Hidden Bifurcation in the Multispiral Chua Attractor Menacer Tidjani, René Lozi, Leon Chua

Total Page:16

File Type:pdf, Size:1020Kb

Hidden Bifurcation in the Multispiral Chua Attractor Menacer Tidjani, René Lozi, Leon Chua Hidden bifurcation in the Multispiral Chua Attractor Menacer Tidjani, René Lozi, Leon Chua To cite this version: Menacer Tidjani, René Lozi, Leon Chua. Hidden bifurcation in the Multispiral Chua Attractor. International journal of bifurcation and chaos in applied sciences and engineering , World Scientific Publishing, 2016, 26 (14), pp.1630039-1 1630023-26. 10.1142/S0218127416300391. hal-01488550 HAL Id: hal-01488550 https://hal.archives-ouvertes.fr/hal-01488550 Submitted on 13 Mar 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. January 6, 2017 11:8 WSPC/S0218-1274 1630039 Published in International Journal of Bifurcation and Chaos, Personal file Vol. 26, No. 14, (2016), 1630039-1 to 1630039-26 DOI 10.1142/S0218127416300391 Hidden Bifurcations in the Multispiral Chua Attractor Tidjani Menacer Department of Mathematics, University Mohamed Khider, Biskra, Algeria [email protected] Ren´eLozi Universit´eCˆote d’Azur, CNRS, LJAD, Parc Valrose 06108, Nice C´edex 02, France [email protected] Leon O. Chua Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, USA [email protected] Received August 20, 2016 We introduce a novel method revealing hidden bifurcations in the multispiral Chua attractor in the case where the parameter of bifurcation c which determines the number of spiral is discrete. This method is based on the core idea of the genuine Leonov and Kuznetsov method for searching hidden attractors (i.e. applying homotopy and numerical continuation) but used in a very different way. Such hidden bifurcations are governed by a homotopy parameter ε whereas c is maintained constant. This additional parameter which is absent from the initial problem is perfectly fitted to unfold the actual structure of the multispiral attractor. We study completely the multispiral Chua attractor, generated via sine function, and check numerically our method for odd and even values of c from 1 to 12. In addition, we compare the shape of the attractors obtained for the same value of parameter ε while varying the parameter c. Keywords: Chua circuit; multispiral attractors; hidden bifurcations. 1. Introduction differential equations which causes a sudden “qual- itative” or topological change in its behavior. The study of changes in the qualitative or topolog- However, when a system depends on a discrete ical structure of a given family of solutions of dif- parameter, no bifurcation can occur. In this article ferential equations which depends on a continuous we overcome this dilemma by, showing that in some parameter is known as bifurcation theory [Sat- cases, “hidden bifurcation” instead of conventional tinger, 1973; Lozi, 1975]. Initially the name “point bifurcation arises from a discrete parameter. of bifurcation” was defined as the value of the parameter for which the number of solutions of such The Chua attractor a family of differential equations is increased from 1.1. one to two, like the bifurcation of a branch of a Fifty years ago, the discovery of the first chaotic tree, or when a road divides suddenly in two dif- strange attractor by E. N. Lorenz [Lorenz, 1963], ferent ways. Nowadays bifurcation is understood introduced a drastic change in the mathematical as a small smooth change made to the parameter study of oscillations. Fifty years after, only few values (the bifurcation parameters) of a system of chaotic attractors involving differential equations page 1 January 6, 2017 11:8 WSPC/S0218-1274 1630039 remain actively explored. Among them Chua chaotic attractors belong either to the class of self- attractor is nowadays incredibly used, because of excited attractors or to the class of hidden attrac- both its realizations: electronic circuit or system tors [Leonov et al., 2011; Leonov & Kuznetsov, of differential equations can be combined for mul- 2011]. The basin of attraction of a self-excited tiple purposes [Duan et al., 2004]. Chua attractor attractor overlaps with the neighborhood of an equi- is the asymptotic attractor of solutions of the sys- librium point, therefore self-excited attractors are tem of differential equations modeling the dynam- very easy to be found. On the contrary a hidden ics of the Chua circuit. The Chua circuit is the attractor has a basin of attraction that does not simplest electronic circuit exhibiting chaos, and intersect with small neighborhoods of any equi- moreover possesses a very rich dynamical behav- librium points thereby making it very difficult to ior which was verified from numerous laboratory find; it is why one can call it hidden. Hidden experiments [Zhong & Ayrom, 1985], computer