Advanced Control of Continuous-Time LTI-SISO Systems

Total Page:16

File Type:pdf, Size:1020Kb

Advanced Control of Continuous-Time LTI-SISO Systems i “MAIN” — 2015/11/19 — 9:36 — page 9 — #9 i i i Part I Advanced Control of continuous-time LTI-SISO Systems 9 i i i i i “MAIN” — 2015/11/19 — 9:36 — page 10 — #10 i i i i i i i i “MAIN” — 2015/11/19 — 9:36 — page 11 — #11 i i i Chapter 1 Review of linear systems theory This chapter contains a short review of linear systems theory. The contents of this review roughly correspond with the materials of “Systems and Control 1”. Here and there however, new concepts are introduced that are relevant for the themes that will be treated further on in this course. 1.1 Descriptions and properties of linear systems The first step in feedback controller design is to develop a mathematical model of the process or plant to be controlled. This model should describe the relation between a given input signal u(t) and the system output signal y(t). In this review, we will discuss the modelling of linear, time-invariant (LTI), single-input-single-output (SISO) systems, as depicted in Fig 1.1. These models can be described by differing dynamic models. In the time domain, the physics of an LTI system can be modelled by a linear, ordinary differential equation (ODE) or by a state space model. In the frequency domain, the dynamics of the system can be described by a transfer function or by the frequency response (in the form of a Bode or a Nyquist diagram). u(t) y(t) System SISO linear time-invariant Figure 1.1: Basic setup of a LTI-SISO system. 1.1.1 Ordinary differential equations An ordinary differential equation describes the dynamic relation between the input u(t) and output y(t) of a LTI-SISO system. It takes on the general form (n) (n−1) (q) y (t) + an−1y (t) + ··· + a1y˙(t) + a0y(t) = bqu (t) + ··· + b1u˙(t) + b0u(t) , (1.1) 11 i i i i i “MAIN” — 2015/11/19 — 9:36 — page 12 — #12 i i i 12 CHAPTER 1. REVIEW OF LINEAR SYSTEMS THEORY with the initial conditions (n−1) y (0) = y0n, ··· , y(0) = y00, (1.2) (q) u (0) = u0q, ··· , u(0) = u00, (1.3) and with the convention dny(t) = y(n)(t). dtn The value y(n)(0) is not required in (1.2), since it can be calculated by (1.1) when (1.2) and (1.3) are given. Causality. In order to describe a technically realizable system, n ≥ q must hold. If this is not the case, and n < q, then y(t) depends on future values of u(t), which is physically impossible. This can be made more clear considering the example where n = 0 and q = 1. A certain choice of constants could then lead to the differential equation y(t) =u ˙(t). The problem with this equation is that in order to determine the output y(t0) at a certain time t0, a pure differentiation of the input signal at time t0 is necessary (see Fig 1.2). The physical realization of a pure differentiation requires knowledge of the value of u(t) for t > t0, which is physically impossible. u(t) u_(t0) =? t0 t Figure 1.2: To evaluate the output y(t0) of the system y(t) =u ˙(t), an instantaneous evaluation of u˙(t0) is needed. This evaluation is not possible without any information about u(t) for t > t0. Characteristic polynomial. The characteristic polynomial p(λ) of an ODE of the form (1.1), is given by n n−1 p(λ) = λ + an−1λ + ··· + a1λ + a0 = 0 . (1.4) (k) Notice that the characteristic polynomial only depends on the coefficients ak of the derivatives y (t) in (1.1) and not of the coefficients bk. The characteristic polynomial can be derived by using the homogeneous solution approach y(t) = ceλt (for uq(0) = 0, ··· , u(0) = 0 and c a constant) in the λt ODE. Thus, the solutions λi of 1.4 yield together with the approach y(t) = ce a solution for the homogenous ODE. The λi are called also called the roots of p(λ). These roots play an essential role in the analysis of the system dynamics, since they directly determine the natural response and transient response of the system. These partial solutions of the ODE are discussed next. i i i i i “MAIN” — 2015/11/19 — 9:36 — page 13 — #13 i i i 1.1. DESCRIPTIONS AND PROPERTIES OF LINEAR SYSTEMS 13 Basic ODE solution structure. The solution y(t) of an ODE is the sum of three partial solutions: the natural response, the transient response and