Output Results of CLIME (Clustering by Inferred Models of Evolution)

Total Page:16

File Type:pdf, Size:1020Kb

Output Results of CLIME (Clustering by Inferred Models of Evolution) Output results of CLIME (CLustering by Inferred Models of Evolution) Dataset: Num of genes in input gene set: 4 Total number of genes: 20834 Prediction LLR threshold: 0 The CLIME PDF output two sections: 1) Overview of Evolutionarily Conserved Modules (ECMs) Top panel shows the predefined species tree. Bottom panel shows the partition of input genes into Evolutionary Conserved Modules (ECMs), ordered by ECM strength (shown at right), and separated by horizontal lines. Each row show one gene, where the phylogenetic profile indicates presence (blue) or absence (gray) of homologs in each species (column). Gene symbols are shown at left. Gray color indicates that the gene is a paralog to a higher scoring gene within the same ECM (based on BLASTP E < 1e-3). 2) Details of each ECM and its expansion ECM+ Top panel shows the inferred evolutionary history on the predefined species tree. Branch color shows the gain event (blue) and loss events (red color, with brighter color indicating higher confidence in loss). Branches before the gain or after a loss are shown in gray. Bottom panel shows the input genes that are within the ECM (blue/white rows) as well as all genes in the expanded ECM+ (green/gray rows). The ECM+ includes genes likely to have arisen under the inferred model of evolution relative to a background model, and scored using a log likelihood ratio (LLR). PG indicates "paralog group" and are labeled alphabetically (i.e., A, B). The first gene within each paralog group is shown in black color. All other genes sharing sequence similarity (BLAST E < 1e-3) are assigned to the same PG label and displayed in gray. ECM 1 Protein NEURL2 USP33 RBX1 VHLL Overview ofEvolutionarilyConservedModules(ECMs) Prokaryotes Prokaryotes Last CommonAncestor E.cuniculi E.cuniculi E.histolytica E.histolytica E.dispar E.dispar G.lamblia G.lamblia T.vaginalis T.vaginalis T.brucei T.brucei T.cruzi T.cruzi L.infantum L.infantum L.major L.major L.braziliensis L.braziliensis T.gondii T.gondii Protists C.hominis C.hominis C.parvum C.parvum B.bovis B.bovis T.annulata T.annulata T.parva T.parva P.knowlesi P.knowlesi P.vivax P.vivax P.falciparum P.falciparum P.chabaudi P.chabaudi P.berghei P.berghei P.yoelii P.yoelii P.tetraurelia P.tetraurelia T.thermophila T.thermophila P.infestans P.infestans T.pseudonana T.pseudonana P.tricornutum P.tricornutum C.merolae C.merolae N.gruberi N.gruberi O.lucimarinus O.lucimarinus O.tauri O.tauri C.reinhardtii C.reinhardtii V.carteri V.carteri P.patens P.patens S.moellendorffii Plants S.moellendorffii S.bicolor S.bicolor Z.mays Z.mays O.sativa O.sativa B.distachyon B.distachyon A.lyrata A.lyrata A.thaliana A.thaliana L.japonicus L.japonicus M.truncatula M.truncatula V.vinifera V.vinifera P.trichocarpa P.trichocarpa R.communis R.communis T.trahens T.trahens D.discoideum D.discoideum A.macrogynus A.macrogynus S.punctatus S.punctatus M.globosa M.globosa U.maydis U.maydis C.neoformans C.neoformans P.chrysosporium P.chrysosporium S.commune S.commune C.cinerea C.cinerea L.bicolor L.bicolor S.pombe S.pombe B.fuckeliana B.fuckeliana S.sclerotiorum S.sclerotiorum F.graminearum F.graminearum M.grisea M.grisea N.crassa N.crassa P.anserina P.anserina P.chrysogenum P.chrysogenum A.clavatus A.clavatus A.fumigatus A.fumigatus N.fischeri N.fischeri A.flavus A.flavus A.oryzae A.oryzae A.niger A.niger A.nidulans Fungi A.nidulans U.reesii U.reesii C.immitis C.immitis C.posadasii C.posadasii P.nodorum P.nodorum T.melanosporum T.melanosporum Y.lipolytica Y.lipolytica P.pastoris P.pastoris C.lusitaniae C.lusitaniae D.hansenii D.hansenii M.guilliermondii M.guilliermondii S.stipitis S.stipitis