sim- attractors are important in engineering applications ulations [Matsumoto, 1984], and rigorous mathe- because they allow unexpected and potentially dis- matical analysis [Chua et al., 1986; Lozi & Ushiki, astrous responses to perturbations in a structure 1993]. L. Chua invented it in the fall of 1983 like an aircraft’s control systems (windup and anti- [Chua, 1992] when he was visiting T. Matsumoto windup), drilling systems and electrical machines at Waseda University (Tokyo, Japan). This elec- and in secure (chaotic) communications. In [Leonov, tronic circuit was mimicking directly on an oscillo- 2009b; Leonov et al., 2010], N. V. Kuznetsov and scope screen a chaotic signal. Its invention was due G. A. Leonov have proposed an effective method in response to the search of two unfulfilled quests for the numerical localization of hidden attractors in among many researchers on chaos concerning two multidimensional dynamical systems. This method wanting aspects of the Lorenz equations. The first is based on homotopy and numerical continuation. quest was to demonstrate chaos as a robust physi- They construct a sequence of similar systems such cal phenomenon, and not merely an artifact of com- that for the first (starting) system the initial data puter round-off errors. The second one was to prove for numerical computation of oscillating solution that a strange attractor, which was obtained by (starting oscillation) can be obtained analytically. computer simulation, is indeed chaotic in a rigorous Then the transformation of this starting solution mathematical sense. This circuit was the first real is tracked numerically in passing from one system (concrete) example of a physical device exhibiting to another. The first example of a hidden chaotic nonperiodic oscillations. strange attractor was found in the Chua attractor Since that discovery the Chua circuit has been [Leonov et al., 2012]. generalized to several versions. One generalization substitutes the continuous piecewise-linear function 1.3. Hidden bifurcations by a smooth function, such as a cubic polynomial As mentioned before, because the parameter c gov- [Khibnik et al., 1993; Shilnikov, 1994; Huang et al., erning the number of spirals in the modified Chua 1996; Hirsch et al., 2003], etc. circuit with sine function [Tang et al., 2001]isan Complex attractors with n-double spirals were integer, it is not possible to vary it continuously reported in [Suykens & Vandewalle, 1991]byintro- and therefore it is not possible to observe bifurca- ducing additional break points in the nonlinear ele- tion of attractors from n to n + 2 spirals when the ment in the Chua circuit, or using cellular neural parameter c changes. Moreover it is not possible to networks with a piecewise-linear output function use noninteger real values for c.Toovercomethis [Arena et al., 1996]. It is also demonstrated in obstacle, we use the core idea of the Leonov and [Suykens et al., 1997; Yal¸cin et al., 1999], that odd Kuznetsov method for searching hidden attractors number scrolls can be observed by a similar modi- (i.e. homotopy and numerical continuation) in a dif- fication. In [Tang et al., 2001], it is shown that the ferent way, in order to uncover hidden bifurcations, n-spirals attractors can be obtained with a simple governed by a homotopy parameter ε while keeping sine or a cosine function. c constant. Hidden attractors This paper is organized as follows: In Sec. 2,we 1.2. recall the model of Chua’s system with multiple- Recently a new concept concerning the classifica- spiral attractors generated via sine function as pro- tion of attractors has been introduced: periodic or posed in [Tang et al., 2001]. In Sec. 3,wepresent page 2 January 6, 2017 11:8 WSPC/S0218-1274 1630039 the analytical-numerical method for hidden attrac- where c and n ∈ N and tor localization proposed by Leonov [2009a, 2010]. π, if n is odd The third section is devoted to the localization of d = (4) hidden bifurcation in Chua’s system with multiple- 0, if n is even. spiral attractors. In addition, the results of numer- ical bifurcation of the analysis are given in Sec. 4. Itcanbeeasilyverifiedthatc governs the num- Finally, the conclusion with some discussion is given ber of periods existing in the function, and hence- in Sec. 5. forth the number of equilibrium points of (1). The equilibrium points are (xeq, 0, −xeq)withxeq =2ak k , ± ,...,±c 2. Chua’s System with and =0 1 [Tang et al., 2001]. When α =10.814,β =14.0,a =1.3,b =0.11; Multiple-Spiral Attractors 2-spirals, 4-spirals, 6-spirals, 8-spirals, 10-spirals Generated via the Sine Function and 12-spirals attractors are generated by Eqs. (1) In recent years, various approaches have been pro- and (2) for odd values of parameter c: c =1,c =3, posed, for generating n-scroll in Chua’s circuit.
