Transcritical Bifurcation

Total Page:16

File Type:pdf, Size:1020Kb

Transcritical Bifurcation Bifurcation and chaos Bifurcation and chaos Outline Outline of Topics What is bifurcation? Bifurcation and chaos Some concepts Bifurcation examples in MATLAB Shan He What is chaos School for Computational Science Some concepts about chaos University of Birmingham Chaos examples in MATLAB Module 06-23836: Computational Modelling with MATLAB MATLAB toolboxes Assignment Bifurcation and chaos Bifurcation and chaos What is bifurcation? What is bifurcation? Some concepts Some concepts What is a bifurcation? Classification of bifurcations ◮ Local bifurcations : a parameter change causes the stability of an equilibrium to change. Including: ◮ Bifurcation : a small smooth change of some parameter ◮ Saddle-node (fold) bifurcation values (the bifurcation parameters) of a system causes a ◮ Transcritical bifurcation sudden ‘qualitative’ or topological change in its behaviour ◮ Pitchfork bifurcation ◮ Bifurcations occur in both continuous systems, e.g., ODE and ◮ Hopf bifurcation discrete systems. ◮ Period-doubling (flip) bifurcation ◮ Codimension : the number of parameters which must be ◮ Global bifurcations : occurs when ‘larger’ invariant sets, such varied for the bifurcation to occur. as periodic orbits, collide with equilibria. Cannot be detected purely by a stability analysis of the equilibria. ◮ We will focus on local bifurcations in this lecture. Bifurcation and chaos Bifurcation and chaos What is bifurcation? What is bifurcation? Bifurcation examples in MATLAB Bifurcation examples in MATLAB Example: Transcritical bifurcation Example: Saddle-node bifurcation ◮ Local bifurcations. ◮ Local bifurcations. ◮ There is always at least a fixed point exists for all values of a ◮ parameter and is never destroyed. Also known as tangential bifurcation or fold bifurcation. ◮ ◮ A fixed point interchanges its stability with another fixed Two equilibria collide and annihilate each other. point as the parameter is varied ◮ An two-dimensional Saddle-node bifurcation: ◮ An one-dimensional Transcritical bifurcation: dx 2 dt = α x dy − dx 2 ( = y = αx x dt − dt − Bifurcation and chaos Bifurcation and chaos What is bifurcation? What is bifurcation? Bifurcation examples in MATLAB Bifurcation examples in MATLAB Example: Period-doubling (flip) bifurcation Example: Hopf bifurcation ◮ Local bifurcations. ◮ In discrete system: the system switches to a new behavior ◮ Local bifurcations. with twice the period of the original system. ◮ Also known as Poincar´e-Andronov-Hopf bifurcation. ◮ In continuous system: when a new limit cycle emerges from ◮ A spiral point of a dynamical system switch from stable to an existing limit cycle, and the period of the new limit cycle is unstable, or vice verse, and a periodic solution appears. twice that of the old one. ◮ We will come back to this in our next lecture. ◮ We will see an example of period-doubling bifurcation in a discrete system. Bifurcation and chaos Bifurcation and chaos What is chaos What is chaos Some concepts about chaos Some concepts about chaos Concepts about chaos Relationships between bifurcation and chaos Chaos or chaotic behaviour is a tricky definition. ◮ Chaos by dictionary : a state of disorder. ◮ In chaos theory: “chaotic systems are distinguished by sensitive dependence on initial conditions and by having evolution through phase space that appears to be quite random” – Wolfram Mathworld It will be too abstract if I simply list all the points here. Let me ◮ Several properties: explain this later using the MATLAB example of Logistic Map. ◮ Having a dense collection of points with periodic orbits, ◮ Being sensitive to the initial condition of the system (so that initially nearby points can evolve quickly into very different states), a property sometimes known as the butterfly effect, and ◮ Being topologically transitive: points in the system eventually move under iteration from one arbitrarily small open set to any other ◮ I will illustrate these properties using MATLAB examples. Bifurcation and chaos Bifurcation and chaos What is chaos What is chaos Chaos examples in MATLAB Chaos examples in MATLAB Logistic Map Logistic Map and chaos ◮ Proposed by the biologist Robert May. ◮ Very simple non-linear dynamical difference equations derived from logistic equation. ◮ We only care 3 .57 r 4, where the system begins to ≤ ≤ ◮ With specific parameters, it display chaotic behaviour. exhibit chaotic behaviour. ◮ The equation: ◮ Chaotic behaviour: slight difference in the initial