GPR48 Increases Mineralocorticoid Receptor Gene Expression

Total Page:16

File Type:pdf, Size:1020Kb

GPR48 Increases Mineralocorticoid Receptor Gene Expression BASIC RESEARCH www.jasn.org GPR48 Increases Mineralocorticoid Receptor Gene Expression † † Jiqiu Wang,* Xiaoying Li,* Yingying Ke,* Yan Lu,* Feng Wang, Nengguang Fan,* ‡ Haiyan Sun,* Huijie Zhang,* Ruixin Liu,* Jun Yang,* Lei Ye,* Mingyao Liu, and † Guang Ning* *Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrinology and Metabolism, Shanghai Key Laboratory for Endocrine Tumors and E-Institute of Shanghai Universities, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; †Laboratory for Endocrine and Metabolic Diseases, Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences, Shanghai, China; and ‡Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas ABSTRACT Aldosterone and the mineralocorticoid receptor (MR) are critical to the maintenance of electrolyte and BP homeostasis. Mutations in the MR cause aldosterone resistance known as pseudohypoaldosteronism type 1 (PHA1); however, some cases consistent with PHA1 do not exhibit known gene mutations, suggesting the possibility of alternative genetic variants. We observed that G protein–coupled receptor 48 (Gpr48/ Lgr4) hypomorphic mutant (Gpr48m/m) mice had hyperkalemia and increased water loss and salt excretion despite elevated plasma aldosterone levels, suggesting aldosterone resistance. When we challenged the mice with a low-sodium diet, these features became more obvious; the mice also developed hyponatremia and increased renin expression and activity, resembling a mild state of PHA1. There was marked renal downregulation of MR and its downstream targets (e.g., the a-subunit of the amiloride-sensitive epithelial sodium channel), which could provide a mechanism for the aldosterone resistance. We identified a non- canonical cAMP-responsive element located in the MR promoter and demonstrated that GPR48 upregulates MR expression via the cAMP/protein kinase A pathway in vitro. Taken together, our data demonstrate that GPR48 enhances aldosterone responsiveness by activating MR expression, suggesting that GPR48 contributes to homeostasis of electrolytes and BP and may be a candidate gene for PHA1. J Am Soc Nephrol 23: 281–293, 2012. doi: 10.1681/ASN.2011040351 INTRODUCTION Na+ reabsorption by activated ENaC also enhances K+ excretion through the luminal potassium chan- Aldosterone plays critical roles in the control of nel, leading to kaliuresis in the collecting duct.4 salt homeostasis and BP through stimulating Na+ Loss-of-function mutations in the MR or ENaC reabsorption and K+ secretion.1 Upon binding to subunitgenesaccountforpseudohypoaldosteronism mineralocorticoid receptor (MR), the hormone– type 1 (PHA1),5,6 which is the principal form of aldo- receptor complex translocates into the nucleus sterone resistance and shows an autosomal-dominant and interacts with glucocorticoid receptor response element in specific promoter regions of the target Received April 7, 2011. Accepted October 6, 2011. genes, thereby activating their transcription, such Published online ahead of print. Publication date available at as a-subunit of the amiloride-sensitive epithelial www.jasn.org. sodium channel (aEnaC) in the aldosterone- Correspondence: Dr. Guang Ning, Shanghai Clinical Center for 2 sensitive distal nephron. The functional relevance Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai of ENaC to aldosterone-dependent Na+ reabsorp- Jiaotong University School of Medicine, 197 Ruijin 2nd Road, tion, and thus to the regulation of extracellular fluid Shanghai 200025, China. Email: [email protected] volume and BP, is well established.3 Promotion of Copyright © 2012 by the American Society of Nephrology J Am Soc Nephrol 23: 281–293, 2012 ISSN : 1046-6673/2302-281 281 BASIC RESEARCH www.jasn.org (adPHA1; OMIM #177735) and a recessive (arPHA1; OMIM trap–mutated Gpr48 ES cells into C57BL/6 blastocysts.27 #264350) transmission.7 First described in 1958, this rare con- An insertion of the trap vector into intron 1 of the Gpr48 dition features renal resistance to aldosterone action.8 Early in gene resulted in approximately 90% knockdown efficiency infancy, patients with adPHA1 present with dehydration and in the kidney and adrenal gland of adult Gpr48m/m mice (Fig- failure to thrive associated with salt wasting, hypotension, hy- ure 1, A–C). We observed that approximately half of Gpr48m/m perkalemia, and metabolic acidosis, despite increased plasma newborns died within 28 hours after birth, but no further aldosterone levels.6 These patients can improve with age, and deaths occurred in the following 20 hours (Figure 1D). some adult patients are usually asymptomatic and have fewer abnormal biochemical findings (e.g., only lifelong increases Increases in Water Intake and Urine Volume with in aldosterone or hyperkalemia).9,10 To date, approximately Partially Impaired Urine-Concentrating Ability 50 distinct mutations in the human MR gene and approxi- in Gpr48m/m Mice mately 20 mutations in ENaC genes responsible for PHA1 We explored the potential changes of water balance in Gpr48m/m have been described.11,12 However, some patients, especially mice using metabolic cages and found that Gpr48m/m mice those with sporadic PHA1, do not have genetic abnormalities showed a dramatic increase in 24-hour water and food intake in MR or ENaC.6,10,13–15 Because PHA1 is life-threatening and at 16 and 24 weeks compared with wild-type mice (Figure 2, many probands may be missed as a result of early death, addi- A and B). Their urine volume was also significantly increased tional genetic mechanisms might participate in its pathogene- during this time (Figure 2C). Meanwhile, urine osmolality sis. According to recent studies, aldosterone resistance may also declined markedly (Figure 2D). Female mice showed overall be associated with a reduction in MR expression, probably similar phenotypes (Supplemental Figure S1). We next per- mediated by transcriptional mechanisms.16–19 formed a water deprivation test to assess the urine-concentrating Gprotein–coupled receptor 48 (GPR48/ LGR4) belongs to the G protein–coupled receptor superfamily. It has recently been re- ported to bind R-spondin and mediate its signaling in intestinal crypt cells,20,21 yet its function has not been well investigated.22 GPR48 is critical in development, and Gpr48- mutant mice display early neonatal lethality.23 Our group and others have demonstrated that Gpr48 deficiency results in impaired func- tion of the male reproductive tract through downregulation of estrogen receptor a ex- pression.24,25 GPR48 is also involved in colon carcinoma metastasis, development of ocular anterior segment, and bone formation through different downstream targets.26–28 However, the involvement of this protein in electrolyte balance has not been described. In this study, we find that Gpr48 hypo- morphic mutant mice display a significant aldosterone resistance, which mimics a mild state of adPHA1 disease. We also dem- onstrate that GPR48 regulates MR expres- sion through the cAMP/protein kinase A (PKA) pathway. This study elucidates the potential role of GPR48 in electrolyte ho- meostasis and aldosterone resistance. Figure 1. Residual levels of Gpr48 transcripts and neonatal survival rate of Gpr48m/m mice. (A) Approximately 10% of Gpr48 transcripts remained in the kidney of Gpr48m/m RESULTS mice at age 16 weeks according to quantitative PCR (n=12). (B) Reverse transcription PCR for Gpr48 expression in the kidney of Gpr48m/m mice at age 16 weeks (n=6). The corre- sponding cDNA length is 471 bp, and the PCR products were verified to be wild-type Gpr48 Homozygous Mutant Mice Gpr48 by sequencing. (C) Approximately 10% of Gpr48 transcripts remained in the adrenal Show Hypomorphic Features gland of Gpr48m/m mice at age 16 weeks according to qualitative PCR (n=12). 