Eugene Garfield's Scholarly Impact
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Visualizing the Context of Citations Referencing Papers Published by Eugene Garfield: a New Type of Keyword Co- Occurrence Analysis
Scientometrics https://doi.org/10.1007/s11192-017-2591-8 Visualizing the context of citations referencing papers published by Eugene Garfield: a new type of keyword co- occurrence analysis 1 2 3 Lutz Bornmann • Robin Haunschild • Sven E. Hug Received: 4 July 2017 Ó The Author(s) 2017. This article is an open access publication Abstract During Eugene Garfield’s (EG’s) lengthy career as information scientist, he published about 1500 papers. In this study, we use the impressive oeuvre of EG to introduce a new type of bibliometric networks: keyword co-occurrences networks based on the context of citations, which are referenced in a certain paper set (here: the papers published by EG). The citation context is defined by the words which are located around a specific citation. We retrieved the citation context from Microsoft Academic. To interpret and compare the results of the new network type, we generated two further networks: co- occurrence networks which are based on title and abstract keywords from (1) EG’s papers and (2) the papers citing EG’s publications. The comparison of the three networks suggests that papers of EG and citation contexts of papers citing EG are semantically more closely related to each other than to titles and abstracts of papers citing EG. This result accords with the use of citations in research evaluation that is based on the premise that citations reflect the cognitive influence of the cited on the citing publication. Keywords Bibliometrics Á Eugene Garfield Á Citation context analysis Á Co-occurrence network & Lutz Bornmann [email protected] Robin Haunschild [email protected] Sven E. -
Of Eugene Garfield's Publications
Scientometrics https://doi.org/10.1007/s11192-017-2608-3 Reference publication year spectroscopy (RPYS) of Eugene Garfield’s publications 1 2 3 Lutz Bornmann • Robin Haunschild • Loet Leydesdorff Received: 26 June 2017 Ó The Author(s) 2017. This article is an open access publication Abstract Which studies, theories, and ideas have influenced Eugene Garfield’s scientific work? Recently, the method reference publication year spectroscopy (RPYS) has been introduced, which can be used to answer this and related questions. Since then, several studies have been published dealing with the historical roots of research fields and sci- entists. The program CRExplorer (http://www.crexplorer.net) was specifically developed for RPYS. In this study, we use this program to investigate the historical roots of Eugene Garfield’s oeuvre. Keywords Cited references Á Reference publication year spectroscopy Á Eugene Garfield Á Historical roots Á RPYS Á Pioneer Á Bibliometrics Introduction Bibliometrics has become a central component of research evaluation. Field-normalized indicators are used to assess the scientific performance of institutions and countries. Individual researchers are well informed about their h index. The development to this & Lutz Bornmann [email protected] Robin Haunschild [email protected] Loet Leydesdorff [email protected] 1 Division for Science and Innovation Studies, Administrative Headquarters of the Max Planck Society, Hofgartenstr. 8, 80539 Munich, Germany 2 Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany 3 Amsterdam School of Communication Research (ASCoR), University of Amsterdam, PO Box 15793, 1001 NG Amsterdam, The Netherlands 123 Scientometrics prominence of bibliometrics had not been possible without the groundbreaking work of Eugene Garfield (EG). -
Climate Change: How Do We Know We're Not Wrong? Naomi Oreskes
Changing Planet: Past, Present, Future Lecture 4 – Climate Change: How Do We Know We’re Not Wrong? Naomi Oreskes, PhD 1. Start of Lecture Four (0:16) [ANNOUNCER:] From the Howard Hughes Medical Institute...The 2012 Holiday Lectures on Science. This year's lectures: "Changing Planet: Past, Present, Future," will be given by Dr. Andrew Knoll, Professor of Organismic and Evolutionary Biology at Harvard University; Dr. Naomi Oreskes, Professor of History and Science Studies at the University of California, San Diego; and Dr. Daniel Schrag, Professor of Earth and Planetary Sciences at Harvard University. The fourth lecture is titled: Climate Change: How Do We Know We're Not Wrong? And now, a brief video to introduce our lecturer Dr. Naomi Oreskes. 