L.elongisporus L.elongisporus C.tropicalis C.tropicalis C.albicans C.albicans C.dubliniensis C.dubliniensis K.lactis K.lactis A.gossypii A.gossypii K.waltii K.waltii L.thermotolerans L.thermotolerans Z.rouxii Z.rouxii V.polyspora V.polyspora C.glabrata C.glabrata S.bayanus S.bayanus S.mikatae S.mikatae S.cerevisiae S.cerevisiae S.paradoxus S.paradoxus S.arctica S.arctica C.owczarzaki C.owczarzaki M.brevicollis M.brevicollis S.rosetta S.rosetta S.mansoni S.mansoni B.malayi B.malayi C.briggsae C.briggsae C.elegans C.elegans D.pulex D.pulex A.pisum A.pisum P.humanus P.humanus A.mellifera A.mellifera N.vitripennis N.vitripennis B.mori B.mori T.castaneum T.castaneum D.melanogaster D.melanogaster D.pseudoobscura D.pseudoobscura A.gambiae A.gambiae A.aegypti A.aegypti C.quinquefasciatus Metazoa C.quinquefasciatus B.floridae B.floridae T.adhaerens T.adhaerens S.purpuratus S.purpuratus H.magnipapillata H.magnipapillata N.vectensis N.vectensis C.intestinalis C.intestinalis D.rerio D.rerio O.latipes O.latipes F.rubripes F.rubripes T.nigroviridis T.nigroviridis X.tropicalis X.tropicalis G.gallus G.gallus M.gallopavo M.gallopavo O.anatinus O.anatinus M.domestica M.domestica S.scrofa S.scrofa M.musculus M.musculus C.familiaris C.familiaris B.taurus B.taurus H.sapiens H.sapiens Strength 0.0 PG Protein USP33 RBX1 7: VCBcomplex|| 1: Cul2-RINGubiquitinligasecomplex|| Num ofECMGenes:2.Predicted0.Strength:0.0 ECM 1,Geneset"VCBcomplex",Page1 Prokaryotes Prokaryotes Last CommonAncestor E.cuniculi E.cuniculi E.histolytica E.histolytica E.dispar E.dispar G.lamblia G.lamblia T.vaginalis T.vaginalis T.brucei T.brucei T.cruzi T.cruzi L.infantum L.infantum 8: cellbody L.major L.major L.braziliensis L.braziliensis T.gondii T.gondii Protists C.hominis C.hominis C.parvum C.parvum B.bovis B.bovis T.annulata T.annulata T.parva T.parva P.knowlesi P.knowlesi P.vivax P.vivax 2: Cul3-RINGubiquitinligasecomplex|| P.falciparum P.falciparum P.chabaudi P.chabaudi P.berghei P.berghei P.yoelii P.yoelii P.tetraurelia P.tetraurelia T.thermophila T.thermophila P.infestans P.infestans T.pseudonana T.pseudonana P.tricornutum P.tricornutum C.merolae C.merolae N.gruberi N.gruberi O.lucimarinus O.lucimarinus O.tauri O.tauri C.reinhardtii C.reinhardtii V.carteri V.carteri P.patens P.patens S.moellendorffii Plants S.moellendorffii S.bicolor S.bicolor Z.mays Z.mays O.sativa O.sativa B.distachyon B.distachyon 3: Cul4A-RINGubiquitinligasecomplex|| A.lyrata A.lyrata A.thaliana A.thaliana L.japonicus L.japonicus M.truncatula M.truncatula V.vinifera V.vinifera P.trichocarpa P.trichocarpa R.communis R.communis T.trahens T.trahens D.discoideum D.discoideum A.macrogynus A.macrogynus S.punctatus S.punctatus M.globosa M.globosa U.maydis U.maydis C.neoformans C.neoformans P.chrysosporium P.chrysosporium S.commune S.commune C.cinerea C.cinerea L.bicolor L.bicolor S.pombe S.pombe B.fuckeliana B.fuckeliana S.sclerotiorum S.sclerotiorum F.graminearum 4: Cul4B-RINGubiquitinligasecomplex|| F.graminearum M.grisea M.grisea N.crassa N.crassa P.anserina P.anserina P.chrysogenum P.chrysogenum A.clavatus A.clavatus A.fumigatus A.fumigatus N.fischeri N.fischeri A.flavus A.flavus A.oryzae A.oryzae A.niger A.niger A.nidulans Fungi A.nidulans U.reesii U.reesii C.immitis C.immitis C.posadasii C.posadasii P.nodorum P.nodorum T.melanosporum T.melanosporum Y.lipolytica Y.lipolytica P.pastoris P.pastoris C.lusitaniae C.lusitaniae D.hansenii D.hansenii M.guilliermondii M.guilliermondii 5: Cul5-RINGubiquitinligasecomplex|| S.stipitis S.stipitis L.elongisporus L.elongisporus C.tropicalis C.tropicalis C.albicans C.albicans C.dubliniensis C.dubliniensis K.lactis K.lactis PRESENCE A.gossypii A.gossypii K.waltii K.waltii L.thermotolerans L.thermotolerans GAIN Z.rouxii Z.rouxii V.polyspora V.polyspora C.glabrata C.glabrata S.bayanus S.bayanus S.mikatae