the steady state response. This can be seen by considering inputs of the type X X i µmt u(t) = u¯i,mt e , (1.5) i m where µm and u¯i,m are real numbers or complex conjugate pairs (this ensures that u(t) is a real signal and has no imaginary part). Nearly all interesting input signals can be described by this class of inputs. In the following, some examples of inputs of this form are shown (see also Fig. 1.3). The convention is that u(t) = 0 for t < 0: 0t Step: i = 0, µm = 0 u(t) =u ¯1e =u ¯1σ(t) 0t Ramp: i = 1, µm = 0 u(t) =u ¯1te =u ¯1t jωt −jωt Sinusoids: i = 0, µm = ±jω u(t) = e + e = 2 cos(ωt) (−a+jω)t (−a−jω)t −at Damped Sinusoids: i = 0, µm = −a ± jω u(t) = e + e = 2e cos(ωt) u(t) u(t) u(t) u(t) t t t t (a) Step input (b) Ramp input (c) Sinusoidal input (d) Damped sinusoid P P i µmt Figure 1.3: Examples of inputs of the type u(t) = i j u¯i,mt e . For every input u(t) of the type above, the output y(t) can be computed analytically. It can be shown that the output consists of a natural response ynat(t) that appears due to the initial value of the system, and of a forced response yforced(t) that is caused by the input signal. The forced response itself consists of the transient response ytrans(t) and the steady state response yss(t). y(t) = ynat(t) + yforced(t) (1.6) | {z } | {z } natural response forced response (depending on initial conditions (depending on input but not on system input) but not on initial conditions) = ynat(t) + ytrans(t) + yss(t) (1.7) X λit X λit X X i µmt = y¯nati e + y¯transi e + y¯ssi,m t e . (1.8) i i i m It can be shown that the coefficients y¯nati , y¯transi and y¯ssi,m do not depend on time. Hence, the λit time behavior is only determined by the terms e (with λi are the solutions of the characteristic polynomial) and the terms tieµmt of the input. An important consequence is that if the real part of all λi is negative, then the natural response and the transient response will go to zero for t → ∞. The system output for t → ∞ is then solely represented by the steady state response. However, if at i i i i i “MAIN” — 2015/11/19 — 9:36 — page 14 — #14 i i i 14 CHAPTER 1. REVIEW OF LINEAR SYSTEMS THEORY least one λi has a positive real part, the natural and transient response will not die out and will grow unbounded. In addition, it is interesting to note that the coefficients y¯nati , y¯transi and y¯ssi,m can be interpreted as the intensity or the "amplitude" of the time-dependent exponential terms. It turns out that y¯transi depends on the input parameters u¯i,m and µm but not on the initial conditions (1.2) and (1.3). Hence, the transient behavior is triggered by the input, but evolves similarly to the natural response. The example of a (linearised) pendulum system can be used to illustrate the different components of the output response y(t). In this example the output is defined as the angle between the pendulum and the vertical axis, as shown in Fig. 1.4a. Suppose now that the pendulum has an initial non-zero displacement from its equilibrium position. Apart from gravity, no external forces are present. When released from its initial position, the pendulum will start an oscillating motion, that will fade out if any friction is present, until equilibrium is reached. This oscillating motion is described by the natural response ynat(t) (see Fig 1.4b) and is solely a function of the initial displacement and of the roots λi of the characteristic polynomial. ynat(t) y(t) t (a) Non-zero initial state (b) Natural response Figure 1.4: Natural response of a pendulum system. Suppose now that the initial displacement of the pendulum is zero (hence the natural response is zero), but that it is placed in a homogeneous wind field, that exerts an external force u(t) on the pendulum, as shown in Fig. 1.5a. The pendulum will be displaced from its equilibrium, following an oscillating motion, until the new equilibrium point is reached. This motion is described by the forced response yforced(t), shown in Fig. 1.5b. The transient response ytrans(t) describes the oscillating motion around the new equilibrium point, and the steady state response y(t) describes precisely this equilibrium point. Linearization. The state equations of a physical systems are in general nonlinear.