36B4 was We obtained Gpr48 hypomorphic mutant used as internal control. (D) Survival curve of neonatal wild-type (Gpr48+/+)(n=29) and (Gpr48m/m) mice by microinjecting gene Gpr48m/m (n=23) mice within 48 hours after birth. Error bars represent SEM. ***P,0.001. 282 Journal of the American Society of Nephrology J Am Soc Nephrol 23: 281–293, 2012 www.jasn.org BASIC RESEARCH between the two genotypes, nor did pH, 2 HCO3 , or base excess (Table 1 and Sup- plemental Table S1). We next examined plasma mineralocor- ticoid levels, which play fundamental roles in regulating water and salt homeostasis. Surprisingly, plasma aldosterone was sig- nificantly higher in Gpr48m/m mice than in wild-type mice (302.6630.0 versus 155.3611.9 pg/ml; P,0.001) (Figure 4A). Their daily urinary aldosterone excretion was also increased (Figure 4B). However, this aldosterone excess did not have the expected effects of excreting K+ while pre- serving Na+ and water, suggesting aldoste- rone resistance in Gpr48m/m mice. Plasma renin activity (PRA) showed no difference but did have a tendency to increase in Gpr48m/m mice (Figure 4C). In addition, plasma corticosterone concentration did not show any difference (Figure 4, D–F). Morphologic analysis of the adrenal gland revealed no obvious changes in Gpr48m/m mice (Supplemental Figures S2 and S3A), nor did the gene expression of the key en- zymes in the adrenal gland and the plasma levels of adrenergic hormones (Supple- mental Figure S3, B–E), suggesting that the phenotypes observed in Gpr48m/m Figure 2. Adult Gpr48m/m mice show polydipsia, polyphagia, severe water loss, and re- mice are not secondary to defects in the duced urine osmolality. Male Gpr48m/m mice at age 16 and 24 weeks displayed increased adrenal gland. Taken together, these data (A) water intake, (B) food intake, and (C) urine volume but (D) decreased urine osmolality suggest that Gpr48m/m mice displayed so- compared with their age-matched wild-type littermates. At 8 weeks, n=4; at 16 weeks, +/+ dium and water loss as well as hyperkale- n=9; at 24 weeks, n=10. White bar, wild-type mice (Gpr48 ); black bar, Gpr48-mutant mia, despite elevated aldosterone, thus mice (Gpr48m/m). Error bars represent SEM. **P,0.01; ***P,0.001. BW, body weight. resembling the mild state of adPHA1.6,32 ability of Gpr48m/m mice.
Recommended publications
  • Strategies to Increase ß-Cell Mass Expansion
    This electronic thesis or dissertation has been downloaded from the King’s Research Portal at https://kclpure.kcl.ac.uk/portal/ Strategies to increase -cell mass expansion Drynda, Robert Lech Awarding institution: King's College London The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without proper acknowledgement. END USER LICENCE AGREEMENT Unless another licence is stated on the immediately following page this work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence. https://creativecommons.org/licenses/by-nc-nd/4.0/ You are free to copy, distribute and transmit the work Under the following conditions: Attribution: You must attribute the work in the manner specified by the author (but not in any way that suggests that they endorse you or your use of the work). Non Commercial: You may not use this work for commercial purposes. No Derivative Works - You may not alter, transform, or build upon this work. Any of these conditions can be waived if you receive permission from the author. Your fair dealings and other rights are in no way affected by the above. Take down policy If you believe that this document breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 02. Oct. 2021 Strategies to increase β-cell mass expansion A thesis submitted by Robert Drynda For the degree of Doctor of Philosophy from King’s College London Diabetes Research Group Division of Diabetes & Nutritional Sciences Faculty of Life Sciences & Medicine King’s College London 2017 Table of contents Table of contents .................................................................................................