Recommended publications
  • Synchronization of Chaotic Systems
    Synchronization of chaotic systems Cite as: Chaos 25, 097611 (2015); https://doi.org/10.1063/1.4917383 Submitted: 08 January 2015 . Accepted: 18 March 2015 . Published Online: 16 April 2015 Louis M. Pecora, and Thomas L. Carroll ARTICLES YOU MAY BE INTERESTED IN Nonlinear time-series analysis revisited Chaos: An Interdisciplinary Journal of Nonlinear Science 25, 097610 (2015); https:// doi.org/10.1063/1.4917289 Using machine learning to replicate chaotic attractors and calculate Lyapunov exponents from data Chaos: An Interdisciplinary Journal of Nonlinear Science 27, 121102 (2017); https:// doi.org/10.1063/1.5010300 Attractor reconstruction by machine learning Chaos: An Interdisciplinary Journal of Nonlinear Science 28, 061104 (2018); https:// doi.org/10.1063/1.5039508 Chaos 25, 097611 (2015); https://doi.org/10.1063/1.4917383 25, 097611 © 2015 Author(s). CHAOS 25, 097611 (2015) Synchronization of chaotic systems Louis M. Pecora and Thomas L. Carroll U.S. Naval Research Laboratory, Washington, District of Columbia 20375, USA (Received 8 January 2015; accepted 18 March 2015; published online 16 April 2015) We review some of the history and early work in the area of synchronization in chaotic systems. We start with our own discovery of the phenomenon, but go on to establish the historical timeline of this topic back to the earliest known paper. The topic of synchronization of chaotic systems has always been intriguing, since chaotic systems are known to resist synchronization because of their positive Lyapunov exponents. The convergence of the two systems to identical trajectories is a surprise. We show how people originally thought about this process and how the concept of synchronization changed over the years to a more geometric view using synchronization manifolds.
    [Show full text]
  • Infinitely Many Coexisting Attractors in No-Equilibrium Chaotic System
    Hindawi Complexity Volume 2020, Article ID 8175639, 17 pages https://doi.org/10.1155/2020/8175639 Research Article Infinitely Many Coexisting Attractors in No-Equilibrium Chaotic System Qiang Lai ,1 Paul Didier Kamdem Kuate ,2 Huiqin Pei ,1 and Hilaire Fotsin 2 1School of Electrical and Automation Engineering, East China Jiaotong University, Nanchang 330013, China 2Laboratory of Condensed Matter, Electronics and Signal Processing Department of Physics, University of Dschang, P.O. Box 067, Dschang, Cameroon Correspondence should be addressed to Qiang Lai; [email protected] Received 17 January 2020; Revised 18 February 2020; Accepted 26 February 2020; Published 28 March 2020 Guest Editor: Chun-Lai Li Copyright © 2020 Qiang Lai et al. *is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. *is paper proposes a new no-equilibrium chaotic system that has the ability to yield infinitely many coexisting hidden attractors. Dynamic behaviors of the system with respect to the parameters and initial conditions are numerically studied. It shows that the system has chaotic, quasiperiodic, and periodic motions for different parameters and coexists with a large number of hidden attractors for different initial conditions. *e circuit and microcontroller implementations of the system are given for illustrating its physical meaning. Also, the synchronization conditions of the system are established based on the adaptive control method. 1. Introduction system may generate hidden attractor. Also, a lot of pre- vious studies have shown that chaotic systems with mul- Encouraging progress has been made on chaos in the past tiple unstable equilibria usually have richer dynamic few decades.