Recommended publications
  • Control Theory
    Control theory S. Simrock DESY, Hamburg, Germany Abstract In engineering and mathematics, control theory deals with the behaviour of dynamical systems. The desired output of a system is called the reference. When one or more output variables of a system need to follow a certain ref- erence over time, a controller manipulates the inputs to a system to obtain the desired effect on the output of the system. Rapid advances in digital system technology have radically altered the control design options. It has become routinely practicable to design very complicated digital controllers and to carry out the extensive calculations required for their design. These advances in im- plementation and design capability can be obtained at low cost because of the widespread availability of inexpensive and powerful digital processing plat- forms and high-speed analog IO devices. 1 Introduction The emphasis of this tutorial on control theory is on the design of digital controls to achieve good dy- namic response and small errors while using signals that are sampled in time and quantized in amplitude. Both transform (classical control) and state-space (modern control) methods are described and applied to illustrative examples. The transform methods emphasized are the root-locus method of Evans and fre- quency response. The state-space methods developed are the technique of pole assignment augmented by an estimator (observer) and optimal quadratic-loss control. The optimal control problems use the steady-state constant gain solution. Other topics covered are system identification and non-linear control. System identification is a general term to describe mathematical tools and algorithms that build dynamical models from measured data.
    [Show full text]
  • Notes on Allpass, Minimum Phase, and Linear Phase Systems
    DSPDSPDSPDSPDSPDSPDSPDSPDSPDSPDSP SignalDSP Processing (18-491 ) Digital DSPDSPDSPDSPDSPDSPDSP/18-691 S pring DSPDSP DSPSemester,DSPDSPDSP 2021 Allpass, Minimum Phase, and Linear Phase Systems I. Introduction In previous lectures we have discussed how the pole and zero locations determine the magnitude and phase of the DTFT of an LSI system. In this brief note we discuss three special cases: allpass, minimum phase, and linear phase systems. II. Allpass systems Consider an LSI system with transfer function z−1 − a∗ H(z) = 1 − az−1 Note that the system above has a pole at z = a and a zero at z = (1=a)∗. This means that if the pole is located at z = rejθ, the zero would be located at z = (1=r)ejθ. These locations are illustrated in the figure below for r = 0:6 and θ = π=4. Im[z] Re[z] As usual, the DTFT is the z-transform evaluated along the unit circle: j! H(e ) = H(z)jz=0 18-491 ZT properties and inverses Page 2 Spring, 2021 It is easy to obtain the squared magnitude of the frequency response by multiplying H(ej!) by its complex conjugate: 2 (e−j! − re−j!)(ej! − rej!) H(ej!) = H(ej!)H∗(ej!) = (1 − rejθe−j!)(1 − re−jθej!) (1 − rej(θ−!) − re−j(θ−!) + r2) = = 1 (1 − rej(θ−!) − re−j(θ−!) + r2) Because the squared magnitude (and hence the magnitude) of the transfer function is a constant independent of frequency, this system is referred to as an allpass system. A sufficient condition for the system to be allpass is for the poles and zeros to appear in \mirror-image" locations as they do in the pole-zero plot on the previous page.
