Discovery and Engineering of Enhanced SUMO Protease Enzymes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Identifying Novel Disease-Associated Variants and Understanding The
Identifying Novel Disease-variants and Understanding the Role of the STAT1-STAT4 Locus in SLE A dissertation submitted to the Graduate School of University of Cincinnati In partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Immunology Graduate Program of the College of Medicine by Zubin H. Patel B.S., Worcester Polytechnic Institute, 2009 John B. Harley, M.D., Ph.D. Committee Chair Gurjit Khurana Hershey, M.D., Ph.D Leah C. Kottyan, Ph.D. Harinder Singh, Ph.D. Matthew T. Weirauch, Ph.D. Abstract Systemic Lupus Erythematosus (SLE) or lupus is an autoimmune disorder caused by an overactive immune system with dysregulation of both innate and adaptive immune pathways. It can affect all major organ systems and may lead to inflammation of the serosal and mucosal surfaces. The pathogenesis of lupus is driven by genetic factors, environmental factors, and gene-environment interactions. Heredity accounts for a substantial proportion of SLE risk, and the role of specific genetic risk loci has been well established. Identifying the specific causal genetic variants and the underlying molecular mechanisms has been a major area of investigation. This thesis describes efforts to develop an analytical approach to identify candidate rare variants from trio analyses and a fine-mapping analysis at the STAT1-STAT4 locus, a well-replicated SLE-risk locus. For the STAT1-STAT4 locus, subsequent functional biological studies demonstrated genotype dependent gene expression, transcription factor binding, and DNA regulatory activity. Rare variants are classified as variants across the genome with an allele-frequency less than 1% in ancestral populations. -
Isoform-Specific Monobody Inhibitors of Small Ubiquitin-Related Modifiers Engineered Using Structure-Guided Library Design
Isoform-specific monobody inhibitors of small ubiquitin-related modifiers engineered using structure-guided library design Ryan N. Gilbretha, Khue Truongb, Ikenna Madub, Akiko Koidea, John B. Wojcika, Nan-Sheng Lia, Joseph A. Piccirillia,c, Yuan Chenb, and Shohei Koidea,1 aDepartment of Biochemistry and Molecular Biology, and cDepartment of Chemistry, University of Chicago, 929 East 57th Street, Chicago, IL 60637; and bDepartment of Molecular Medicine, Beckman Research Institute of the City of Hope, 1450 East Duarte Road, Duarte, CA 91010 Edited by David Baker, University of Washington, Seattle, WA, and approved March 16, 2011 (received for review February 10, 2011) Discriminating closely related molecules remains a major challenge which SUMOylation alters protein function appears to be in the engineering of binding proteins and inhibitors. Here we through SUMO-mediated interactions with other proteins con- report the development of highly selective inhibitors of small ubi- taining a short peptide motif known as a SUMO-interacting motif quitin-related modifier (SUMO) family proteins. SUMOylation is (SIM) (4, 7, 8). involved in the regulation of diverse cellular processes. Functional There are few inhibitors of SUMO/SIM interactions, a defi- differences between two major SUMO isoforms in humans, SUMO1 ciency that limits our ability to finely dissect SUMO biology. In and SUMO2∕3, are thought to arise from distinct interactions the only reported example of such an inhibitor, a SIM-containing mediated by each isoform with other proteins containing SUMO- linear peptide was used to inhibit SUMO/SIM interactions, estab- interacting motifs (SIMs). However, the roles of such isoform- lishing their importance in coordinating DNA repair by nonho- specific interactions are largely uncharacterized due in part to the mologous end joining (9). -
Stromal Senp1 Promotes Mouse Early Folliculogenesis by Regulating BMP4
