Transparent Ceramics Find Wide Use in Optics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Walman Optical Perspective on High Index Lenses
Optical Perspective of Polycarbonate Material JP Wei, Ph. D. November 2011 Introduction Among the materials developed for eyeglasses, polycarbonate is one that has a number of very unique properties and provides real benefits to eyeglass wearers. Polycarbonate lenses are not only cosmetically thinner, lighter, and provide superior impact-resistance, but also produce sharp optical clarity for both central and peripheral vision. It is well-known that as the index of refraction increases dispersion also increases. In other words, the higher the refractive index, the low the ABBE value. An increase in dispersion will cause an increase in chromatic aberration. Therefore, one of the concerns in the use of lens materials such as polycarbonate is: will chromatic aberration negatively affect patient adaption? MID 1.70 LENS MATERIAL CR39 TRIVEX INDEX POLYCARBONATE 1.67 INDEX INDEX REFRACTIVE INDEX 1.499 1.529 1.558 1.586 1.661 1.700 ABBE VALUES 58 45 37 30 32 36 The refractive index of a material is often abbreviated “n.” Except for air, which has a refractive index of approximately 1, the refractive index of most substances is greater than 1 (n > 1). Water, for instance, has a refractive index of 1.333. The higher the refractive index of a lens material, the slower the light will travel through it. While it is commonly recognized that high index materials will have greater chromatic aberration than CR-39 or low refractive index lenses, there has been no quantification of the amount of visual acuity loss that results from chromatic aberration. The purpose of this paper is to review the optical properties of polycarbonate material, its advantages over other lens materials, and the impact of chromatic aberration caused by the relative low ABBE value of the material on vision and clinical significance. -
TUNING the OPTICAL and MECHANICAL PROPERTIES of Y2O3 CERAMICS by the INCLUSION of La3+ ION in the MATRIX for INFRARED TRANSPARENT WINDOW APPLICATIONS
International Journal of Advanced Research in Engineering and Technology (IJARET) Volume 10, Issue 2, March- April 2019, pp. 1-13, Article ID: IJARET_10_02_001 Available online at http://iaeme.com/Home/issue/IJARET?Volume=10&Issue=2 ISSN Print: 0976-6480 and ISSN Online: 0976-6499 © IAEME Publication TUNING THE OPTICAL AND MECHANICAL PROPERTIES OF Y2O3 CERAMICS BY THE INCLUSION OF La3+ ION IN THE MATRIX FOR INFRARED TRANSPARENT WINDOW APPLICATIONS Mathew C.T EMRL, Department of Physics, Mar Ivanios College, Thiruvananthapuram, Kerala, India ABSTRACT Infrared transparent windows are generally used to protect highly delicate infrared sensor circuits from the harsh environments. In the present work a combustion technique was effectively used to incorporate La3+ ion in the yttria matrix. The crystallites were in the size limit of 20 nm. Powder characterization using X-ray diffraction, HRTEM and FTIR spectroscopy revealed that the La3+ ions were effectively replacing the Y3+ ion in the yttria matrix. There was a slight reduction in optical band gap with La3+ concentration. A novel sintering mechanism was used for sintering the samples by coupling definite proportions of resistive heating and microwave heating. The highly dense pellets showed better transmittance and hardness properties, which improved with La3+concentration. The present study authorises that combustion synthesis of the samples followed by resistive coupled microwave sintering can effectively be used to tune the optical and mechanical, properties of infrared transparent ceramics. -
Transparent Armor Ceramics As Spacecraft Windows
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln NASA Publications National Aeronautics and Space Administration 2012 Transparent Armor Ceramics as Spacecraft Windows Jonathan Salem NASA Glenn Research Center, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/nasapub Salem, Jonathan, "Transparent Armor Ceramics as Spacecraft Windows" (2012). NASA Publications. 121. https://digitalcommons.unl.edu/nasapub/121 This Article is brought to you for free and open access by the National Aeronautics and Space Administration at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in NASA Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. J. Am. Ceram. Soc., 1–9 (2012) DOI: 10.1111/jace.12089 © Journal 2012 The American Ceramic Society Transparent Armor Ceramics as Spacecraft Windows Jonathan A. Salem*,† NASA Glenn Research Center, Cleveland, OH 44135 The slow crack growth parameters of several transparent In addition to generating material properties, an equation is armor ceramics were measured as part of a program to lighten derived to estimate the required window pane mass in terms next generation spacecraft windows. Transparent magnesium of crack growth parameters and specified lifetime. aluminate (spinel, MgAl2O4) and AlON exhibit superior slow crack resistance relative to fused silica, which is the historical II. Test Materials material of choice. For spinel, slow crack growth, strength, and fracture toughness are significantly influenced by the grain size, To date, transparent spinel (MgAl2O4) and aluminum-oxy- and alumina-rich phases and porosity at the grain boundaries nitride (AlON) have been tested by using specimens extracted lead to intergranular fracture in coarse grain spinel. -