2. Profile of Dr. Naomi Oreskes (1:14) [DR. ORESKES:] One thing that's really important for all people to understand is that the whole notion of certainty is mistaken, and it's something that climate skeptics and deniers and the opponents of evolution really exploit. Many of us think that scientific knowledge is certain, so therefore if someone comes along and points out the uncertainties in a certain scientific body of knowledge, we think that undermines the science, we think that means that there's a problem in the science, and so part of my message is to say that that view of science is incorrect, that the reality of science is that it's always uncertain because if we're actually doing research, it means that we're asking questions, and if we're asking questions, then by definition we're asking questions about things we don't already know about, so uncertainty is part of the lifeblood of science, it's something we need to embrace and realize it's a good thing, not a bad thing. -
“Hard-Won” Consensus Brent Ranalli
Ranalli • Climate SCienCe, ChaRaCteR, and the “haRd-Won” ConSenSuS Brent Ranalli Climate Science, Character, and the “Hard-Won” Consensus ABSTRACT: What makes a consensus among scientists credible and convincing? This paper introduces the notion of a “hard-won” consensus and uses examples from recent debates over climate change science to show that this heuristic stan- dard for evaluating the quality of a consensus is widely shared. The extent to which a consensus is “hard won” can be understood to depend on the personal qualities of the participating experts; the article demonstrates the continuing util- ity of the norms of modern science introduced by Robert K. Merton by showing that individuals on both sides of the climate science debate rely intuitively on Mertonian ideas—interpreted in terms of character—to frame their arguments. INTRodUCTIoN he late Michael Crichton, science fiction writer and climate con- trarian, once remarked: “Whenever you hear the consensus of Tscientists agrees on something or other, reach for your wallet, because you’re being had. In science consensus is irrelevant. What is relevant is reproducible results” (Crichton 2003). Reproducibility of results and other methodological criteria are indeed the proper basis for scientific judgments. But Crichton is wrong to say that consensus is irrel- evant. Consensus among scientists serves to certify facts for the lay public.1 Those on the periphery of the scientific enterprise (i.e., policy makers and the public), who don’t have the time or the expertise or the equipment to check results for themselves, necessarily rely on the testimony of those at the center. -
The Consensus on Anthropogenic Global Warming Matters
BSTXXX10.1177/0270467617707079Bulletin of Science, Technology & SocietyPowell 707079research-article2017 Article Bulletin of Science, Technology & Society 2016, Vol. 36(3) 157 –163 The Consensus on Anthropogenic © The Author(s) 2017 Reprints and permissions: sagepub.com/journalsPermissions.nav Global Warming Matters DOI:https://doi.org/10.1177/0270467617707079 10.1177/0270467617707079 journals.sagepub.com/home/bst James Lawrence Powell1 Abstract Skuce et al., responding to Powell, title their article, “Does It Matter if the Consensus on Anthropogenic Global Warming Is 97% or 99.99%?” I argue that the extent of the consensus does matter, most of all because scholars have shown that the stronger the public believe the consensus to be, the more they support the action on global warming that human society so desperately needs. Moreover, anyone who knows that scientists once thought that the continents are fixed in place, or that the craters of the Moon are volcanic, or that the Earth cannot be more than 100 million years old, understands that a small minority has sometimes turned out to be right. But it is hard to think of a case in the modern era in which scientists have been virtually unanimous and wrong. Moreover, as I show, the consensus among publishing scientists is demonstrably not 97%. Instead, five surveys of the peer-reviewed literature from 1991 to 2015 combine to 54,195 articles with an average consensus of 99.94%. Keywords global warming, climate change, consensus, peer review, history of science Introduction Consensus Skuce et al. (2016, henceforth S16), responding to Powell What does consensus in science mean and how can it best be (2016), ask, “Does it matter if the consensus on anthropo- measured? The Oxford English Dictionary (2016) defines genic global warming is 97% or 99.99%?” consensus as “Agreement in opinion; the collective unani- Of course it matters. -