    [Show full text]
  • Role of Nonlinear Dynamics and Chaos in Applied Sciences
    v.;.;.:.:.:.;.;.^ ROLE OF NONLINEAR DYNAMICS AND CHAOS IN APPLIED SCIENCES by Quissan V. Lawande and Nirupam Maiti Theoretical Physics Oivisipn 2000 Please be aware that all of the Missing Pages in this document were originally blank pages BARC/2OOO/E/OO3 GOVERNMENT OF INDIA ATOMIC ENERGY COMMISSION ROLE OF NONLINEAR DYNAMICS AND CHAOS IN APPLIED SCIENCES by Quissan V. Lawande and Nirupam Maiti Theoretical Physics Division BHABHA ATOMIC RESEARCH CENTRE MUMBAI, INDIA 2000 BARC/2000/E/003 BIBLIOGRAPHIC DESCRIPTION SHEET FOR TECHNICAL REPORT (as per IS : 9400 - 1980) 01 Security classification: Unclassified • 02 Distribution: External 03 Report status: New 04 Series: BARC External • 05 Report type: Technical Report 06 Report No. : BARC/2000/E/003 07 Part No. or Volume No. : 08 Contract No.: 10 Title and subtitle: Role of nonlinear dynamics and chaos in applied sciences 11 Collation: 111 p., figs., ills. 13 Project No. : 20 Personal authors): Quissan V. Lawande; Nirupam Maiti 21 Affiliation ofauthor(s): Theoretical Physics Division, Bhabha Atomic Research Centre, Mumbai 22 Corporate authoifs): Bhabha Atomic Research Centre, Mumbai - 400 085 23 Originating unit : Theoretical Physics Division, BARC, Mumbai 24 Sponsors) Name: Department of Atomic Energy Type: Government Contd...(ii) -l- 30 Date of submission: January 2000 31 Publication/Issue date: February 2000 40 Publisher/Distributor: Head, Library and Information Services Division, Bhabha Atomic Research Centre, Mumbai 42 Form of distribution: Hard copy 50 Language of text: English 51 Language of summary: English 52 No. of references: 40 refs. 53 Gives data on: Abstract: Nonlinear dynamics manifests itself in a number of phenomena in both laboratory and day to day dealings.
    [Show full text]
  • The Lorenz System : Hidden Boundary of Practical Stability and the Lyapunov Dimension
    This is a self-archived version of an original article. This version may differ from the original in pagination and typographic details. Author(s): Kuznetsov, N. V.; Mokaev, T. N.; Kuznetsova, O. A.; Kudryashova, E. V. Title: The Lorenz system : hidden boundary of practical stability and the Lyapunov dimension Year: 2020 Version: Published version Copyright: © 2020 the Authors Rights: CC BY 4.0 Rights url: https://creativecommons.org/licenses/by/4.0/ Please cite the original version: Kuznetsov, N. V., Mokaev, T. N., Kuznetsova, O. A., & Kudryashova, E. V. (2020). The Lorenz system : hidden boundary of practical stability and the Lyapunov dimension. Nonlinear Dynamics, 102(2), 713-732. https://doi.org/10.1007/s11071-020-05856-4 Nonlinear Dyn https://doi.org/10.1007/s11071-020-05856-4 ORIGINAL PAPER The Lorenz system: hidden boundary of practical stability and the Lyapunov dimension N. V. Kuznetsov · T. N. Mokaev · O. A. Kuznetsova · E. V. Kudryashova Received: 16 March 2020 / Accepted: 29 July 2020 © The Author(s) 2020 Abstract On the example of the famous Lorenz Keywords Global stability · Chaos · Hidden attractor · system, the difficulties and opportunities of reliable Transient set · Lyapunov exponents · Lyapunov numerical analysis of chaotic dynamical systems are dimension · Unstable periodic orbit · Time-delayed discussed in this article. For the Lorenz system, the feedback control boundaries of global stability are estimated and the difficulties of numerically studying the birth of self- excited and hidden attractors, caused by the loss of 1 Introduction global stability, are discussed. The problem of reliable numerical computation of the finite-time Lyapunov In 1963, meteorologist Edward Lorenz suggested an dimension along the trajectories over large time inter- approximate mathematical model (the Lorenz system) vals is discussed.