value of x(0) yield dramatically different results over time. xn+1 = rx n(1 xn) ◮ Islands of stability: for r = 1 + √8 3.83, the system shows − ≈ non-chaotic behavior where 0 xn 1 and r > 0 is known as the ”biotic ≤ ≤ potential” or bifurcation parameter. ◮ In biology, xn represents the ratio of existing population to the maximum possible population at year n. Bifurcation and chaos Bifurcation and chaos What is chaos What is chaos Chaos examples in MATLAB Chaos examples in MATLAB Bifurcation diagram Feigenbaum constant ◮ Bifurcation diagram shows the possible long-term values (equilibria or periodic orbits) of a system as a function of a ◮ The first Feigenbaum constant: bifurcation parameter in the system. δ = 4 .66920160910299067185320382 . ◮ Bifurcation diagram of Logistic map: the bifurcation ◮ Calculated from: parameter r is shown on the horizontal axis of the plot and b b − the vertical axis shows the possible long-term population δ n n 1 = lim→∞ − values of the logistic function. n bn+1 bn − n ◮ Shows the forking of the possible periods of stable orbits from where bn is the point at which a period 2 -cycle appears. 1 to 2 to 4 to 8 etc. Each of these bifurcation points is a ◮ The ratio of the intervals between the bifurcation points period-doubling bifurcation. The ratio of the lengths of approaches Feigenbaum’s constant. successive intervals between values of r for which bifurcation occurs converges to the first Feigenbaum constant. Bifurcation and chaos Bifurcation and chaos What is chaos What is chaos Chaos examples in MATLAB Chaos examples in MATLAB Relationships between bifurcation and chaos Lorenz chaotic attractor Lorenz chaotic attractor: ◮ Bifurcation: sensitivity to parameters ◮ Discovered by Edward N. Lorenz, a MIT mathematician. ◮ Chaos: sensitivity to initial conditions ◮ Used to model fluid flow of the earth’s atmosphere. ◮ The transition to chaos is preceded by infinite levels of ◮ The foundation of today’s chaos theory. bifurcation ◮ A 3-dimensional dynamical system that exhibits chaotic flow. ◮ The infinite bifurcations preceding the transition to chaos are ◮ It is deterministic. characterised by the Feigenbaum number. ◮ The system exhibits chaotic behavior and displays a strange attractor. Bifurcation and chaos Bifurcation and chaos What is chaos What is chaos Chaos examples in MATLAB Chaos examples in MATLAB Strange attractors Lorenz equations ◮ Structure has fractal dimension. dx dt = σ(y x) ◮ Do NOT know exactly the location of the attractor: two dy − dt = x(ρ z) y points on the attractor that are near each other at one time − − dx = xy + βz will be arbitrarily far apart at later times. dt ◮ Strange attractors of a systems never close to themselves: the where σ, ρ, β > 0 σ is called the Prandtl number and ρ is called 8 motion of the system never repeats (non-periodic). the Rayleigh number. Usually ρ = 10, σ = 3 and when ρ = 28 the system exhibits chaotic behaviour. Bifurcation and chaos Bifurcation and chaos What is chaos What is chaos Chaos examples in MATLAB Chaos examples in MATLAB Lorenz attractor in MATLAB Properties of the Lorenz attractor 1 function dy=myLorenz(t,x) ◮ Nonlinearity : the two nonlinearities are xy and xz 2 % The RHS of the Lorenz attractor ◮ 3 sigma = 10; Symmetry : Equations are invariant under ( x, y) ( x, y), → − − 4 r = 28; which indicates that if ( x(t), y(t), z(t)) is a solution, so is 5 b = 8/3; ( x(t), y(t), z(t)) − − 6 dy =[ sigma *(x(2)-x(1)); ◮ Volume contraction : the Lorenz system is dissipative, i.e., 7 r*x(1)-x(2)-x(1)*x(3); volume in phase space shrinks exponentially fast at rate of 8 x(1)*x(2)-b*x(3)]; (ρ + 1 + β) 9 end Bifurcation and chaos Bifurcation and chaos What is chaos MATLAB toolboxes Chaos examples in MATLAB Applications of Bifurcation and Chaos theory to biology MATLAB toolboxes ◮ In the context biology, bifurcation theory describes how small changes in an parameter can cause qualitative change in the behavior of the biological system. ◮ The ability to make dramatic change in system output is often essential to organism function, and bifurcations are therefore ◮ MATLAB Adventures in Bifurcations & Chaos (ABC++) ubiquitous in biological networks such as the switches of the ◮ Chaotic Generators Demo cell cycle. ◮ Example: Biochemical switches in the cell cycle. ◮ Chaos in biological systems: ◮ Population growth in ecology. ◮ Neural systems, e.g., action potentials in neurons – Hodgkin-Huxley model. Bifurcation and chaos Assignment Assignment Use MATLAB to find bifurcation points and the calculate Feigenbaum number..