Tan et al. Cell Biosci (2017) 7:36 DOI 10.1186/s13578-017-0163-5 Cell & Bioscience RESEARCH Open Access Stromal Senp1 promotes mouse early folliculogenesis by regulating BMP4 expression Shu Tan1†, Boya Feng2†, Mingzhu Yin1, Huanjiao Jenny Zhou1, Ge Lou3, Weidong Ji2, Yonghao Li4 and Wang Min1,2* Abstract Background: Mammalian folliculogenesis, maturation of the ovarian follicles, require both growth factors derived from oocyte and surrounding cells, including stromal cells. However, the mechanism by which stromal cells and derived factors regulate oocyte development remains unclear. Results: We observed that SENP1, a small ubiquitin-related modifer (SUMO)-specifc isopeptidase, was expressed in sm22α-positive stromal cells of mouse ovary. The sm22α-positive stromal cells tightly associated with follicle matura- tion. By using the sm22α-specifc Cre system, we show that mice with a stromal cell-specifc deletion of SENP1 exhibit attenuated stroma-follicle association, delayed oocyte growth and follicle maturation with reduced follicle number and size at early oocyte development, leading to premature ovarian failure at late stages of ovulating life. Mechanistic studies suggest that stromal SENP1 defciency induces down-regulation of BMP4 in stromal cells concomitant with decreased expression of BMP4 receptor BMPR1b and BMPR2 on oocytes. Conclusions: Our data support that protein SUMOylation-regulating enzyme SENP1 plays a critical role in early ovar- ian follicle development by regulating gene expression of BMP4 in stroma and stroma-oocyte communication. Background mechanisms, selected primordial follicles recruit a single Folliculogenesis is the maturation of the ovarian folli- layer of cuboidal granulosa cells with oocytes grow inside cle, a densely packed shell of somatic cells that contains to form primary follicles, which in turn mature into an immature oocyte. -
SENP1-Mediated Desumoylation of USP28 Regulated HIF-1Α
Du et al. Cancer Cell Int (2019) 19:4 https://doi.org/10.1186/s12935-018-0722-9 Cancer Cell International PRIMARY RESEARCH Open Access SENP1‑mediated deSUMOylation of USP28 regulated HIF‑1α accumulation and activation during hypoxia response Shi‑chun Du1†, Lan Zhu2†, Yu‑xing Wang3†, Jie Liu3, Die Zhang3, Yu‑lu Chen3, Qing Peng4, Wei Liu2* and Bin Liu3* Abstract Background: The ubiquitin-specifc protease 28 (USP28) is an oncogenic deubiquitinase, which plays a critical role in tumorigenesis via antagonizing the ubiquitination and degradation of tumor suppressor protein FBXW7-mediated oncogenic substrates. USP28 controls hypoxia-dependent angiogenesis and metastasis by preventing FBXW7- dependent hypoxia-inducible transcription factor-1α (HIF-1α) degradation during hypoxia. However, it remains unclear how USP28 activation and HIF-1α signaling are coordinated in response to hypoxia. Methods: The in vitro deubiquitinating activity assay was used to determine the regulation of USP28 by hypoxia. The co-immunoprecipitation and GST Pull-down assays were used to determine the interaction between USP28 and SENP1. The in vivo deSUMOylation assay was performed to determine the regulation of USP28 by SENP1. The lucif‑ erase reporter assay was used to determine the transcriptional activity of HIF-1α. Results: Here, we report that USP28 is a SUMOylated protein in normoxia with moderate deubiquitinating activity towards HIF-1α in vitro, while hypoxia and HIF-1α activate USP28 through SENP1-mediated USP28 deSUMOylation to further accumulate HIF-1α protein in cells. In agreement with this, a SUMOylation mutant USP28 showed enhanced ability to increase HIF-1α level as well as control the transcriptional activity of HIF-1α. -
Understanding and Exploiting Post-Translational Modifications for Plant Disease Resistance
biomolecules Review Understanding and Exploiting Post-Translational Modifications for Plant Disease Resistance Catherine Gough and Ari Sadanandom * Department of Biosciences, Durham University, Stockton Road, Durham DH1 3LE, UK; [email protected] * Correspondence: [email protected]; Tel.: +44-1913341263 Abstract: Plants are constantly threatened by pathogens, so have evolved complex defence signalling networks to overcome pathogen attacks. Post-translational modifications (PTMs) are fundamental to plant immunity, allowing rapid and dynamic responses at the appropriate time. PTM regulation is essential; pathogen effectors often disrupt PTMs in an attempt to evade immune responses. Here, we cover the mechanisms of disease resistance to pathogens, and how growth is balanced with defence, with a focus on the essential roles of PTMs. Alteration of defence-related PTMs has the potential to fine-tune molecular interactions to produce disease-resistant crops, without trade-offs in growth and fitness. Keywords: post-translational modifications; plant immunity; phosphorylation; ubiquitination; SUMOylation; defence Citation: Gough, C.; Sadanandom, A. 1. Introduction