    [Show full text]
  • Math Morphing Proximate and Evolutionary Mechanisms
    Curriculum Units by Fellows of the Yale-New Haven Teachers Institute 2009 Volume V: Evolutionary Medicine Math Morphing Proximate and Evolutionary Mechanisms Curriculum Unit 09.05.09 by Kenneth William Spinka Introduction Background Essential Questions Lesson Plans Website Student Resources Glossary Of Terms Bibliography Appendix Introduction An important theoretical development was Nikolaas Tinbergen's distinction made originally in ethology between evolutionary and proximate mechanisms; Randolph M. Nesse and George C. Williams summarize its relevance to medicine: All biological traits need two kinds of explanation: proximate and evolutionary. The proximate explanation for a disease describes what is wrong in the bodily mechanism of individuals affected Curriculum Unit 09.05.09 1 of 27 by it. An evolutionary explanation is completely different. Instead of explaining why people are different, it explains why we are all the same in ways that leave us vulnerable to disease. Why do we all have wisdom teeth, an appendix, and cells that if triggered can rampantly multiply out of control? [1] A fractal is generally "a rough or fragmented geometric shape that can be split into parts, each of which is (at least approximately) a reduced-size copy of the whole," a property called self-similarity. The term was coined by Beno?t Mandelbrot in 1975 and was derived from the Latin fractus meaning "broken" or "fractured." A mathematical fractal is based on an equation that undergoes iteration, a form of feedback based on recursion. http://www.kwsi.com/ynhti2009/image01.html A fractal often has the following features: 1. It has a fine structure at arbitrarily small scales.
    [Show full text]
  • An Overview of Bifurcation Theory
    Appendix A An Overview of Bifurcation Theory A.I Introduction In this appendix we want to provide a brief introduction and discussion of the con­ cepts of dynamical systems and bifurcation theory which has been used in the pre­ ceding sections . We refer the reader interested in a more thorough discussion of the mathematical results of dynamical systems and bifurcation theory to the books of Wiggins (1990) and Kuznetsov (1995). A discussion intended to more econom­ ically motivated problems of dynamical systems and chaos can be found in Medio (1992) or Day (1994). It is noteworthy here that chaos is only possible in the non­ autonomous case; that is, the dynamical system depends explicity on time; but not for the autonomous case where time does not enter directly in the dynamical sys­ tem (cf. Wiggins (1990». Since both models we have considered in the preceding sections are autonomous they cannot reveal any chaos . However, as the reader has seen, the dynamical systems we have derived reveal some bifurcations. Roughly spoken, bifurcation theory describes the way in which dynamical sys­ tem changes due to a small perturbation of the system-parameters. A qualitative change in the phase space of the dynamical system occurs at a bifurcation point, that means that the system is structural unstable against a small perturbation in the parameter space and the dynamic structure of the system has changed due to this slight variation in the parameter space. We can distinguish bifurcations into local, global and local/global types, where only the pure types are interesting here. Local bifurcations such as Andronov-Hopfor Fold bifurcations can be detected in a small 182 An Overview of Bifurcation Theory neighborhood ofa single fixed point or stationary point.
    [Show full text]
  • Theoretical-Heuristic Derivation Sommerfeld's Fine Structure
    Theoretical-heuristic derivation Sommerfeld’s fine structure constant by Feigenbaum’s constant (delta): perodic logistic maps of double bifurcation Angel Garcés Doz [email protected] Abstract In an article recently published in Vixra: http://vixra.org/abs/1704.0365. Its author (Mario Hieb) conjectured the possible relationship of Feigen- baum’s constant delta with the fine-structure constant of electromag- netism (Sommerfeld’s Fine-Structure Constant). In this article it demon- strated, that indeed, there is an unequivocal physical-mathematical rela- tionship. The logistic map of double bifurcation is a physical image of the random process of the creation-annihilation of virtual pairs lepton- antilepton with electric charge; Using virtual photons. The probability of emission or absorption of a photon by an electron is precisely the fine structure constant for zero momentum, that is to say: Sommerfeld’s Fine- Structure Constant. This probability is coded as the surface of a sphere, or equivalently: four times the surface of a circle. The original, conjectured calculation of Mario Hieb is corrected or improved by the contribution of the entropies of the virtual pairs of leptons with electric charge: muon, tau and electron. Including a correction factor due to the contributions of virtual bosons W and Z; And its decay in electrically charged leptons and quarks. Introduction The main geometric-mathematical characteristics of the logistic map of double universal bifurcation, which determines the two Feigenbaum’s constants; they are: 1) The first Feigenbaum constant is the limiting ratio of each bifurcation interval to the next between every period doubling, of a one-parameter map.