Perceptions of Science in America
PERCEPTIONS OF SCIENCE IN AMERICA A REPORT FROM THE PUBLIC FACE OF SCIENCE INITIATIVE THE PUBLIC FACE OF SCIENCE PERCEPTIONS OF SCIENCE IN AMERICA american academy of arts & sciences Cambridge, Massachusetts © 2018 by the American Academy of Arts & Sciences All rights reserved. isbn: 0-87724-120-1 This publication is available online at http://www.publicfaceofscience.org. The views expressed in this publication are those held by the contributors and are not necessarily those of the Officers and Members of the American Academy of Arts and Sciences. Please direct inquiries to: American Academy of Arts & Sciences 136 Irving Street Cambridge ma 02138-1996 Telephone: 617-576-5000 Fax: 617-576-5050 Email: [email protected] Web: www.amacad.org CONTENTS Preface v Top Three Takeaways vii Introduction 1 SECTION 1: General Perceptions of Science 4 Confidence in Scientific Leaders Remains Relatively Stable 4 A Majority of Americans Views Scientific Research as Beneficial . 6 . But Many are Concerned about the Pace of Change 7 Americans Express Strong Support for Public Investment in Research 8 Americans Support an Active Role for Science and Scientists in Public Life 10 Scientists Should Play a Major Role in Shaping Public Policy 11 Discussion and Research Considerations 12 SECTION 2: Demographic Influences on General Views of Science 14 Confidence in Scientific Leaders Varies Based on Demographics and Other Factors 14 Higher Educational Attainment Correlates with Positive Perceptions of Science 16 Trust in Scientists Varies Based on Education and Politics 18 Discussion and Research Considerations 20 SECTION 3: Case Studies of Perceptions on Specific Science Topics 22 There is No Single Anti-Science Population . -
On July 15, 1955, Dr. Eugene Garfield Revolutionized Research with His Concept of Citation Indexing and Searching
Sunday, July 12, 2009 • CHICAGO ON JULY 15, 1955, DR. EUGENE GARFIELD REVOLUTIONIZED RESEARCH WITH HIS CONCEPT OF CITATION INDEXING AND SEARCHING. With the publication of his ground-breaking paper “Citation Indexes for Science: A New Dimension in Documentation through Association of Ideas,” Dr. Garfi eld laid the foundation for what is now, Web of Science®. To this day, only Web of Science® offers a true cited reference index which is still the best tool for discovery and the only method of retrieving accurate citation counts. FOR REAL KNOWLEDGE : VISIT : BOOTH #3616 isiwebofknowledge.com/realfacts REAL FACTS : REAL NUMBERS : REAL KNOWLEDGE Page 16 • Cognotes Sunday, July 12, 2009 • CHICAGO Patricia Martin to Speak Celebrate the Coretta Scott King Awards Anniversary at LLAMA President’s ALA’s Coretta Scott King Book imprint of Boyds Mills Press, Inc. partners who work with youth. Program Awards Committee invites you to Three Illustrator Honor Books were • Creative opportunities for commu- celebrate their 40th anniversary. Be- also selected: We Are the Ship: The Story nity involvement: Intergenerational Author and consultant Patricia ginning with a special program “Lift of Negro League Baseball, written and il- book discussions, community-wide Martin will speak at the LLAMA Every Voice and Read: Everything you lustrated by Kadir Nelson and published reading programs, and more. President’s Program today, 1:30 – wanted to know about the Coretta Scott by Disney-Jump at the Sun, an imprint Registration for this special event is 3:00 pm at the Fairmont Hotel In- King Book Award titles, and more,” and of Disney Book Group; The Moon Over $100 and includes a copy of The Coretta ternational Ballroom. -
Google Scholar: the New Generation of Citation Indexes