Recommended publications
  • Synchronization of Chaotic Systems
    Synchronization of chaotic systems Cite as: Chaos 25, 097611 (2015); https://doi.org/10.1063/1.4917383 Submitted: 08 January 2015 . Accepted: 18 March 2015 . Published Online: 16 April 2015 Louis M. Pecora, and Thomas L. Carroll ARTICLES YOU MAY BE INTERESTED IN Nonlinear time-series analysis revisited Chaos: An Interdisciplinary Journal of Nonlinear Science 25, 097610 (2015); https:// doi.org/10.1063/1.4917289 Using machine learning to replicate chaotic attractors and calculate Lyapunov exponents from data Chaos: An Interdisciplinary Journal of Nonlinear Science 27, 121102 (2017); https:// doi.org/10.1063/1.5010300 Attractor reconstruction by machine learning Chaos: An Interdisciplinary Journal of Nonlinear Science 28, 061104 (2018); https:// doi.org/10.1063/1.5039508 Chaos 25, 097611 (2015); https://doi.org/10.1063/1.4917383 25, 097611 © 2015 Author(s). CHAOS 25, 097611 (2015) Synchronization of chaotic systems Louis M. Pecora and Thomas L. Carroll U.S. Naval Research Laboratory, Washington, District of Columbia 20375, USA (Received 8 January 2015; accepted 18 March 2015; published online 16 April 2015) We review some of the history and early work in the area of synchronization in chaotic systems. We start with our own discovery of the phenomenon, but go on to establish the historical timeline of this topic back to the earliest known paper. The topic of synchronization of chaotic systems has always been intriguing, since chaotic systems are known to resist synchronization because of their positive Lyapunov exponents. The convergence of the two systems to identical trajectories is a surprise. We show how people originally thought about this process and how the concept of synchronization changed over the years to a more geometric view using synchronization manifolds.
    [Show full text]
  • Complex Bifurcation Structures in the Hindmarsh–Rose Neuron Model
    International Journal of Bifurcation and Chaos, Vol. 17, No. 9 (2007) 3071–3083 c World Scientific Publishing Company COMPLEX BIFURCATION STRUCTURES IN THE HINDMARSH–ROSE NEURON MODEL J. M. GONZALEZ-MIRANDA´ Departamento de F´ısica Fundamental, Universidad de Barcelona, Avenida Diagonal 647, Barcelona 08028, Spain Received June 12, 2006; Revised October 25, 2006 The results of a study of the bifurcation diagram of the Hindmarsh–Rose neuron model in a two-dimensional parameter space are reported. This diagram shows the existence and extent of complex bifurcation structures that might be useful to understand the mechanisms used by the neurons to encode information and give rapid responses to stimulus. Moreover, the information contained in this phase diagram provides a background to develop our understanding of the dynamics of interacting neurons. Keywords: Neuronal dynamics; neuronal coding; deterministic chaos; bifurcation diagram. 1. Introduction 1961] has proven to give a good qualitative descrip- There are two main problems in neuroscience whose tion of the dynamics of the membrane potential of solution is linked to the research in nonlinear a single neuron, which is the most relevant experi- dynamics and chaos. One is the problem of inte- mental output of the neuron dynamics. Because of grated behavior of the nervous system [Varela et al., the enormous development that the field of dynam- 2001], which deals with the understanding of the ical systems and chaos has undergone in the last mechanisms that allow the different parts and units thirty years [Hirsch et al., 2004; Ott, 2002], the of the nervous system to work together, and appears study of meaningful mathematical systems like the related to the synchronization of nonlinear dynami- Hindmarsh–Rose model have acquired new interest cal oscillators.