    [Show full text]
  • Edinburgh Research Explorer
    Edinburgh Research Explorer International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein-coupled receptor list Citation for published version: Davenport, AP, Alexander, SPH, Sharman, JL, Pawson, AJ, Benson, HE, Monaghan, AE, Liew, WC, Mpamhanga, CP, Bonner, TI, Neubig, RR, Pin, JP, Spedding, M & Harmar, AJ 2013, 'International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein-coupled receptor list: recommendations for new pairings with cognate ligands', Pharmacological reviews, vol. 65, no. 3, pp. 967-86. https://doi.org/10.1124/pr.112.007179 Digital Object Identifier (DOI): 10.1124/pr.112.007179 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Pharmacological reviews Publisher Rights Statement: U.S. Government work not protected by U.S. copyright General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 02. Oct. 2021 1521-0081/65/3/967–986$25.00 http://dx.doi.org/10.1124/pr.112.007179 PHARMACOLOGICAL REVIEWS Pharmacol Rev 65:967–986, July 2013 U.S.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • The Evolutionary Origin of the Vasopressin/V2-Type Receptor/ Aquaporin Axis and the Urine-Concentrating Mechanism
    Endocrine (2012) 42:63–68 DOI 10.1007/s12020-012-9634-y MINI REVIEW The evolutionary origin of the vasopressin/V2-type receptor/ aquaporin axis and the urine-concentrating mechanism Kristian Vinter Juul Received: 5 December 2011 / Accepted: 8 February 2012 / Published online: 29 February 2012 Ó Springer Science+Business Media, LLC 2012 Abstract In this mini-review, current evidence for how circadian regulation of urine volume and osmolality that the vasopressin/V2-type receptor/aquaporin axis developed may lead to enuresis and nocturia. co-evolutionary as a crucial part of the urine-concentrating mechanism will be presented. The present-day human Keywords Arginine vasopressin Á V2-R Á AQPs Á kidney, allowing the concentration of urine up to a maxi- Evolution mal osmolality around 1200 mosmol kg-1—or urine to plasma osmolality ratio around 4—with essentially no sodium secreted is the result of up to 3 billion years evo- Introduction lution. Moving from aquatic to terrestrial habitats required profound changes in kidney morphology, most notable the The evolutionary process that ultimately lead to the loops of Henle modifying the kidneys from basically a development of the urine-concentrating mechanism was water excretory system to a water conserving system. originally proposed by Homer Smith, the ‘Father of Renal Vasopressin-like molecules has during the evolution played Physiology’ [1], and is now generally accepted: First cru- a significant role in body fluid homeostasis, more specifi- cial step was salt water vertebrates’ simple nephron cally, the osmolality of body liquids by controlling the developing into nephrons with large glomerular capillaries elimination/reabsorption of fluid trough stimulating and proximal and distal tubules in fresh water vertebrates, V2-type receptors to mobilize aquaporin water channels in allowing the excretion of the vast amounts of excess water the renal collector tubules.
    [Show full text]
  • Receptor-Arrestin Interactions: the GPCR Perspective
    biomolecules Review Receptor-Arrestin Interactions: The GPCR Perspective Mohammad Seyedabadi 1,2 , Mehdi Gharghabi 3, Eugenia V. Gurevich 4 and Vsevolod V. Gurevich 4,* 1 Department of Toxicology & Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari 48471-93698, Iran; [email protected] 2 Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari 48167-75952, Iran 3 Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; [email protected] 4 Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-615-322-7070; Fax: +1-615-343-6532 Abstract: Arrestins are a small family of four proteins in most vertebrates that bind hundreds of different G protein-coupled receptors (GPCRs). Arrestin binding to a GPCR has at least three functions: precluding further receptor coupling to G proteins, facilitating receptor internalization, and initiating distinct arrestin-mediated signaling. The molecular mechanism of arrestin–GPCR interactions has been extensively studied and discussed from the “arrestin perspective”, focusing on the roles of arrestin elements in receptor binding. Here, we discuss this phenomenon from the “receptor perspective”, focusing on the receptor elements involved in arrestin binding and empha- sizing existing gaps in our knowledge that need to be filled. It is vitally important to understand the role of receptor elements in arrestin activation and how the interaction of each of these elements with arrestin contributes to the latter’s transition to the high-affinity binding state. A more precise knowledge of the molecular mechanisms of arrestin activation is needed to enable the construction of arrestin mutants with desired functional characteristics.