Understanding and Exploiting Plant growth and survival are constantly threatened by biotic stress, including plant Post-Translational Modifications for pathogens consisting of viruses, bacteria, fungi, and chromista. In the context of agriculture, Plant Disease Resistance. Biomolecules crop yield losses due to pathogens are estimated to be around 20% worldwide in staple 2021, 11, 1122. https://doi.org/ crops [1]. The spread of pests and diseases into new environments is increasing: more 10.3390/biom11081122 extreme weather events associated with climate change create favourable environments for food- and water-borne pathogens [2,3]. Academic Editors: Giovanna Serino The significant estimates of crop losses from pathogens highlight the need to de- and Daisuke Todaka velop crops with disease-resistance traits against current and emerging pathogens. -
SUMO, a Small, but Powerful, Regulator of Double- Strand Break Repair Garvin, Alexander; Morris, Jo
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Birmingham Research Portal SUMO, a small, but powerful, regulator of double- strand break repair Garvin, Alexander; Morris, Jo DOI: 10.1098/rstb.2016.0281 License: Creative Commons: Attribution (CC BY) Document Version Publisher's PDF, also known as Version of record Citation for published version (Harvard): Garvin, AJ & Morris, JR 2017, 'SUMO, a small, but powerful, regulator of double-strand break repair', Royal Society of London. Proceedings B. Biological Sciences, vol. 372, no. 1731, 20160281. https://doi.org/10.1098/rstb.2016.0281 Link to publication on Research at Birmingham portal General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. •Users may freely distribute the URL that is used to identify this publication. •Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research. •User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain. Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document. -
Progress in the Discovery of Small Molecule Modulators of Desumoylation
Curr. Issues Mol. Biol. (2020) 35: 17-34. Progress in the Discovery of Small Molecule Modulators of DeSUMOylation Shiyao Chen, Duoling Dong, Weixiang Xin and Huchen Zhou* School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China. *Correspondence: [email protected] htps://doi.org/10.21775/cimb.035.017 Abstract protein–protein interactions, gene transcription, SUMOylation and DeSUMOylation are reversible genome integrity, and DNA replication and repair protein post-translational modifcation (PTM) (Wilkinson and Henley, 2010; Vierstra, 2012; processes involving small ubiquitin-like modifer Bailey et al., 2016). In 1995, Meluh and Koshland (SUMO) proteins. Tese processes have indis- (1995) identifed Smt3 in Saccharomyces cerevi- pensable roles in various cellular processes, such siae, which is the earliest report within this fled. as subcellular localization, gene transcription, and Two years later, based on the sequence similarity DNA replication and repair. Over the past decade, between ubiquitin and a new 11.5-kDa protein, increasing atention has been given to SUMO- ubiquitin/SMT3, the name SUMO was formally related pathways as potential therapeutic targets. proposed for the frst time (Mahajan et al., 1997). Te Sentrin/SUMO-specifc protease (SENP), Although SUMO modifcation is closely which is responsible for deSUMOylation, has related to the progression of various diseases, such been proposed as a potential therapeutic target as cancers and cardiac disorders, it has aroused in the treatment of cancers and cardiac disorders. increasing atention as a potential therapeutic target Unfortunately, no SENP inhibitor has yet reached in recent years, especially concerning the Sentrin/ clinical trials. In this review, we focus on advances SUMO-specifc protease (SENP), which is the key in the development of SENP inhibitors in the past regulator of deSUMOylation. -
Ginkgolic Acid, a Sumoylation Inhibitor, Promotes Adipocyte