    [Show full text]
  • Role of Nonlinear Dynamics and Chaos in Applied Sciences
    v.;.;.:.:.:.;.;.^ ROLE OF NONLINEAR DYNAMICS AND CHAOS IN APPLIED SCIENCES by Quissan V. Lawande and Nirupam Maiti Theoretical Physics Oivisipn 2000 Please be aware that all of the Missing Pages in this document were originally blank pages BARC/2OOO/E/OO3 GOVERNMENT OF INDIA ATOMIC ENERGY COMMISSION ROLE OF NONLINEAR DYNAMICS AND CHAOS IN APPLIED SCIENCES by Quissan V. Lawande and Nirupam Maiti Theoretical Physics Division BHABHA ATOMIC RESEARCH CENTRE MUMBAI, INDIA 2000 BARC/2000/E/003 BIBLIOGRAPHIC DESCRIPTION SHEET FOR TECHNICAL REPORT (as per IS : 9400 - 1980) 01 Security classification: Unclassified • 02 Distribution: External 03 Report status: New 04 Series: BARC External • 05 Report type: Technical Report 06 Report No. : BARC/2000/E/003 07 Part No. or Volume No. : 08 Contract No.: 10 Title and subtitle: Role of nonlinear dynamics and chaos in applied sciences 11 Collation: 111 p., figs., ills. 13 Project No. : 20 Personal authors): Quissan V. Lawande; Nirupam Maiti 21 Affiliation ofauthor(s): Theoretical Physics Division, Bhabha Atomic Research Centre, Mumbai 22 Corporate authoifs): Bhabha Atomic Research Centre, Mumbai - 400 085 23 Originating unit : Theoretical Physics Division, BARC, Mumbai 24 Sponsors) Name: Department of Atomic Energy Type: Government Contd...(ii) -l- 30 Date of submission: January 2000 31 Publication/Issue date: February 2000 40 Publisher/Distributor: Head, Library and Information Services Division, Bhabha Atomic Research Centre, Mumbai 42 Form of distribution: Hard copy 50 Language of text: English 51 Language of summary: English 52 No. of references: 40 refs. 53 Gives data on: Abstract: Nonlinear dynamics manifests itself in a number of phenomena in both laboratory and day to day dealings.
    [Show full text]
  • PHY411 Lecture Notes Part 4
    PHY411 Lecture notes Part 4 Alice Quillen February 6, 2019 Contents 0.1 Introduction . 2 1 Bifurcations of one-dimensional dynamical systems 2 1.1 Saddle-node bifurcation . 2 1.1.1 Example of a saddle-node bifurcation . 4 1.1.2 Another example . 6 1.2 Pitchfork bifurcations . 7 1.3 Trans-critical bifurcations . 10 1.4 Imperfect bifurcations . 10 1.5 Relation to the fixed points of a simple Hamiltonian system . 13 2 Iteratively applied maps 14 2.1 Cobweb plots . 14 2.2 Stability of a fixed point . 16 2.3 The Logistic map . 16 2.4 Two-cycles and period doubling . 17 2.5 Sarkovskii's Theorem and Ordering of periodic orbits . 22 2.6 A Cantor set for r > 4.............................. 24 3 Lyapunov exponents 26 3.1 The Tent Map . 28 3.2 Computing the Lyapunov exponent for a map . 28 3.3 The Maximum Lyapunov Exponent . 29 3.4 Numerical Computation of the Maximal Lyapunov Exponent . 30 3.5 Indicators related to the Lyapunov exponent . 32 1 0.1 Introduction For bifurcations and maps we are following early and late chapters in the lovely book by Steven Strogatz (1994) called `Non-linear Dynamics and Chaos' and the extremely clear book by Richard A. Holmgren (1994) called `A First Course in Discrete Dynamical Systems'. On Lyapunov exponents, we include some notes from Allesandro Morbidelli's book `Modern Celestial Mechanics, Aspects of Solar System Dynamics.' In future I would like to add more examples from the book called Bifurcations in Hamiltonian systems (Broer et al.). Renormalization in logistic map is lacking.