S.mikatae S.cerevisiae S.cerevisiae S.paradoxus S.paradoxus S.arctica S.arctica C.owczarzaki C.owczarzaki M.brevicollis M.brevicollis S.rosetta S.rosetta S.mansoni S.mansoni ABSENCE 6: SCFubiquitinligasecomplex|| B.malayi B.malayi C.briggsae C.briggsae LOSS C.elegans C.elegans D.pulex D.pulex A.pisum A.pisum P.humanus P.humanus A.mellifera A.mellifera N.vitripennis N.vitripennis B.mori B.mori T.castaneum T.castaneum D.melanogaster D.melanogaster D.pseudoobscura D.pseudoobscura A.gambiae A.gambiae A.aegypti A.aegypti C.quinquefasciatus Metazoa C.quinquefasciatus B.floridae B.floridae T.adhaerens T.adhaerens 0 Log-likelihood RatioScale S.purpuratus S.purpuratus H.magnipapillata H.magnipapillata 10 N.vectensis N.vectensis C.intestinalis C.intestinalis D.rerio D.rerio 20 O.latipes O.latipes F.rubripes F.rubripes 30 T.nigroviridis T.nigroviridis X.tropicalis X.tropicalis 40 G.gallus G.gallus M.gallopavo M.gallopavo O.anatinus O.anatinus 50 M.domestica M.domestica S.scrofa S.scrofa 60 M.musculus M.musculus C.familiaris C.familiaris B.taurus B.taurus H.sapiens H.sapiens LLR Notes 7 /8 1 /234567 PG D B E E E D C C B A A Protein TMEM14E NCKAP5L MANBAL C10orf32 CACNG4 NCKAP5 USHBP1 OR51D1 OR4K13 BTN3A2 OR51F2 C2orf47 SIRPB2 CRHBP PDGFA DDIT4L HHLA2 ITM2B ITM2A ITM2C SGCB DDIT4 OPTN FADD SDC3 XKR8 VHLL PKIB 27: axon|| 20: Golgi-associated vesiclemembrane|| 11: varicosity|| 1: VCBcomplex|| Num ofECMGenes:1.Predicted27 ECM 2,Geneset"VCBcomplex",Page1 Prokaryotes Prokaryotes Last CommonAncestor E.cuniculi E.cuniculi E.histolytica E.histolytica E.dispar E.dispar G.lamblia G.lamblia T.vaginalis T.vaginalis 28: Golgilumen || T.brucei T.brucei T.cruzi T.cruzi 12: CD95death-inducingsignaling complex || L.infantum L.infantum 2: endoplasmicreticulumlumen || L.major L.major L.braziliensis L.braziliensis T.gondii T.gondii Protists C.hominis C.hominis C.parvum C.parvum B.bovis B.bovis T.annulata T.annulata T.parva T.parva 29: lysosomallumen || P.knowlesi P.knowlesi P.vivax P.vivax P.falciparum P.falciparum 21: integraltoorganelle membrane|| P.chabaudi P.chabaudi P.berghei P.berghei P.yoelii P.yoelii P.tetraurelia P.tetraurelia
Recommended publications
  • Genetic Variation Across the Human Olfactory Receptor Repertoire Alters Odor Perception
    bioRxiv preprint doi: https://doi.org/10.1101/212431; this version posted November 1, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Genetic variation across the human olfactory receptor repertoire alters odor perception Casey Trimmer1,*, Andreas Keller2, Nicolle R. Murphy1, Lindsey L. Snyder1, Jason R. Willer3, Maira Nagai4,5, Nicholas Katsanis3, Leslie B. Vosshall2,6,7, Hiroaki Matsunami4,8, and Joel D. Mainland1,9 1Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA 2Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, New York, USA 3Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina, USA 4Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA 5Department of Biochemistry, University of Sao Paulo, Sao Paulo, Brazil 6Howard Hughes Medical Institute, New York, New York, USA 7Kavli Neural Systems Institute, New York, New York, USA 8Department of Neurobiology and Duke Institute for Brain Sciences, Duke University Medical Center, Durham, North Carolina, USA 9Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA *[email protected] ABSTRACT The human olfactory receptor repertoire is characterized by an abundance of genetic variation that affects receptor response, but the perceptual effects of this variation are unclear. To address this issue, we sequenced the OR repertoire in 332 individuals and examined the relationship between genetic variation and 276 olfactory phenotypes, including the perceived intensity and pleasantness of 68 odorants at two concentrations, detection thresholds of three odorants, and general olfactory acuity.