    [Show full text]
  • Multi-Functional Norrin Is a Ligand for the LGR4 Receptor
    2060 Research Article Multi-functional norrin is a ligand for the LGR4 receptor Cheng Deng1, Pradeep Reddy1, Yuan Cheng1, Ching-Wei Luo2, Chih-Lun Hsiao2 and Aaron J. W. Hsueh1,* 1Program of Reproductive and Stem Cell Biology, Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA 94305-5317, USA 2Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan *Author for correspondence ([email protected]) Accepted 25 January 2013 Journal of Cell Science 126, 2060–2068 ß 2013. Published by The Company of Biologists Ltd doi: 10.1242/jcs.123471 Summary Mammalian LGR4, 5 and 6 are seven-transmembrane receptors that are important for diverse physiological processes. These receptors are orthologous to DLGR2, a Drosophila receptor activated by the burs/pburs heterodimer important for morphogenesis. Although recent studies indicated that four R-spondin proteins are cognate ligands for LGR4, 5 and 6 receptors, several BMP antagonists in vertebrates have been postulated to be orthologous to burs and pburs. Using newly available genome sequences, we showed that norrin is a vertebrate ortholog for insect burs and pburs and stimulates Wnt signaling mediated by LGR4, but not by LGR5 and 6, in mammalian cells. Although norrin could only activate LGR4, binding studies suggested interactions between norrin and LGR4, 5 and 6. Norrin, the Norrie disease gene product, is also capable of activating Wnt signaling mediated by the Frizzled4 receptor and serves as a BMP antagonist. Mutagenesis studies indicated that different norrin mutations found in patients with Norrie disease can be categorized into subgroups according to defects for signaling through the three distinct binding proteins.
    [Show full text]
  • Homogeneous Time-Resolved Fluorescence-Based Assay To
    Homogeneous time-resolved fluorescence-based assay to monitor extracellular signal-regulated kinase signaling in a high-throughput format Mohammed Akli Ayoub, Julien Trebaux, Julie Vallaghe, Fabienne Charrier-Savournin, Khaled Al-Hosaini, Arturo Gonzalez Moya, Jean-Philippe Pin, Kevin D. Pfleger, Eric Trinquet To cite this version: Mohammed Akli Ayoub, Julien Trebaux, Julie Vallaghe, Fabienne Charrier-Savournin, Khaled Al- Hosaini, et al.. Homogeneous time-resolved fluorescence-based assay to monitor extracellular signal- regulated kinase signaling in a high-throughput format. Frontiers in Endocrinology, Frontiers, 2014, 5, pp.94. 10.3389/fendo.2014.00094. hal-01943335 HAL Id: hal-01943335 https://hal.archives-ouvertes.fr/hal-01943335 Submitted on 3 Dec 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. METHODS ARTICLE published: 23 June 2014 doi: 10.3389/fendo.2014.00094 Homogeneous time-resolved fluorescence-based assay to monitor extracellular signal-regulated kinase signaling in a high-throughput format Mohammed Akli Ayoub1*, JulienTrebaux 2,
    [Show full text]
  • Download the Poster