    [Show full text]
  • Synchronization in Nonlinear Systems and Networks
    Synchronization in Nonlinear Systems and Networks Yuri Maistrenko E-mail: [email protected] you can find me in the room EW 632, Wednesday 13:00-14:00 Lecture 5-6 30.11, 07.12.2011 1 Attractor Attractor A is a limiting set in phase space, towards which a dynamical system evolves over time. This limiting set A can be: 1) point (equilibrium) 2) curve (periodic orbit) 3) torus (quasiperiodic orbit ) 4) fractal (strange attractor = CHAOS) Attractor is a closed set with the following properties: S. Strogatz LORENTZ ATTRACTOR (1963) butterfly effect a trajectory in the phase space The Lorenz attractor is generated by the system of 3 differential equations dx/dt= -10x +10y dy/dt= 28x -y -xz dz/dt= -8/3z +xy. ROSSLER ATTRACTOR (1976) A trajectory of the Rossler system, t=250 What can we learn from the two exemplary 3-dimensional flow? If a flow is locally unstable in each point but globally bounded, any open ball of initial points will be stretched out and then folded back. If the equilibria are hyperbolic, the trajectory will be attracted along some eigen-directions and ejected along others. Reducing to discrete dynamics. Lorenz map Lorenz attractor Continues dynamics . Variable z(t) x Lorenz one-dimensional map Poincare section and Poincare return map Rossler attractor Rossler one-dimensional map Tent map and logistic map How common is chaos in dynamical systems? To answer the question, we need discrete dynamical systems given by one-dimensional maps Simplest examples of chaotic maps xn1 f (xn ), n 0, 1, 2,..
    [Show full text]
  • Maps, Chaos, and Fractals
    MATH305 Summer Research Project 2006-2007 Maps, Chaos, and Fractals Phillips Williams Department of Mathematics and Statistics University of Canterbury Maps, Chaos, and Fractals Phillipa Williams* MATH305 Mathematics Project University of Canterbury 9 February 2007 Abstract The behaviour and properties of one-dimensional discrete mappings are explored by writing Matlab code to iterate mappings and draw graphs. Fixed points, periodic orbits, and bifurcations are described and chaos is introduced using the logistic map. Symbolic dynamics are used to show that the doubling map and the logistic map have the properties of chaos. The significance of a period-3 orbit is examined and the concept of universality is introduced. Finally the Cantor Set provides a brief example of the use of iterative processes to generate fractals. *supervised by Dr. Alex James, University of Canterbury. 1 Introduction Devaney [1992] describes dynamical systems as "the branch of mathematics that attempts to describe processes in motion)) . Dynamical systems are mathematical models of systems that change with time and can be used to model either discrete or continuous processes. Contin­ uous dynamical systems e.g. mechanical systems, chemical kinetics, or electric circuits can be modeled by differential equations. Discrete dynamical systems are physical systems that involve discrete time intervals, e.g. certain types of population growth, daily fluctuations in the stock market, the spread of cases of infectious diseases, and loans (or deposits) where interest is compounded at fixed intervals. Discrete dynamical systems can be modeled by iterative maps. This project considers one-dimensional discrete dynamical systems. In the first section, the behaviour and properties of one-dimensional maps are examined using both analytical and graphical methods.
    [Show full text]
  • Math Morphing Proximate and Evolutionary Mechanisms
    Curriculum Units by Fellows of the Yale-New Haven Teachers Institute 2009 Volume V: Evolutionary Medicine Math Morphing Proximate and Evolutionary Mechanisms Curriculum Unit 09.05.09 by Kenneth William Spinka Introduction Background Essential Questions Lesson Plans Website Student Resources Glossary Of Terms Bibliography Appendix Introduction An important theoretical development was Nikolaas Tinbergen's distinction made originally in ethology between evolutionary and proximate mechanisms; Randolph M. Nesse and George C. Williams summarize its relevance to medicine: All biological traits need two kinds of explanation: proximate and evolutionary. The proximate explanation for a disease describes what is wrong in the bodily mechanism of individuals affected Curriculum Unit 09.05.09 1 of 27 by it. An evolutionary explanation is completely different. Instead of explaining why people are different, it explains why we are all the same in ways that leave us vulnerable to disease. Why do we all have wisdom teeth, an appendix, and cells that if triggered can rampantly multiply out of control? [1] A fractal is generally "a rough or fragmented geometric shape that can be split into parts, each of which is (at least approximately) a reduced-size copy of the whole," a property called self-similarity. The term was coined by Beno?t Mandelbrot in 1975 and was derived from the Latin fractus meaning "broken" or "fractured." A mathematical fractal is based on an equation that undergoes iteration, a form of feedback based on recursion. http://www.kwsi.com/ynhti2009/image01.html A fractal often has the following features: 1. It has a fine structure at arbitrarily small scales.