    [Show full text]
  • Tumor Elastography and Its Association with Cell-Free Tumor DNA in the Plasma of Breast Tumor Patients: a Pilot Study
    3534 Original Article Tumor elastography and its association with cell-free tumor DNA in the plasma of breast tumor patients: a pilot study Yi Hao1#, Wei Yang2#, Wenyi Zheng2,3#, Xiaona Chen3,4, Hui Wang1,5, Liang Zhao1,5, Jinfeng Xu6,7, Xia Guo4 1Department of Ultrasound, South China Hospital of Shenzhen University, Shenzhen, China; 2Department of Ultrasound, Shenzhen Hospital, Southern Medical University, Shenzhen, China; 3The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China; 4Shenzhen Key Laboratory of Viral Oncology, Center for Clinical Research and Innovation (CCRI), Shenzhen Hospital, Southern Medical University, Shenzhen, China; 5Department of Ultrasound, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, China; 6Department of Ultrasound, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, Shenzhen, China; 7The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China #These authors contributed equally to this work. Correspondence to: Xia Guo. Shenzhen Key Laboratory of Viral Oncology, Center for Clinical Research and Innovation (CCRI), Shenzhen Hospital, Southern Medical University, Shenzhen 518000, China. Email: [email protected]; Jinfeng Xu. Department of Ultrasound, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, Shenzhen 518020, China; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China. Email: [email protected]. Background: Breast tumor stiffness, which can be objectively and noninvasively evaluated by ultrasound elastography (UE), has been useful for the differentiation of benign and malignant breast lesions and the prediction of clinical outcomes. Liquid biopsy analyses, including cell-free tumor DNA (ctDNA), exhibit great potential for personalized treatment. This study aimed to investigate the correlations between the UE and ctDNA for early breast cancer diagnosis.
    [Show full text]
  • Copy Number Variation in Fetal Alcohol Spectrum Disorder
    Biochemistry and Cell Biology Copy number variation in fetal alcohol spectrum disorder Journal: Biochemistry and Cell Biology Manuscript ID bcb-2017-0241.R1 Manuscript Type: Article Date Submitted by the Author: 09-Nov-2017 Complete List of Authors: Zarrei, Mehdi; The Centre for Applied Genomics Hicks, Geoffrey G.; University of Manitoba College of Medicine, Regenerative Medicine Reynolds, James N.; Queen's University School of Medicine, Biomedical and Molecular SciencesDraft Thiruvahindrapuram, Bhooma; The Centre for Applied Genomics Engchuan, Worrawat; Hospital for Sick Children SickKids Learning Institute Pind, Molly; University of Manitoba College of Medicine, Regenerative Medicine Lamoureux, Sylvia; The Centre for Applied Genomics Wei, John; The Centre for Applied Genomics Wang, Zhouzhi; The Centre for Applied Genomics Marshall, Christian R.; The Centre for Applied Genomics Wintle, Richard; The Centre for Applied Genomics Chudley, Albert; University of Manitoba Scherer, Stephen W.; The Centre for Applied Genomics Is the invited manuscript for consideration in a Special Fetal Alcohol Spectrum Disorder Issue? : Keyword: Fetal alcohol spectrum disorder, FASD, copy number variations, CNV https://mc06.manuscriptcentral.com/bcb-pubs Page 1 of 354 Biochemistry and Cell Biology 1 Copy number variation in fetal alcohol spectrum disorder 2 Mehdi Zarrei,a Geoffrey G. Hicks,b James N. Reynolds,c,d Bhooma Thiruvahindrapuram,a 3 Worrawat Engchuan,a Molly Pind,b Sylvia Lamoureux,a John Wei,a Zhouzhi Wang,a Christian R. 4 Marshall,a Richard F. Wintle,a Albert E. Chudleye,f and Stephen W. Scherer,a,g 5 aThe Centre for Applied Genomics and Program in Genetics and Genome Biology, The Hospital 6 for Sick Children, Toronto, Ontario, Canada 7 bRegenerative Medicine Program, University of Manitoba, Winnipeg, Canada 8 cCentre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada.