Libri, 2005, vol. 55, pp. 170–180 Copyright Saur 2005 ______________________________________________ Printed in Germany · All rights reserved Libri ISSN 0024-2667 Google Scholar: The New Generation of Citation Indexes ALIREZA NORUZI Department of Library and Information Science, University of Tehran, Tehran, Iran Google Scholar (http://scholar.google.com) provides a new an overview of how to use Google Scholar for citation method of locating potentially relevant articles on a given analysis and identifies advanced search techniques not well subject by identifying subsequent articles that cite a pre- documented by Google Scholar. This study also compares viously published article. An important feature of Google the citation counts provided by Web of Science and Google Scholar is that researchers can use it to trace interconnec- Scholar for articles in the field of “Webometrics.” It makes tions among authors citing articles on the same topic and to several suggestions for improving Google Scholar. Finally, it determine the frequency with which others cite a specific concludes that Google Scholar provides a free alternative or article, as it has a “cited by" feature. This study begins with complement to other citation indexes. Background of the study and relating them to each other was difficult. The proposed retrieval solution for the Web has been Eugene Garfield first outlined the idea of a uni- called a “Web Citation Index” (Eysenbach and fied citation index to the literature of science in Diepgen 1998). In effect, Google Scholar builds 1955. “Citation indexes resolve semantic prob- something similar to the Science Citation Index lems associated with traditional subject indexes (SCI), which was proposed 50 years ago for paper by using citation symbology rather than words to publishing, and provides the first Web citation describe the content of a document” (Weinstock index. -
(RPYS) of Eugene Garfield's Publications
Reference Publication Year Spectroscopy (RPYS) of Eugene Garfield’s publications Lutz Bornmann*, Robin Haunschild**, Loet Leydesdorff*** * Division for Science and Innovation Studies, Administrative Headquarters of the Max Planck Society, Hofgartenstr. 8, 80539 Munich, Germany. Email: [email protected] ** Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany. Email: [email protected] *** Amsterdam School of Communication Research (ASCoR) University of Amsterdam, PO Box 15793, 1001 NG Amsterdam, The Netherlands. Email: [email protected] Abstract Which studies, theories, and ideas have influenced Eugene Garfield’s scientific work? Recently, the method reference publication year spectroscopy (RPYS) has been introduced, which can be used to answer this and related questions. Since then, several studies have been published dealing with the historical roots of research fields and scientists. The program CRExplorer (http://www.crexplorer.net) was specifically developed for RPYS. In this study, we use this program to investigate the historical roots of Eugene Garfield’s oeuvre. Key words Cited references, reference publication year spectroscopy, Eugene Garfield, historical roots, RPYS, pioneer, bibliometrics 2 1 Introduction Bibliometrics has become a central component of research evaluation. Field- normalized indicators are used to assess the scientific performance of institutions and countries. Individual researchers are well informed about their h index. The development to this prominence of bibliometrics had not been possible without the groundbreaking work of Eugene Garfield (EG). EG conceptualized the citation indexing in science and published the underlying concept in Science (Garfield, 1955). His invention of the index “revolutionized the world of scientific information and made him one of the most visionary figures in information science and scientometrics” (van Raan & Wouters, 2017). -
Scientific Consensus in Policy and the Media
An Exercise in Scientific Integrity: Scientific Consensus in Policy and the Media I. The Importance of Scientific Consensus Science is a collaborative effort; over time, the ideas of many scientists are synthesized, modified, clarified, and sometimes discarded altogether as our understanding improves. Thus, science can be viewed as a method of reaching a consensus about the ways in which the world works. 1. From what you know about the scientific method, the peer review process, and the development of scientific theories, what does it mean when a scientific consensus emerges in a given field? 2. When science can have an impact on issues such as public health, environmental sustainability, and areas in which people have ethical or religious concerns (e.g., evolution, cloning), how should the existence of a scientific consensus affect the development of policy? 