection network – Single Instruction Multiple processor … processor Data (SIMD) network processor … … memory memory Introduction to Parallel Computing, University of Oregon, IPCC Lecture 2 – Parallel Architecture 3 Parallel Architecture Types (2) • Distributed Memory • Cluster of SMPs Multiprocessor – Shared memory addressing – Message passing within SMP node between nodes – Message passing between SMP memory memory nodes … M M processor processor … … P … P P P interconnec2on network network interface interconnec2on network processor processor … P … P P … P memory memory … M M – Massively Parallel Processor (MPP) – Can also be regarded as MPP if • Many, many processors processor number is large Introduction to Parallel Computing, University of Oregon,