    [Show full text]
  • Loss of 18Q22.3 Involving the Carboxypeptidase of Glutamate-Like Gene Is Associated with Poor Prognosis in Resected Pancreatic Cancer
    Published OnlineFirst November 29, 2011; DOI: 10.1158/1078-0432.CCR-11-1903 Clinical Cancer Imaging, Diagnosis, Prognosis Research Loss of 18q22.3 Involving the Carboxypeptidase of Glutamate-like Gene Is Associated with Poor Prognosis in Resected Pancreatic Cancer Jih-Hsiang Lee1, Elisa Giovannetti4, Jin-Hyeok Hwang1,5, Iacopo Petrini1, Qiuyan Wang1, Johannes Voortman1,4, Yonghong Wang2, Seth M. Steinberg3, Niccola Funel6, Paul S. Meltzer2, Yisong Wang1, and Giuseppe Giaccone1 Abstract Purposes: Pancreatic cancer is the fourth leading cause of cancer-related death, and studies on the clinical relevance of its genomic imbalances are warranted. Experimental Design: Recurrent copy number alterations of cytobands and genes were analyzed by array comparative genomic hybridization (aCGH) in 44 resected pancreatic cancer specimens. Prognostic markers identified by aCGH were validated by PCR gene copy number assay in an independent validation cohort of 61 resected pancreatic cancers. The functions of gene identified were evaluated by proliferation, cell cycle, and migration assays in pancreatic cancer cells. Results: We showed recurrent copy number gains and losses in the first cohort. Loss of 18q22.3 was significantly associated with short-term overall survival in the first cohort (P ¼ 0.019). This cytoband includes the carboxypeptidase of glutamate-like (CPGL) gene. CPGL gene deletion was associated with shorter overall survival in the validation cohort (P ¼ 0.003). CPGL deletion and mutations of TP53 or Kras seem to be independent events. A Cox model analysis of the two cohorts combined showed that loss of 18q22.3/deletion of the CPGL gene was an independent poor prognostic factor for overall survival (HR ¼ 2.72, P ¼ 0.0007).
    [Show full text]
  • Cellular and Molecular Signatures in the Disease Tissue of Early
    Cellular and Molecular Signatures in the Disease Tissue of Early Rheumatoid Arthritis Stratify Clinical Response to csDMARD-Therapy and Predict Radiographic Progression Frances Humby1,* Myles Lewis1,* Nandhini Ramamoorthi2, Jason Hackney3, Michael Barnes1, Michele Bombardieri1, Francesca Setiadi2, Stephen Kelly1, Fabiola Bene1, Maria di Cicco1, Sudeh Riahi1, Vidalba Rocher-Ros1, Nora Ng1, Ilias Lazorou1, Rebecca E. Hands1, Desiree van der Heijde4, Robert Landewé5, Annette van der Helm-van Mil4, Alberto Cauli6, Iain B. McInnes7, Christopher D. Buckley8, Ernest Choy9, Peter Taylor10, Michael J. Townsend2 & Costantino Pitzalis1 1Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK. Departments of 2Biomarker Discovery OMNI, 3Bioinformatics and Computational Biology, Genentech Research and Early Development, South San Francisco, California 94080 USA 4Department of Rheumatology, Leiden University Medical Center, The Netherlands 5Department of Clinical Immunology & Rheumatology, Amsterdam Rheumatology & Immunology Center, Amsterdam, The Netherlands 6Rheumatology Unit, Department of Medical Sciences, Policlinico of the University of Cagliari, Cagliari, Italy 7Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK 8Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), University of Birmingham, Birmingham B15 2WB, UK 9Institute of
    [Show full text]
  • OR4F16 Antibody Cat