3. How should policy makers react to a scientific consensus that is politically or economically inconvenient? II. Skepticism Toward Scientific Consensus There are two unfortunate obstacles to an accurate public understanding of scientific consensus and its importance. First is a tendency to exaggerate the number of times scientific consensus has been overturned. This comes, in part, from the excitement of scientists, the public, and the media to new and untested ideas. When these attention- grabbing ideas prove mistaken or exaggerated during subsequent scientific review, this can give the impression that science has “failed.” There are certainly times when scientific consensus has been overturned, but such instances are rare. 4. How should policy makers react to cutting-edge science? Are there situations where policy decisions should be made before a scientific consensus has been reached, or should governments wait until the science is very clear? 5. -
Understanding and Trusting Science
Understanding and Trusting Science MATTHEW H. SLATER, JOANNA K. HUXSTER, JULIA E. BRESTICKER (forthcoming in the Journal for the General Philosophy of Science) Science communication via testimony requires a certain level of trust. But in the context of ideologically-entangled scientific issues, trust is in short supply — particularly when the issues are politically “entangled”. In such cases, cultural values are better predictors than scientific literacy for whether agents trust the publicly-directed claims of the scientific community. In this paper, we argue that a common way of thinking about scientific literacy — as knowledge of particular scientific facts or concepts — ought to give way to a second-order understanding of science as a process as a more important notion for the public’s trust of science. 1. Introduction The state of scientific literacy in America and in other developed nations has been an issue of concern for many decades now (Miller 1983, 2004; Bodmer 1985; OECD 2007). More recently, a palpable anti-science sentiment has become more prominent (McCright and Dunlap 2011; Kahan 2015). This is reflected, in part, by the fact that large portions of the public remain intransigent with respect to their dismissal of policy-relevant science, such as that concerning the risks of anthropogenic climate change (Leiserowitz et al. 2016). Given the amount of attention that scientific education and communication have received in the intervening decades, these facts may seem a little surprising. Why have we failed to bring about better outcomes? A number of plausible explanations could be cited, from the persistence of problematic models of science communication to the increasing prominence of well-funded anti-science groups (Dunlap and McCright 2010, 2011; Brulle 2014). -
The History and Meaning of the Journal Impact Factor Eugene Garfield, Phd Duces the Number of Journals with the Identical Impact Rank
COMMENTARY The History and Meaning of the Journal Impact Factor Eugene Garfield, PhD duces the number of journals with the identical impact rank. However, it matters very little whether, for example, the im- FIRST MENTIONED THE IDEA OF AN IMPACT FACTOR IN pact of JAMA is quoted as 24.8 rather than 24.831. Science in 1955.1 With support from the National A journal’s impact factor is based on 2 elements: the nu- Institutes of Health, the experimental Genetics Citation merator, which is the number of citations in the current year Index was published, and that led to the 1961 publica- to items published in the previous 2 years, and the denomi- Ition of the Science Citation Index.2 Irving H. Sher and I cre- nator, which is the number of substantive articles and re- ated the journal impact factor to help select additional views published in the same 2 years. The impact factor could source journals. To do this we simply re-sorted the author just as easily be based on the previous year’s articles alone, citation index into the journal citation index. From this which would give even greater weight to rapidly changing simple exercise, we learned that initially a core group of fields. An impact factor could also take into account longer large and highly cited journals needed to be covered in the periods of citations and sources, but then the measure would new Science Citation Index (SCI). Consider that, in 2004, be less current. the Journal of Biological Chemistry published 6500 articles, whereas articles from the Proceedings of the National Acad- Scientometrics and Journalology emy of Sciences were cited more than 300 000 times that Citation analysis has blossomed over the past 4 decades.