    [Show full text]
  • Lecture 10: 1-D Maps, Lorenz Map, Logistic Map, Sine Map, Period
    Lecture notes #10 Nonlinear Dynamics YFX1520 Lecture 10: 1-D maps, Lorenz map, Logistic map, sine map, period doubling bifurcation, tangent bifurcation, tran- sient and intermittent chaos in maps, orbit diagram (or Feigenbaum diagram), Feigenbaum constants, universals of unimodal maps, universal route to chaos Contents 1 Lorenz map 2 1.1 Cobweb diagram and map iterates . .2 1.2 Comparison of fixed point x∗ in 1-D continuous-time systems and 1-D discrete-time maps .3 1.3 Period-p orbit and stability of period-p points . .4 2 1-D maps, a proper introduction 6 3 Logistic map 6 3.1 Lyapunov exponent . .7 3.2 Bifurcation analysis and period doubling bifurcation . .8 3.3 Orbit diagram . 13 3.4 Tangent bifurcation and odd number period-p points . 14 4 Sine map and universality of period doubling 15 5 Universal route to chaos 17 Handout: Orbit diagram of the Logistic map D. Kartofelev 1/17 K As of August 7, 2021 Lecture notes #10 Nonlinear Dynamics YFX1520 1 Lorenz map In this lecture we continue to study the possibility that the Lorenz attractor might be long-term periodic. As in previous lecture, we use the one-dimensional Lorenz map in the form zn+1 = f(zn); (1) where f was incorrectly assumed to be a continuous function, to gain insight into the continuous time three- dimensional flow of the Lorenz attractor. 1.1 Cobweb diagram and map iterates The cobweb diagram (also called the cobweb plot) introduced in previous lecture is a graphical way of thinking about and determining the iterates of maps including the Lorenz map, see Fig.
    [Show full text]
  • Pseudo-Random Number Generator Based on Logistic Chaotic System
    entropy Article Pseudo-Random Number Generator Based on Logistic Chaotic System Luyao Wang and Hai Cheng * Electronic Engineering College, Heilongjiang University, Harbin 150080, China; [email protected] * Correspondence: [email protected] Received: 23 August 2019; Accepted: 27 September 2019; Published: 30 September 2019 Abstract: In recent years, a chaotic system is considered as an important pseudo-random source to pseudo-random number generators (PRNGs). This paper proposes a PRNG based on a modified logistic chaotic system. This chaotic system with fixed system parameters is convergent and its chaotic behavior is analyzed and proved. In order to improve the complexity and randomness of modified PRNGs, the chaotic system parameter denoted by floating point numbers generated by the chaotic system is confused and rearranged to increase its key space and reduce the possibility of an exhaustive attack. It is hard to speculate on the pseudo-random number by chaotic behavior because there is no statistical characteristics and infer the pseudo-random number generated by chaotic behavior. The system parameters of the next chaotic system are related to the chaotic values generated by the previous ones, which makes the PRNG generate enough results. By confusing and rearranging the output sequence, the system parameters of the previous time cannot be gotten from the next time which ensures the security. The analysis shows that the pseudo-random sequence generated by this method has perfect randomness, cryptographic properties and can pass the statistical tests. Keywords: logistic chaotic system; PRNG; Pseudo-random number sequence 1. Introduction With the rapid development of communication technology and the wide use of the Internet and mobile networks, people pay more and more attention to information security.