    OR4F16 Antibody Cat. No.: 57-758 OR4F16 Antibody Specifications HOST SPECIES: Rabbit SPECIES REACTIVITY: Human This OR4F16 antibody is generated from rabbits immunized with a KLH conjugated IMMUNOGEN: synthetic peptide between 68-96 amino acids from the N-terminal region of human OR4F16. TESTED APPLICATIONS: WB APPLICATIONS: For WB starting dilution is: 1:1000 PREDICTED MOLECULAR 35 kDa WEIGHT: Properties This antibody is purified through a protein A column, followed by peptide affinity PURIFICATION: purification. CLONALITY: Polyclonal ISOTYPE: Rabbit Ig CONJUGATE: Unconjugated September 27, 2021 1 https://www.prosci-inc.com/or4f16-antibody-57-758.html PHYSICAL STATE: Liquid BUFFER: Supplied in PBS with 0.09% (W/V) sodium azide. CONCENTRATION: batch dependent Store at 4˚C for three months and -20˚C, stable for up to one year. As with all antibodies STORAGE CONDITIONS: care should be taken to avoid repeated freeze thaw cycles. Antibodies should not be exposed to prolonged high temperatures. Additional Info OFFICIAL SYMBOL: OR4F3 ALTERNATE NAMES: Olfactory receptor 4F3/4F16/4F29, Olfactory receptor OR1-1, OR4F3 ACCESSION NO.: Q6IEY1 PROTEIN GI NO.: 74762307 GENE ID: 26683, 729759, 81399 USER NOTE: Optimal dilutions for each application to be determined by the researcher. Background and References Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with BACKGROUND: many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals.
    [Show full text]
  • Supplementary Methods
    Heterogeneous Contribution of Microdeletions in the Development of Common Generalized and Focal epilepsies. SUPPLEMENTARY METHODS Epilepsy subtype extended description. Genetic Gereralized Epilepsy (GGE): Features unprovoked tonic and/or clonic seizures, originated inconsistently at some focal point within the brain that rapidly generalizes engaging bilateral distributed spikes and waves discharges on the electroencephalogram. This generalization can include cortical and sub cortical structures but not necessarily the entire cortex[1]. GGE is the most common group of epilepsies accounting for 20% of all cases[2]. It is characterized by an age-related onset and a strong familial aggregation and heritability which allows the assumption of a genetic cause. Although genetic associations have been identified, a broad spectrum of causes is acknowledged and remains largely unsolved [3]. Rolandic Epilepsy (RE): Commonly known also as Benign Epilepsy with Centrotemporal Spikes (BECTS), hallmarks early onset diagnosis (mean onset = 7 years old) with brief, focal hemifacial or oropharyngeal sensorimotor seizures alongside speech arrest and secondarily generalized tonic– clonic seizures, which mainly occur during sleep[4]. Rolandic epilepsy features a broad spectrum of less benign related syndromes called atypical Rolandic epilepsy (ARE), including benign partial epilepsy (ABPE), Landau–Kleffner syndrome(LKS) and epileptic encephalopathy with continuous spike-and-waves during sleep (CSWSS)[5]. Together they are the most common childhood epilepsy with a prevalence of 0.2–0.73/1000 (i.e. _1/2500)[6]. Adult Focal Epilepsy (AFE). Focal epilepsy is characterized by sporadic events of seizures originated within a specific brain region and restricted to one hemisphere. Although they can exhibit more than one network of wave discharges on the electroencephalogram, and different degrees of spreading, they feature a consistent site of origin.