    [Show full text]
  • Glossary of Terms for Chaos, Fractals, and Dynamics
    U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY Glossary of Terms for Chaos, Fractals, and Dynamics Robert A. Crovelli1 Open-File Report 92-19 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards (or with the North American Stratigraphic Code). Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. 1U.S. Geological Survey, Denver, Colorado 1992 INTRODUCTION This glossary of terms for chaos, fractals, and dynamics, based on terms in Devaney (1990), is a reference for scientists whose time is limited, but who would like to be exposed to the main ideas. However, the glossary can be used as a reference entirely independent of the Devaney book by anyone interested in this field of study. The purpose of this report is to bring together, in two convenient formats, definitions of important terms found in the subjects of chaos, fractals and dynamical systems. The terms describe many of the definitions, notations, concepts, principles and facts of these subjects. The report consists of two separate independent formats of terms. The first format is a listing of terms in order of occurrence by chapter for Devaney (1990). This format presents a very concise outline of organized ideas for chaos, fractals, and dynamics. The second format is a standard listing of terms in alphabetical order for Devaney (1990). This format allows for an easy reference of terms. Terms: An Outline for Chaos, Fractals, and Dynamics (Listed in order of occurrence by chapter for Devaney, 1990) Chapter 0 - A Mathematical Tour dynamical systems, 1.
    [Show full text]
  • Random Switching Near Bifurcations Arxiv:1901.00124V1 [Math.DS] 1
    Random Switching near Bifurcations Tobias Hurth∗ and Christian Kuehny January 3, 2019 Abstract The interplay between bifurcations and random switching processes of vector fields is studied. More precisely, we provide a classification of piecewise deterministic Markov pro- cesses arising from stochastic switching dynamics near fold, Hopf, transcritical and pitchfork bifurcations. We prove the existence of invariant measures for different switching rates. We also study, when the invariant measures are unique, when multiple measures occur, when measures have smooth densities, and under which conditions finite-time blow-up occurs. We demonstrate the applicability of our results for three nonlinear models arising in appli- cations. 1 Introduction In this work we study the dynamics of randomly switched ordinary differential equations (ODEs) of the form dx = x0 = f(x; p); x = x(t) 2 d; x(0) =: x ; (1.1) dt R 0 near bifurcation points. More precisely, we select two parameters p = p± 2 R so that (1.1) has non-equivalent dynamics [35], which are separated by a distinguished bifurcation point p∗ 2 (p−; p+). Then we look at the piecewise-deterministic Markov process (PDMP) generated by switching between the vector fields f(x; p−) and f(x; p+). This idea is motivated by several observations. Here we just name a few: arXiv:1901.00124v1 [math.DS] 1 Jan 2019 (M1) In parametric families of vector fields, bifurcations occur generically. Therefore, they are immediately relevant for the study of PDMPs as well. In addition, the interplay between random switching and bifurcation points is not studied well enough yet. (M2) From the perspective of PDMPs, this setting provides natural examples to test and extend the general theory of invariant measures.
    [Show full text]
  • Bifurcation Theory
    Bifurcation Theory Ale Jan Homburg The axiomatization and algebraization of mathematics has led to the illegibility of such a large number of mathematical texts that the threat of complete loss of contact with physics and the natural sciences has been realized. (Vladimir Arnold) Contents 1 Introduction 5 1.1 The Rosenzweig-MacArthur model...............................8 1.2 Exercises............................................. 12 2 Elements of nonlinear analysis 17 2.1 Calculus.............................................. 17 2.1.1 Nemytskii operators................................... 19 2.2 Implicit function theorem.................................... 21 2.2.1 Applications of the implicit function theorem..................... 23 2.3 Lyapunov-Schmidt reduction.................................. 24 2.4 Floquet theory.......................................... 26 2.5 Poincar´ereturn maps...................................... 30 2.6 Center manifolds......................................... 33 2.7 Normal forms........................................... 36 2.8 Manifolds and transversality................................... 41 2.9 Sard's theorem.......................................... 42 2.10 Exercises............................................. 46 3 Local bifurcations 51 3.1 The saddle-node bifurcation................................... 51 3.1.1 One dimensional saddle-node bifurcation........................ 51 3.1.2 Higher dimensional saddle-node bifurcation...................... 53 3.1.3 Saddle-node bifurcation of periodic orbits......................