    [Show full text]
  • Visual Analysis of Nonlinear Dynamical Systems: Chaos, Fractals, Self-Similarity and the Limits of Prediction
    systems Communication Visual Analysis of Nonlinear Dynamical Systems: Chaos, Fractals, Self-Similarity and the Limits of Prediction Geoff Boeing Department of City and Regional Planning, University of California, Berkeley, CA 94720, USA; [email protected]; Tel.: +1-510-642-6000 Academic Editor: Ockie Bosch Received: 7 September 2016; Accepted: 7 November 2016; Published: 13 November 2016 Abstract: Nearly all nontrivial real-world systems are nonlinear dynamical systems. Chaos describes certain nonlinear dynamical systems that have a very sensitive dependence on initial conditions. Chaotic systems are always deterministic and may be very simple, yet they produce completely unpredictable and divergent behavior. Systems of nonlinear equations are difficult to solve analytically, and scientists have relied heavily on visual and qualitative approaches to discover and analyze the dynamics of nonlinearity. Indeed, few fields have drawn as heavily from visualization methods for their seminal innovations: from strange attractors, to bifurcation diagrams, to cobweb plots, to phase diagrams and embedding. Although the social sciences are increasingly studying these types of systems, seminal concepts remain murky or loosely adopted. This article has three aims. First, it argues for several visualization methods to critically analyze and understand the behavior of nonlinear dynamical systems. Second, it uses these visualizations to introduce the foundations of nonlinear dynamics, chaos, fractals, self-similarity and the limits of prediction. Finally, it presents Pynamical, an open-source Python package to easily visualize and explore nonlinear dynamical systems’ behavior. Keywords: visualization; nonlinear dynamics; chaos; fractal; attractor; bifurcation; dynamical systems; prediction; python; logistic map 1. Introduction Chaos theory is a branch of mathematics that deals with nonlinear dynamical systems.
    [Show full text]
  • An Overview of Bifurcation Theory
    Appendix A An Overview of Bifurcation Theory A.I Introduction In this appendix we want to provide a brief introduction and discussion of the con­ cepts of dynamical systems and bifurcation theory which has been used in the pre­ ceding sections . We refer the reader interested in a more thorough discussion of the mathematical results of dynamical systems and bifurcation theory to the books of Wiggins (1990) and Kuznetsov (1995). A discussion intended to more econom­ ically motivated problems of dynamical systems and chaos can be found in Medio (1992) or Day (1994). It is noteworthy here that chaos is only possible in the non­ autonomous case; that is, the dynamical system depends explicity on time; but not for the autonomous case where time does not enter directly in the dynamical sys­ tem (cf. Wiggins (1990». Since both models we have considered in the preceding sections are autonomous they cannot reveal any chaos . However, as the reader has seen, the dynamical systems we have derived reveal some bifurcations. Roughly spoken, bifurcation theory describes the way in which dynamical sys­ tem changes due to a small perturbation of the system-parameters. A qualitative change in the phase space of the dynamical system occurs at a bifurcation point, that means that the system is structural unstable against a small perturbation in the parameter space and the dynamic structure of the system has changed due to this slight variation in the parameter space. We can distinguish bifurcations into local, global and local/global types, where only the pure types are interesting here. Local bifurcations such as Andronov-Hopfor Fold bifurcations can be detected in a small 182 An Overview of Bifurcation Theory neighborhood ofa single fixed point or stationary point.
    [Show full text]
  • Theoretical-Heuristic Derivation Sommerfeld's Fine Structure
    Theoretical-heuristic derivation Sommerfeld’s fine structure constant by Feigenbaum’s constant (delta): perodic logistic maps of double bifurcation Angel Garcés Doz [email protected] Abstract In an article recently published in Vixra: http://vixra.org/abs/1704.0365. Its author (Mario Hieb) conjectured the possible relationship of Feigen- baum’s constant delta with the fine-structure constant of electromag- netism (Sommerfeld’s Fine-Structure Constant). In this article it demon- strated, that indeed, there is an unequivocal physical-mathematical rela- tionship. The logistic map of double bifurcation is a physical image of the random process of the creation-annihilation of virtual pairs lepton- antilepton with electric charge; Using virtual photons. The probability of emission or absorption of a photon by an electron is precisely the fine structure constant for zero momentum, that is to say: Sommerfeld’s Fine- Structure Constant. This probability is coded as the surface of a sphere, or equivalently: four times the surface of a circle. The original, conjectured calculation of Mario Hieb is corrected or improved by the contribution of the entropies of the virtual pairs of leptons with electric charge: muon, tau and electron. Including a correction factor due to the contributions of virtual bosons W and Z; And its decay in electrically charged leptons and quarks. Introduction The main geometric-mathematical characteristics of the logistic map of double universal bifurcation, which determines the two Feigenbaum’s constants; they are: 1) The first Feigenbaum constant is the limiting ratio of each bifurcation interval to the next between every period doubling, of a one-parameter map.
    [Show full text]