www.nature.com/scientificreports OPEN Ginkgolic acid, a sumoylation inhibitor, promotes adipocyte commitment but suppresses Received: 25 October 2017 Accepted: 15 January 2018 adipocyte terminal diferentiation Published: xx xx xxxx of mouse bone marrow stromal cells Huadie Liu1,2, Jianshuang Li2, Di Lu2, Jie Li1,2, Minmin Liu 3, Yuanzheng He4, Bart O. Williams2, Jiada Li1 & Tao Yang 2 Sumoylation is a post-translational modifcation process having an important infuence in mesenchymal stem cell (MSC) diferentiation. Thus, sumoylation-modulating chemicals might be used to control MSC diferentiation for skeletal tissue engineering. In this work, we studied how the diferentiation of mouse bone marrow stromal cells (mBMSCs) is afected by ginkgolic acid (GA), a potent sumoylation inhibitor also reported to inhibit histone acetylation transferase (HAT). Our results show that GA promoted the diferentiation of mBMSCs into adipocytes when cultured in osteogenic medium. Moreover, mBMSCs pre-treated with GA showed enhanced pre-adipogenic gene expression and were more efciently diferentiated into adipocytes when subsequently cultured in the adipogenic medium. However, when GA was added at a later stage of adipogenesis, adipocyte maturation was markedly inhibited, with a dramatic down-regulation of multiple lipogenesis genes. Moreover, we found that the efects of garcinol, a HAT inhibitor, difered from those of GA in regulating adipocyte commitment and adipocyte maturation of mBMSCs, implying that the GA function in adipogenesis is likely through its activity as a sumoylation inhibitor, not as a HAT inhibitor. Overall, our studies revealed an unprecedented role of GA in MSC diferentiation and provide new mechanistic insights into the use of GA in clinical applications. -
Sumoylation and Phosphorylation Cross-Talk in Hepatocellular Carcinoma
Review Article SUMOylation and phosphorylation cross-talk in hepatocellular carcinoma Maria Lauda Tomasi, Komal Ramani Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA Contributions: (I) Conception and design: All authors; (II) Administrative support: All authors; (III) provision of study materials or patients: All authors; (IV) Collection and assembly of data: All authors; (V) Data analysis and interpretation: All authors; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors. Correspondence to: Maria Lauda Tomasi, PhD; Komal Ramani, PhD. Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA. Email: [email protected]; [email protected]. Abstract: Hepatocellular carcinoma (HCC) is a primary malignancy of the liver and occurs predominantly in patients with underlying chronic liver disease and cirrhosis. The large spectrum of protein post- translational modification (PTM) includes numerous critical signaling events that occur during neoplastic transformation. PTMs occur to nearly all proteins and increase the functional diversity of proteins. We have reviewed the role of two major PTMs, SUMOylation and phosphorylation, in the altered signaling of key players in HCC. SUMOylation is a PTM that involves addition of a small ubiquitin-like modifiers (SUMO) group to proteins. It is known to regulate protein stability, protein-protein interactions, trafficking and transcriptional activity. The major pathways that are regulated by SUMOylation and may influence HCC are regulation of transcription, cell growth pathways associated with B-cell lymphoma 2 (Bcl-2) and methionine adenosyltransferases (MAT), oxidative stress pathways [nuclear erythroid 2-related factor 2 (Nrf2)], tumor suppressor pathways (p53), hypoxia-inducible signaling [hypoxia-inducible factor-1 (HIF-1)], glucose and lipid metabolism, nuclear factor kappa B (NF-κB) and β-Catenin signaling. -
The Cycle of Protein Engineering: Bioinformatics Design of Two Dimeric Proteins and Computational Design of a Small Globular Domain
The Cycle of Protein Engineering: Bioinformatics Design of Two Dimeric Proteins and Computational Design of a Small Globular Domain DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Venuka Durani, M.Sc. Graduate Program in Chemistry The Ohio State University 2012 Dissertation Committee: Thomas J. Magliery, Advisor Ross E. Dalbey Karin Musier-Forsyth William C. Ray Copyright by Venuka Durani 2012 Abstract The protein folding problem is an ongoing challenge, and even though there have been significant advances in our understanding of proteins, accurately predicting the effect of amino acid mutations on the structure and stability of a protein remains a challenge. This makes the task of engineering proteins to suit our purposes labor intensive as significant trial and error is involved. In this thesis, we have explored possibilities of better understanding and if possible improving some bioinformatics and computational methods to study proteins and also to engineer them. A significant