    [Show full text]
  • Deep Sequencing of the Human Retinae Reveals the Expression of Odorant Receptors
    fncel-11-00003 January 20, 2017 Time: 14:24 # 1 CORE Metadata, citation and similar papers at core.ac.uk Provided by Frontiers - Publisher Connector ORIGINAL RESEARCH published: 24 January 2017 doi: 10.3389/fncel.2017.00003 Deep Sequencing of the Human Retinae Reveals the Expression of Odorant Receptors Nikolina Jovancevic1*, Kirsten A. Wunderlich2, Claudia Haering1, Caroline Flegel1, Désirée Maßberg1, Markus Weinrich1, Lea Weber1, Lars Tebbe2, Anselm Kampik3, Günter Gisselmann1, Uwe Wolfrum2, Hanns Hatt1† and Lian Gelis1† 1 Department of Cell Physiology, Ruhr-University Bochum, Bochum, Germany, 2 Department of Cell and Matrix Biology, Johannes Gutenberg University of Mainz, Mainz, Germany, 3 Department of Ophthalmology, Ludwig Maximilian University of Munich, Munich, Germany Several studies have demonstrated that the expression of odorant receptors (ORs) occurs in various tissues. These findings have served as a basis for functional studies that demonstrate the potential of ORs as drug targets for a clinical application. To the best of our knowledge, this report describes the first evaluation of the mRNA expression of ORs and the localization of OR proteins in the human retina that set a Edited by: stage for subsequent functional analyses. RNA-Sequencing datasets of three individual Hansen Wang, University of Toronto, Canada neural retinae were generated using Next-generation sequencing and were compared Reviewed by: to previously published but reanalyzed datasets of the peripheral and the macular Ewald Grosse-Wilde, human retina and to reference tissues. The protein localization of several ORs was Max Planck Institute for Chemical Ecology (MPG), Germany investigated by immunohistochemistry. The transcriptome analyses detected an average Takaaki Sato, of 14 OR transcripts in the neural retina, of which OR6B3 is one of the most highly National Institute of Advanced expressed ORs.
    [Show full text]
  • A Framework to Identify Contributing Genes In
    A framework to identify contributing genes in patients with Phelan-McDermid syndrome Anne-Claude Tabet, Thomas Rolland, Marie Ducloy, Jonathan Levy, Julien Buratti, Alexandre Mathieu, Damien Haye, Laurence Perrin, Céline Dupont, Sandrine Passemard, et al. To cite this version: Anne-Claude Tabet, Thomas Rolland, Marie Ducloy, Jonathan Levy, Julien Buratti, et al.. A frame- work to identify contributing genes in patients with Phelan-McDermid syndrome. npj Genomic Medicine, Springer Nature, 2019, 4 (1), pp.16. 10.1038/s41525-019-0090-y. hal-02347889 HAL Id: hal-02347889 https://hal.archives-ouvertes.fr/hal-02347889 Submitted on 16 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. bioRxiv preprint doi: https://doi.org/10.1101/117978; this version posted March 18, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. A framework to identify modifier genes in patients
    [Show full text]
  • Misexpression of Cancer/Testis (Ct) Genes in Tumor Cells and the Potential Role of Dream Complex and the Retinoblastoma Protein Rb in Soma-To-Germline Transformation
    Michigan Technological University Digital Commons @ Michigan Tech Dissertations, Master's Theses and Master's Reports 2019 MISEXPRESSION OF CANCER/TESTIS (CT) GENES IN TUMOR CELLS AND THE POTENTIAL ROLE OF DREAM COMPLEX AND THE RETINOBLASTOMA PROTEIN RB IN SOMA-TO-GERMLINE TRANSFORMATION SABHA M. ALHEWAT Michigan Technological University, [email protected] Copyright 2019 SABHA M. ALHEWAT Recommended Citation ALHEWAT, SABHA M., "MISEXPRESSION OF CANCER/TESTIS (CT) GENES IN TUMOR CELLS AND THE POTENTIAL ROLE OF DREAM COMPLEX AND THE RETINOBLASTOMA PROTEIN RB IN SOMA-TO- GERMLINE TRANSFORMATION", Open Access Master's Thesis, Michigan Technological University, 2019. https://doi.org/10.37099/mtu.dc.etdr/933 Follow this and additional works at: https://digitalcommons.mtu.edu/etdr Part of the Cancer Biology Commons, and the Cell Biology Commons MISEXPRESSION OF CANCER/TESTIS (CT) GENES IN TUMOR CELLS AND THE POTENTIAL ROLE OF DREAM COMPLEX AND THE RETINOBLASTOMA PROTEIN RB IN SOMA-TO-GERMLINE TRANSFORMATION By Sabha Salem Alhewati A THESIS Submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE In Biological Sciences MICHIGAN TECHNOLOGICAL UNIVERSITY 2019 © 2019 Sabha Alhewati This thesis has been approved in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE in Biological Sciences. Department of Biological Sciences Thesis Advisor: Paul Goetsch. Committee Member: Ebenezer Tumban. Committee Member: Zhiying Shan. Department Chair: Chandrashekhar Joshi. Table of Contents List of figures .......................................................................................................................v
