Cell. Mol. Life Sci. 64 (2007) 3017 – 3033 1420-682X/07/233017-17 Cellular and Molecular Life Sciences DOI 10.1007/s00018-007-7137-4 Birkhuser Verlag, Basel, 2007 Review Sumoylation regulates diverse biological processes J. Zhao Center for Cell Biology and Cancer Research, Albany Medical College, 47 New Scotland Avenue, MC-165, Albany, New York 12208 (USA) Fax: +1 518 262 5669; e-mail:
[email protected] Received 19 March 2007; received after version 16 July 2007; accepted 1 August 2007 Online First 4 September 2007 Abstract. Ten years after its discovery, the small turn affect gene expression, genomic and chromoso- ubiquitin-like protein modifier (SUMO) has emerged mal stability and integrity, and signal transduction. as a key regulator of proteins. While early studies Sumoylation is counter-balanced by desumoylation, indicated that sumoylation takes place mainly in the and well-balanced sumoylation is essential for normal nucleus, an increasing number of non-nuclear sub- cellular behaviors. Loss of the balance has been strates have recently been identified, suggesting a associated with a number of diseases. This paper wider stage for sumoylation in the cell. Unlike reviews recent progress in the study of SUMO path- ubiquitylation, which primarily targets a substrate ways, substrates, and cellular functions and highlights for degradation, sumoylation regulates a substrates important findings that have accelerated advances in functions mainly by altering the intracellular local- this study field and link sumoylation to human ization, protein-protein interactions or other types of diseases. post-translational modifications. These changes in Keywords. SUMO, sumoylation cycle, desumoylation, gene expression, genomic and chromosomal integrity, signal transduction, loss-of-function of SUMO pathway, SUMO-associated disease.