    [Show full text]
  • EECS 451 LECTURE NOTES BASIC SYSTEM PROPERTIES What: Input X[N] → |SYSTEM| → Y[N] Output
    EECS 451 LECTURE NOTES BASIC SYSTEM PROPERTIES What: Input x[n] → |SYSTEM| → y[n] output. Why: Design the system to filter input x[n]. DEF: A system is LINEAR if these two properties hold: 1. Scaling: If x[n] → |SYS| → y[n], then ax[n] → |SYS| → ay[n] for: any constant a. NOT true if a varies with time (i.e., a[n]). 2. Superposition: If x1[n] → |SYS| → y1[n] and x2[n] → |SYS| → y2[n], Then: (ax1[n]+ bx2[n]) → |SYS| → (ay1[n]+ by2[n]) for: any constants a, b. NOT true if a or b vary with time (i.e., a[n], b[n]). EX: y[n]=3x[n−2]; y[n]= x[n+1]−nx[n]+2x[n−1]; y[n] = sin(n)x[n]. NOT: y[n]= x2[n]; y[n] = sin(x[n]); y[n]= |x[n]|; y[n]= x[n]/x[n − 1]. NOT: y[n]= x[n] + 1 (try it). This is called an affine system. HOW: If any nonlinear function of x[n], not linear. Nonlinear of just n OK. DEF: A system is TIME-INVARIANT if this property holds: If x[n] → |SYS| → y[n], then x[n − N] → |SYS| → y[n − N] for: any integer time delay N. NOT true if N varies with time (e.g., N(n)). EX: y[n]=3x[n − 2]; y[n] = sin(x[n]); y[n]= x[n]/x[n − 1]. NOT: y[n]= nx[n]; y[n]= x[n2]; y[n]= x[2n]; y[n]= x[−n]. HOW: If n appears anywhere other than in x[n], not time-invariant.
    [Show full text]
  • Method for Undershoot-Less Control of Non- Minimum Phase Plants Based on Partial Cancellation of the Non-Minimum Phase Zero: Application to Flexible-Link Robots
    Method for Undershoot-Less Control of Non- Minimum Phase Plants Based on Partial Cancellation of the Non-Minimum Phase Zero: Application to Flexible-Link Robots F. Merrikh-Bayat and F. Bayat Department of Electrical and Computer Engineering University of Zanjan Zanjan, Iran Email: [email protected] , [email protected] Abstract—As a well understood classical fact, non- minimum root-locus method [11], asymptotic LQG theory [9], phase zeros of the process located in a feedback connection waterbed effect phenomena [12], and the LTR problem cannot be cancelled by the corresponding poles of controller [13]. In the field of linear time-invariant (LTI) systems, since such a cancellation leads to internal instability. This the source of all of the above-mentioned limitations is that impossibility of cancellation is the source of many the non-minimum phase zero of the given process cannot limitations in dealing with the feedback control of non- be cancelled by unstable pole of the controller since such a minimum phase processes. The aim of this paper is to study cancellation leads to internal instability [14]. the possibility and usefulness of partial (fractional-order) cancellation of such zeros for undershoot-less control of During the past decades various methods have been non-minimum phase processes. In this method first the non- developed by researchers for the control of processes with minimum phase zero of the process is cancelled to an non-minimum phase zeros (see, for example, [15]-[17] arbitrary degree by the proposed pre-compensator and then and the references therein for more information on this a classical controller is designed to control the series subject).