    Real-Time Kinetic Analysis of GPCR Signaling in Stable PathHunter® Cell Lines Paul Tewson (Montana Molecular), Sam Hoare (Pharmechanics), Thom Hughes (Montana Molecular), Anne Marie Quinn (Montana Molecular), Paul Shapiro (Eurofins DiscoverX), Nurulain T. Zaveri (Astraea Therapeutics) Overview Investigate GPCR biology with a simple protocol that Kinetic measurements make it possible to extract combines DiscoverX cells and Montana Molecular the initial rate parameter (kTau), which can be used • Eurofins DiscoverX stable cell lines are widely used biosensors to quantify agonist activity at GPCRs such as the tools in GPCR drug discovery, providing endpoint DAY 1 TRANSDUCE AND PLATE CELLS Nociceptin Opioid receptor (OPRL1) assays for G-protein signaling, GPCR internalization, STEP 1 The green cADDis Sensor 20 and β-arrestin recruitment. Prepare cells NOFQ 1. µM can be used in DiscoverX cells 10 nM expressing the Nociceptin 1.8 Opioid receptor to detect • Montana Molecular offers genetically-fluorescent 10 M 2+ + + Gi signaling. Dose response biosensors to detect cAMP, DAG, PIP2 , Ca , c GMP, STEP 2 BacMam Media HDAC 1.6 3.2 nM measurements to the agonist β-arrestin, and cell stress. Prepare viral transduction reaction Inhibitor Transduction Mix 1 nM nociceptin/orphanin FQ were 1.4 made, and the kinetic data was 0.2 nM used use determine the EC50 • The fluorescent sensors can be used effectively in both 0. nM by calculating the initial rate STEP 3 1.2 PathHunter® and cAMP Hunter® CHO-K1 cell lines to 0.032 M of activity (kTau) at each dose. Mix cells and transduction reaction + The initial rate of signaling 1.0 monitor signaling kinetics of G-protein and β-arrestin 0.01 nM (kTau) is a direct measure of pathways in live cells, in real time.
    [Show full text]
  • Biased Signaling of G Protein Coupled Receptors (Gpcrs): Molecular Determinants of GPCR/Transducer Selectivity and Therapeutic Potential
    Pharmacology & Therapeutics 200 (2019) 148–178 Contents lists available at ScienceDirect Pharmacology & Therapeutics journal homepage: www.elsevier.com/locate/pharmthera Biased signaling of G protein coupled receptors (GPCRs): Molecular determinants of GPCR/transducer selectivity and therapeutic potential Mohammad Seyedabadi a,b, Mohammad Hossein Ghahremani c, Paul R. Albert d,⁎ a Department of Pharmacology, School of Medicine, Bushehr University of Medical Sciences, Iran b Education Development Center, Bushehr University of Medical Sciences, Iran c Department of Toxicology–Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Iran d Ottawa Hospital Research Institute, Neuroscience, University of Ottawa, Canada article info abstract Available online 8 May 2019 G protein coupled receptors (GPCRs) convey signals across membranes via interaction with G proteins. Origi- nally, an individual GPCR was thought to signal through one G protein family, comprising cognate G proteins Keywords: that mediate canonical receptor signaling. However, several deviations from canonical signaling pathways for GPCR GPCRs have been described. It is now clear that GPCRs can engage with multiple G proteins and the line between Gprotein cognate and non-cognate signaling is increasingly blurred. Furthermore, GPCRs couple to non-G protein trans- β-arrestin ducers, including β-arrestins or other scaffold proteins, to initiate additional signaling cascades. Selectivity Biased Signaling Receptor/transducer selectivity is dictated by agonist-induced receptor conformations as well as by collateral fac- Therapeutic Potential tors. In particular, ligands stabilize distinct receptor conformations to preferentially activate certain pathways, designated ‘biased signaling’. In this regard, receptor sequence alignment and mutagenesis have helped to iden- tify key receptor domains for receptor/transducer specificity.