    [Show full text]
  • Hopf Bifurcation
    Hopf bifurcation Hopf bifurcation for flows The term Hopf bifurcation (also sometimes called Poincar´e-Andronov-Hopf bifurcation) refers to the local birth or death of a periodic solution (self-excited oscillation) from an equilibrium as a parameter crosses a critical value. It is the simplest bifurcation not just involving equilibria and therefore belongs to what is sometimes called dynamic (as opposed to static) bifurcation theory. In a differential equation a Hopf bifurcation typically occurs when a complex conjugate pair of eigenvalues of the linearised flow at a fixed point becomes purely imaginary. This implies that a Hopf bifurcation can only occur in systems of dimension two or higher. That a periodic solution should be generated in this event is intuitively clear from Fig. 1. When the real parts of the eigenvalues are negative the fixed point is a stable focus (Fig. 1a); when they cross zero and become positive the fixed point becomes an unstable focus, with orbits spiralling out. But this change of stability is a local change and the phase portrait sufficiently far from the fixed point will be qualitatively unaffected: if the nonlinearity makes the far flow contracting then orbits will still be coming in and we expect a periodic orbit to appear where the near and far flow find a balance (as in Fig. 1b). The Hopf bifurcation theorem makes the above precise. Consider the planar system x˙ = f (x, y), µ (1) y˙ = gµ(x, y), where µ is a parameter. Suppose it has a fixed point (x, y) = (x0, y0), which may depend on µ.
    [Show full text]
  • Phase-Locked Loops with Active PI Filter: the Lock-In Range Computation JYVÄSKYLÄ STUDIES in COMPUTING 239
    JYVÄSKYLÄ STUDIES IN COMPUTING 239 Konstantin Aleksandrov Phase-Locked Loops with Active PI Filter: the Lock-In Range Computation JYVÄSKYLÄ STUDIES IN COMPUTING 239 Konstantin Aleksandrov Phase-Locked Loops with Active PI Filter: the Lock-In Range Computation Esitetään Jyväskylän yliopiston informaatioteknologian tiedekunnan suostumuksella julkisesti tarkastettavaksi yliopiston Agora-rakennuksen Alfa-salissa kesäkuun 17. päivänä 2016 kello 10. Academic dissertation to be publicly discussed, by permission of the Faculty of Information Technology of the University of Jyväskylä, in building Agora, Alfa hall, on June 17, 2016 at 10 o’clock. UNIVERSITY OF JYVÄSKYLÄ JYVÄSKYLÄ 2016 Phase-Locked Loops with Active PI Filter: the Lock-In Range Computation JYVÄSKYLÄ STUDIES IN COMPUTING 239 Konstantin Aleksandrov Phase-Locked Loops with Active PI Filter: the Lock-In Range Computation UNIVERSITY OF JYVÄSKYLÄ JYVÄSKYLÄ 2016 Editors Timo Männikkö Department of Mathematical Information Technology, University of Jyväskylä Pekka Olsbo, Ville Korkiakangas Publishing Unit, University Library of Jyväskylä URN:ISBN:978-951-39-6688-1 ISBN 978-951-39-6688-1 (PDF) ISBN 978-951-39-6687-4 (nid.) ISSN 1456-5390 Copyright © 2016, by University of Jyväskylä Jyväskylä University Printing House, Jyväskylä 2016 ABSTRACT Aleksandrov, Konstantin Phase-locked loops with active PI filter: the lock-in range computation Jyväskylä: University of Jyväskylä, 2016, 38 p.(+included articles) (Jyväskylä Studies in Computing ISSN 1456-5390; 239) ISBN 978-951-39-6687-4 (nid.) ISBN 978-951-39-6688-1 (PDF) Finnish summary Diss. The present work is devoted to the study of the lock-in range of phase-locked loop (PLL). The PLL concept was originally described by H.
    [Show full text]