portion of this thesis is based on bioinformatics approaches involving consensus and correlation analyses of multiple sequence alignments. We have illustrated how consensus and correlation metrics can be calculated and analyzed to explore various aspects of protein structure. Proteins triosephosphate isomerase and Cu, Zn superoxide dismutase were studied using these approaches and we found that a significant amount of information about a protein fold is encoded at the consensus level; however, the effect of amino acid correlations, while subtle, is significant nonetheless and some of the failures of consensus approach can be attributed to broken amino acid correlations. -
Heat Shock Protein 27 Is Involved in SUMO-2&Sol
Oncogene (2009) 28, 3332–3344 & 2009 Macmillan Publishers Limited All rights reserved 0950-9232/09 $32.00 www.nature.com/onc ORIGINAL ARTICLE Heat shock protein 27 is involved in SUMO-2/3 modification of heat shock factor 1 and thereby modulates the transcription factor activity M Brunet Simioni1,2, A De Thonel1,2, A Hammann1,2, AL Joly1,2, G Bossis3,4,5, E Fourmaux1, A Bouchot1, J Landry6, M Piechaczyk3,4,5 and C Garrido1,2,7 1INSERM U866, Dijon, France; 2Faculty of Medicine and Pharmacy, University of Burgundy, Dijon, Burgundy, France; 3Institut de Ge´ne´tique Mole´culaire UMR 5535 CNRS, Montpellier cedex 5, France; 4Universite´ Montpellier 2, Montpellier cedex 5, France; 5Universite´ Montpellier 1, Montpellier cedex 2, France; 6Centre de Recherche en Cance´rologie et De´partement de Me´decine, Universite´ Laval, Quebec City, Que´bec, Canada and 7CHU Dijon BP1542, Dijon, France Heat shock protein 27 (HSP27) accumulates in stressed otherwise lethal conditions. This stress response is cells and helps them to survive adverse conditions. We have universal and is very well conserved through evolution. already shown that HSP27 has a function in the Two of the most stress-inducible HSPs are HSP70 and ubiquitination process that is modulated by its oligomeriza- HSP27. Although HSP70 is an ATP-dependent chaper- tion/phosphorylation status. Here, we show that HSP27 is one induced early after stress and is involved in the also involved in protein sumoylation, a ubiquitination- correct folding of proteins, HSP27 is a late inducible related process. HSP27 increases the number of cell HSP whose main chaperone activity is to inhibit protein proteins modified by small ubiquitin-like modifier aggregation in an ATP-independent manner (Garrido (SUMO)-2/3 but this effect shows some selectivity as it et al., 2006). -
28569748.Pdf
ARTICLE Received 18 Aug 2016 | Accepted 29 Mar 2017 | Published 1 Jun 2017 DOI: 10.1038/ncomms15426 OPEN The critical role of SENP1-mediated GATA2 deSUMOylation in promoting endothelial activation in graft arteriosclerosis Cong Qiu1,2, Yuewen Wang1,2, Haige Zhao3, Lingfeng Qin4,5, Yanna Shi1,2, Xiaolong Zhu1,2, Lin Song1,2, Xiaofei Zhou1,2, Jian Chen1, Hong Zhou1, Haifeng Zhang4,5, George Tellides4,5, Wang Min4,5,6 & Luyang Yu1,2 Data from clinical research and our previous study have suggested the potential involvement of SENP1, the major protease of post-translational SUMOylation, in cardiovascular disorders. Here, we investigate the role of SENP1-mediated SUMOylation in graft arteriosclerosis (GA), the major cause of allograft failure. We observe an endothelial-specific induction of SENP1 and GATA2 in clinical graft rejection specimens that show endothelial activation-mediated vascular remodelling. In mouse aorta transplantation GA models, endothelial-specific SENP1 knockout grafts demonstrate limited neointima formation with attenuated leukocyte recruitment, resulting from diminished induction of adhesion molecules in the graft endothelium due to increased GATA2 SUMOylation. Mechanistically, inflammation-induced SENP1 promotes the deSUMOylation of GATA2 and IkBa in endothelial cells, resulting in increased GATA2 stability, promoter-binding capability and NF-kB activity, which leads to augmented endothelial activation and inflammation. Therefore, upon inflammation, endothelial SENP1-mediated SUMOylation drives GA by regulating the synergistic effect of GATA2 and NF-kB and consequent endothelial dysfunction. 1 College of Life Sciences, Institute of Genetics and Regenerative Biology, Zhejiang University, Hangzhou, Zhejiang 310058, China. 2 Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, Zhejiang 310058, China.