    [Show full text]
  • Multi-Functionality of Proteins Involved in GPCR and G Protein Signaling: Making Sense of Structure–Function Continuum with In
    Cellular and Molecular Life Sciences (2019) 76:4461–4492 https://doi.org/10.1007/s00018-019-03276-1 Cellular andMolecular Life Sciences REVIEW Multi‑functionality of proteins involved in GPCR and G protein signaling: making sense of structure–function continuum with intrinsic disorder‑based proteoforms Alexander V. Fonin1 · April L. Darling2 · Irina M. Kuznetsova1 · Konstantin K. Turoverov1,3 · Vladimir N. Uversky2,4 Received: 5 August 2019 / Revised: 5 August 2019 / Accepted: 12 August 2019 / Published online: 19 August 2019 © Springer Nature Switzerland AG 2019 Abstract GPCR–G protein signaling system recognizes a multitude of extracellular ligands and triggers a variety of intracellular signal- ing cascades in response. In humans, this system includes more than 800 various GPCRs and a large set of heterotrimeric G proteins. Complexity of this system goes far beyond a multitude of pair-wise ligand–GPCR and GPCR–G protein interactions. In fact, one GPCR can recognize more than one extracellular signal and interact with more than one G protein. Furthermore, one ligand can activate more than one GPCR, and multiple GPCRs can couple to the same G protein. This defnes an intricate multifunctionality of this important signaling system. Here, we show that the multifunctionality of GPCR–G protein system represents an illustrative example of the protein structure–function continuum, where structures of the involved proteins represent a complex mosaic of diferently folded regions (foldons, non-foldons, unfoldons, semi-foldons, and inducible foldons). The functionality of resulting highly dynamic conformational ensembles is fne-tuned by various post-translational modifcations and alternative splicing, and such ensembles can undergo dramatic changes at interaction with their specifc partners.
    [Show full text]
  • G Protein‐Coupled Receptors
    S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2019/20: G protein-coupled receptors. British Journal of Pharmacology (2019) 176, S21–S141 THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: G protein-coupled receptors Stephen PH Alexander1 , Arthur Christopoulos2 , Anthony P Davenport3 , Eamonn Kelly4, Alistair Mathie5 , John A Peters6 , Emma L Veale5 ,JaneFArmstrong7 , Elena Faccenda7 ,SimonDHarding7 ,AdamJPawson7 , Joanna L Sharman7 , Christopher Southan7 , Jamie A Davies7 and CGTP Collaborators 1School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK 2Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria 3052, Australia 3Clinical Pharmacology Unit, University of Cambridge, Cambridge, CB2 0QQ, UK 4School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK 5Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Anson Building, Central Avenue, Chatham Maritime, Chatham, Kent, ME4 4TB, UK 6Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK 7Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2019/20 is the fourth in this series of biennial publications. The Concise Guide provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide represents approximately 400 pages, the material presented is substantially reduced compared to information and links presented on the website.
    [Show full text]
  • Wnt/Rspondin/Β-Catenin Signals Control Axonal Sorting and Lineage Progression in Schwann Cell Development
    Wnt/Rspondin/β-catenin signals control axonal sorting and lineage progression in Schwann cell development Tamara Grigoryana, Simone Steina, Jingjing Qia, Hagen Wendeb, Alistair N. Garrattc, Klaus-Armin Naved, Carmen Birchmeierb, and Walter Birchmeiera,1 aCancer Research Program and bNeuroscience Program, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany; cCenter for Anatomy, Charité University Hospital, 10117 Berlin, Germany; and dDepartment of Neurogenetics, Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany Edited by Thomas C. Südhof, Stanford University School of Medicine, Stanford, CA, and approved September 26, 2013 (received for review June 2, 2013) During late Schwann cell development, immature Schwann cells organs (24–27). A role of Rspondins and Lgr4–6 receptors in SC segregate large axons from bundles, a process called “axonal ra- development has not been studied. dial sorting.” Here we demonstrate that canonical Wnt signals play Here we define a temporal window of Wnt/β-catenin activity a critical role in radial sorting and assign a role to Wnt and Rspon- and its role in SC lineage progression using mouse genetics and din ligands in this process. Mice carrying β-catenin loss-of-function cell culture techniques. Conditional loss-of-function (LOF) and mutations show a delay in axonal sorting; conversely, gain-of-function gain-of-function (GOF) mutations of β-catenin in mouse SCs mutations result in accelerated sorting. Sorting deficits are accom- produce converse phenotypes: a delay and an acceleration of panied by abnormal process extension, differentiation, and aber- axonal sorting, respectively. Using cultured primary SCs and rant cell cycle exit of the Schwann cells.
    [Show full text]