    [Show full text]
  • Single Cell Derived Clonal Analysis of Human Glioblastoma Links
    SUPPLEMENTARY INFORMATION: Single cell derived clonal analysis of human glioblastoma links functional and genomic heterogeneity ! Mona Meyer*, Jüri Reimand*, Xiaoyang Lan, Renee Head, Xueming Zhu, Michelle Kushida, Jane Bayani, Jessica C. Pressey, Anath Lionel, Ian D. Clarke, Michael Cusimano, Jeremy Squire, Stephen Scherer, Mark Bernstein, Melanie A. Woodin, Gary D. Bader**, and Peter B. Dirks**! ! * These authors contributed equally to this work.! ** Correspondence: [email protected] or [email protected]! ! Supplementary information - Meyer, Reimand et al. Supplementary methods" 4" Patient samples and fluorescence activated cell sorting (FACS)! 4! Differentiation! 4! Immunocytochemistry and EdU Imaging! 4! Proliferation! 5! Western blotting ! 5! Temozolomide treatment! 5! NCI drug library screen! 6! Orthotopic injections! 6! Immunohistochemistry on tumor sections! 6! Promoter methylation of MGMT! 6! Fluorescence in situ Hybridization (FISH)! 7! SNP6 microarray analysis and genome segmentation! 7! Calling copy number alterations! 8! Mapping altered genome segments to genes! 8! Recurrently altered genes with clonal variability! 9! Global analyses of copy number alterations! 9! Phylogenetic analysis of copy number alterations! 10! Microarray analysis! 10! Gene expression differences of TMZ resistant and sensitive clones of GBM-482! 10! Reverse transcription-PCR analyses! 11! Tumor subtype analysis of TMZ-sensitive and resistant clones! 11! Pathway analysis of gene expression in the TMZ-sensitive clone of GBM-482! 11! Supplementary figures and tables" 13" "2 Supplementary information - Meyer, Reimand et al. Table S1: Individual clones from all patient tumors are tumorigenic. ! 14! Fig. S1: clonal tumorigenicity.! 15! Fig. S2: clonal heterogeneity of EGFR and PTEN expression.! 20! Fig. S3: clonal heterogeneity of proliferation.! 21! Fig.
    [Show full text]
  • Supplementary Table 1
    Supplementary Table 1. 492 genes are unique to 0 h post-heat timepoint. The name, p-value, fold change, location and family of each gene are indicated. Genes were filtered for an absolute value log2 ration 1.5 and a significance value of p ≤ 0.05. Symbol p-value Log Gene Name Location Family Ratio ABCA13 1.87E-02 3.292 ATP-binding cassette, sub-family unknown transporter A (ABC1), member 13 ABCB1 1.93E-02 −1.819 ATP-binding cassette, sub-family Plasma transporter B (MDR/TAP), member 1 Membrane ABCC3 2.83E-02 2.016 ATP-binding cassette, sub-family Plasma transporter C (CFTR/MRP), member 3 Membrane ABHD6 7.79E-03 −2.717 abhydrolase domain containing 6 Cytoplasm enzyme ACAT1 4.10E-02 3.009 acetyl-CoA acetyltransferase 1 Cytoplasm enzyme ACBD4 2.66E-03 1.722 acyl-CoA binding domain unknown other containing 4 ACSL5 1.86E-02 −2.876 acyl-CoA synthetase long-chain Cytoplasm enzyme family member 5 ADAM23 3.33E-02 −3.008 ADAM metallopeptidase domain Plasma peptidase 23 Membrane ADAM29 5.58E-03 3.463 ADAM metallopeptidase domain Plasma peptidase 29 Membrane ADAMTS17 2.67E-04 3.051 ADAM metallopeptidase with Extracellular other thrombospondin type 1 motif, 17 Space ADCYAP1R1 1.20E-02 1.848 adenylate cyclase activating Plasma G-protein polypeptide 1 (pituitary) receptor Membrane coupled type I receptor ADH6 (includes 4.02E-02 −1.845 alcohol dehydrogenase 6 (class Cytoplasm enzyme EG:130) V) AHSA2 1.54E-04 −1.6 AHA1, activator of heat shock unknown other 90kDa protein ATPase homolog 2 (yeast) AK5 3.32E-02 1.658 adenylate kinase 5 Cytoplasm kinase AK7
    [Show full text]