    [Show full text]
  • Digital Signal Processing Lecture Outline Discrete-Time Systems
    Lecture Outline ESE 531: Digital Signal Processing ! Discrete Time Systems ! LTI Systems ! LTI System Properties Lec 3: January 17, 2017 ! Difference Equations Discrete Time Signals and Systems Penn ESE 531 Spring 2017 - Khanna Penn ESE 531 Spring 2017 - Khanna 2 Discrete Time Systems Discrete-Time Systems Penn ESE 531 Spring 2017 - Khanna 4 System Properties Examples ! Causality ! Causal? Linear? Time-invariant? Memoryless? " y[n] only depends on x[m] for m<=n BIBO Stable? ! Linearity ! Time Shift: " Scaled sum of arbitrary inputs results in output that is a scaled sum of corresponding outputs " x[n]y[n =] x[n-m]= x[n − m] " Ax [n]+Bx [n] # Ay [n]+By [n] 1 2 1 2 ! Accumulator: ! Memoryless " y[n] n " y[n] depends only on x[n] y[n] = x[k] ! Time Invariance ∑ k=−∞ " Shifted input results in shifted output " x[n-q] # y[n-q] ! Compressor (M>1): ! BIBO Stability y[n] x[Mn] " A bounded input results in a bounded output (ie. max signal value = exists for output if max ) Penn ESE 531 Spring 2017 - Khanna 5 Penn ESE 531 Spring 2017 - Khanna 6 1 Non-Linear System Example Spectrum of Speech ! Median Filter " y[n]=MED{x[n-k], …x[n+k]} Speech " Let k=1 " y[n]=MED{x[n-1], x[n], x[n+1]} Corrupted Speech Penn ESE 531 Spring 2017 - Khanna 7 Penn ESE 531 Spring 2017 - Khanna 8 Low Pass Filtering Low Pass Filtering Corrupted Speech LP-Filtered Speech Penn ESE 531 Spring 2017 - Khanna 9 Penn ESE 531 Spring 2017 - Khanna 10 Median Filtering LTI Systems Corrupted Speech Med-Filter Speech Penn ESE 531 Spring 2017 - Khanna 11 Penn ESE 531 Spring 2017 - Khanna
    [Show full text]
  • Feed-Forward Compensation of Non-Minimum Phase Systems
    Wright State University CORE Scholar Browse all Theses and Dissertations Theses and Dissertations 2018 Feed-Forward Compensation of Non-Minimum Phase Systems Venkatesh Dudiki Wright State University Follow this and additional works at: https://corescholar.libraries.wright.edu/etd_all Part of the Electrical and Computer Engineering Commons Repository Citation Dudiki, Venkatesh, "Feed-Forward Compensation of Non-Minimum Phase Systems" (2018). Browse all Theses and Dissertations. 2200. https://corescholar.libraries.wright.edu/etd_all/2200 This Thesis is brought to you for free and open access by the Theses and Dissertations at CORE Scholar. It has been accepted for inclusion in Browse all Theses and Dissertations by an authorized administrator of CORE Scholar. For more information, please contact [email protected]. FEED-FORWARD COMPENSATION OF NON-MINIMUM PHASE SYSTEMS A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering by VENKATESH DUDIKI BTECH, SRM University, 2016 2018 Wright State University Wright State University GRADUATE SCHOOL November 30, 2018 I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPER- VISION BY Venkatesh Dudiki ENTITLED FEED-FORWARD COMPENSATION OF NON-MINIMUM PHASE SYSTEMS BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science in Electrical En- gineering. Pradeep Misra, Ph.D. THESIS Director Brian Rigling, Ph.D. Chair Department of Electrical Engineering College of Engineering and Computer Science Committee on Final Examination Pradeep Misra, Ph.D. Luther Palmer,III, Ph.D. Kazimierczuk Marian K, Ph.D Barry Milligan, Ph.D Interim Dean of the Graduate School ABSTRACT Dudiki, Venkatesh.
    [Show full text]
  • MTHE/MATH 332 Introduction to Control
    1 Queen’s University Mathematics and Engineering and Mathematics and Statistics MTHE/MATH 332 Introduction to Control (Preliminary) Supplemental Lecture Notes Serdar Yuksel¨ April 3, 2021 2 Contents 1 Introduction ....................................................................................1 1.1 Introduction................................................................................1 1.2 Linearization...............................................................................4 2 Systems ........................................................................................7 2.1 System Properties...........................................................................7 2.2 Linear Systems.............................................................................8 2.2.1 Representation of Discrete-Time Signals in terms of Unit Pulses..............................8 2.2.2 Linear Systems.......................................................................8 2.3 Linear and Time-Invariant (Convolution) Systems................................................9 2.4 Bounded-Input-Bounded-Output (BIBO) Stability of Convolution Systems........................... 11 2.5 The Frequency Response (or Transfer) Function of Linear Time-Invariant Systems..................... 11 2.6 Steady-State vs. Transient Solutions............................................................ 11 2.7 Bode Plots................................................................................. 12 2.8 Interconnections of Systems..................................................................
    [Show full text]
  • EE 225A Digital Signal Processing Supplementary Material 1. Allpass
    EE 225A — DIGITAL SIGNAL PROCESSING — SUPPLEMENTARY MATERIAL 1 EE 225a Digital Signal Processing Supplementary Material 1. Allpass Sequences A sequence ha()n is said to be allpass if it has a DTFT that satisfies jw Ha()e = 1 . (1) Note that this is true iff jw * jw Ha()e Ha()e = 1 (2) which in turn is true iff * ha()n *ha(–n)d= ()n (3) which in turn is true iff * 1 H ()z H æö---- = 1. (4) a aèø* z For rational Z transforms, the latter relation implies that poles (and zeros) of Ha()z are cancelled * 1 * 1 by zeros (and poles) of H æö---- . In other words, if H ()z has a pole at zc= , then H æö---- must aèø a aèø z* z* have have a zero at the same zc= , in order for (4) to be possible. Note further that a zero of * 1 1 H æö---- at zc= is a zero of H ()z at z = ----- . Consequently, (4) implies that poles (and zeros) aèø a z* c* PROF. EDWARD A. LEE, DEPARTMENT OF EECS, UNIVERSITY OF CALIFORNIA, BERKELEY EE 225A — DIGITAL SIGNAL PROCESSING — SUPPLEMENTARY MATERIAL 2 have zeros (and poles) in conjugate-reciprocal locations, as shown below: 1/c* c Intuitively, since the DTFT is the Z transform evaluated on the unit circle, the effect on the mag- nitude due to any pole will be canceled by the effect on the magnitude of the corresponding zero. Although allpass implies conjugate-reciprocal pole-zero pairs, the converse is not necessarily true unless the appropriate constant multiplier is selected to get unity magnitude.
    [Show full text]
  • En-Sci-175-01
    UNCLASSIFIED/UNLIMITED Performance Limits in Control with Application to Communication Constrained UAV Systems Prof. Dr. Richard H. Middleton ARC Centre for Complex Dynamic Systems and Control The University of Newcastle, Callaghan NSW, Australia, 2308 [email protected] ABSTRACT The study of performance limitations in feedback control systems has a long history, commencing with Bode’s gain-phase and sensitivity integral formulae. This area of research focuses on questions of what aspects of closed loop performance can we reasonably demand, and what are the trade-offs or costs of achieving this performance. In particular, it considers concepts related to the inherent costs of stabilisation, limitations due to ‘non-minimum phase’ behaviour, time delays, bandwidth limitations etc. There are a range of results developed in the 90’s for multivariable linear systems, together with extensions to sampled data, non-linear systems. More recently, this work has been extended to consider communication limitations, such as bit-rate or signal to noise ratio limitations and quantization effects. This paper presents: (i) A review of work on performance limitations, including recent results; (ii) Results on impacts of communication constraints on feedback control performance; and (iii) Implications of these results on control of distributed UAVs in formation. 1.0 INTRODUCTION In many control applications it is crucial that the factors limiting the performance of the system are identified. For example, closed loop control performance may be limited due to the fact that the actuators are too slow, or too inaccurate (perhaps due to complex nonlinear effects, such as backlash and hysteresis), to support the desired objectives.
    [Show full text]
  • A Note on BIBO Stability
    1 A Note on BIBO Stability Michael Unser Abstract—The statements on the BIBO stability of continuous- imposes that the result of the convolution be continuous, anda time convolution systems found in engineering textbooks are second (Theorem 3) that characterizes the BIBO-stable filters often either too vague (because of lack of hypotheses) or in full generality. The mathematical derivations are presented mathematically incorrect. What is more troubling is that they usually exclude the identity operator. The purpose of this note in Section IV, where we also make the connection with known is to clarify the issue while presenting some fixes. In particular, results in harmonic analysis. we show that a linear shift-invariant system is BIBO-stable in We like to mention a similar clarification effort by Hans Fe- L the ∞-sense if and only if its impulse response is included in ichtinger, who proposes to limit the framework to convolution the space of bounded Radon measures, which is a superset of operators that are operating on C0(R) (a well-behaved subclass L1(R) (Lebesgue’s space of absolutely integrable functions). As we restrict the scope of this characterization to the convolution of bounded functions) in order to avoid pathologies [3]. This operators whose impulse response is a measurable function, we is another interesting point of view that is complementary to recover the classical statement. ours, as discussed in Section IV. II. BIBO STABILITY:THE CLASSICAL FORMULATION I. INTRODUCTION The convolution of two functions h,f : R → R is the A statement that is made in most courses on the theory of function usually specified by linear systems as well as in the English version of Wikipedia1 △ is that a convolution operator is stable in the BIBO sense t 7→ (h ∗ f)(t) = h(τ)f(t − τ)dτ (1) (bounded input and bounded output) if and only if its impulse ZR response is absolutely summable/integrable.
    [Show full text]
  • Controllability, Observability, Realizability, and Stability of Dynamic Linear Systems
    Electronic Journal of Differential Equations, Vol. 2009(2009), No. 37, pp. 1–32. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu CONTROLLABILITY, OBSERVABILITY, REALIZABILITY, AND STABILITY OF DYNAMIC LINEAR SYSTEMS JOHN M. DAVIS, IAN A. GRAVAGNE, BILLY J. JACKSON, ROBERT J. MARKS II Abstract. We develop a linear systems theory that coincides with the ex- isting theories for continuous and discrete dynamical systems, but that also extends to linear systems defined on nonuniform time scales. The approach here is based on generalized Laplace transform methods (e.g. shifts and con- volution) from the recent work [13]. We study controllability in terms of the controllability Gramian and various rank conditions (including Kalman’s) in both the time invariant and time varying settings and compare the results. We explore observability in terms of both Gramian and rank conditions and establish related realizability results. We conclude by applying this systems theory to connect exponential and BIBO stability problems in this general setting. Numerous examples are included to show the utility of these results. 1. Introduction In this paper, our goal is to develop the foundation for a comprehensive linear systems theory which not only coincides with the existing canonical systems theories in the continuous and discrete cases, but also to extend those theories to dynamical systems with nonuniform domains (e.g. the quantum time scale used in quantum calculus [9]). We quickly see that the standard arguments on R and Z do not go through when the graininess of the underlying time scale is not uniform, but we overcome this obstacle by taking an approach rooted in recent generalized Laplace transform methods [13, 19].
    [Show full text]
  • Supplementary Notes for ELEN 4810 Lecture 13 Analysis of Discrete-Time LTI Systems
    Supplementary Notes for ELEN 4810 Lecture 13 Analysis of Discrete-Time LTI Systems John Wright Columbia University November 21, 2016 Disclaimer: These notes are intended to be an accessible introduction to the subject, with no pretense at com- pleteness. In general, you can find more thorough discussions in Oppenheim’s book. Please let me know if you find any typos. Reading suggestions: Oppenheim and Schafer Sections 5.1-5.7. In this lecture, we discuss how the poles and zeros of a rational Z-transform H(z) combine to shape the frequency response H(ej!). 1 Frequency Response, Phase and Group Delay Recall that if x is the input to an LTI system with impulse response h[n], we have 1 X y[n] = x[k]h[n − k]; (1.1) k=−∞ a relationship which can be studied through the Z transform identity Y (z) = H(z)X(z) (1.2) (on ROC fhg \ ROC fxg), or, if h is stable, through the DTFT identity Y (ej!) = H(ej!)X(ej!): (1.3) This relationship implies that magnitudes multiply and phases add: jY (ej!)j = jH(ej!)jjX(ej!)j; (1.4) j! j! j! \Y (e ) = \H(e ) + \X(e ): (1.5) 1 The phase \· is only defined up to addition by an integer multiple of 2π. In the next two lectures, we will occasionally need to be more precise about the phase. The text uses the notation ARG[H(ej!)] j! for the unique value \H(e ) + 2πk lying in (π; π]: −π < ARG[H] ≤ π: (1.6) This gives a well-defined way of removing the 2π ambiguity in the phase.
    [Show full text]