Correlation of the Abbe Number, the Refractive Index, and Glass Transition Temperature to the Degree of Polymerization of Norbornane in Polycarbonate Polymers
polymers Article Correlation of the Abbe Number, the Refractive Index, and Glass Transition Temperature to the Degree of Polymerization of Norbornane in Polycarbonate Polymers Noriyuki Kato 1,2,*, Shinya Ikeda 1, Manabu Hirakawa 1 and Hiroshi Ito 2,3 1 Mitsubishi Gas Chemical Company, 2-5-2 Marunouchi, Chiyoda-ku, Tokyo 100-8324, Japan; [email protected] (S.I.); [email protected] (M.H.) 2 Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan; [email protected] 3 Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan * Correspondence: [email protected] Received: 1 September 2020; Accepted: 16 October 2020; Published: 26 October 2020 Abstract: The influences of the average degree of polymerization (Dp), which is derived from Mn and terminal end group, on optical and thermal properties of various refractive indexed transparent polymers were investigated. In this study, we selected the alicyclic compound, Dinorbornane dimethanol (DNDM) homo polymer, because it has been used as a representative monomer in low refractive index polymers for its unique properties. DNDM monomer has a stable amorphous phase and reacts like a polymer. Its unique reaction allows continuous investigation from monomer to polymer. For hydroxy end group and phenolic end group polymers, the refractive index (nd) decreased with increasing Dp, and both converged to same value in the high Dp region. However, the Abbe number (νd) of a hydroxy end group polymer is not dependent on Dp, and the νd of a phenolic end group polymer is greatly dependent on Dp. -
Development of Highly Transparent Zirconia Ceramics
11 Development of highly transparent zirconia ceramics Isao Yamashita *1 Masayuki Kudo *1 Koji Tsukuma *1 Highly transparent zirconia ceramics were developed and their optical and mechanical properties were comprehensively studied. A low optical haze value (H<1.0 %), defined as the diffuse transmission divided by the total forward transmission, was achieved by using high-purity powder and a novel sintering process. Theoretical in-line transmission (74 %) was observed from the ultraviolet–visible region up to the infra-red region; an absorption edge was found at 350 nm and 8 µm for the ultraviolet and infrared region, respectively. A colorless sintered body having a high refractive index (n d = 2.23) and a high Abbe’s number (νd = 27.8) was obtained. A remarkably large dielectric constant (ε = 32.7) with low dielectric loss (tanδ = 0.006) was found. Transparent zirconia ceramics are candidates for high-refractive index lenses, optoelectric devices and infrared windows. Transparent zirconia ceramics also possess excellent mechanical properties. Various colored transparent zirconia can be used as exterior components and for complex-shaped gemstones. fabricating transparent cubic zirconia ceramics.9,13-19 1.Introduction Transparent zirconia ceramics using titanium oxide as Transparent and translucent ceramics have been a sintering additive were firstly reported by Tsukuma.15 studied extensively ever since the seminal work on However, the sintered body had poor transparency translucent alumina polycrystal by Coble in the 1960s.1 and low mechanical strength. In this study, highly Subsequently, researchers have conducted many transparent zirconia ceramics of high strength were studies to develop transparent ceramics such as MgO,2 developed. -
PERLUCOR® Transparent Ceramics Transparent, Durable and Hard-Wearing − Wherever It Counts
The Innovative Material for New Dimensions PERLUCOR® Transparent Ceramics Transparent, durable and hard-wearing − wherever it counts Transparent Ceramics PERLUCOR® is opening up completely new areas of application. A material for the extremes: everywhere where conventional glasses, special glasses and protective glasses reach their limits, PERLUCOR® displays greater strength. The material combines transpar ency with the extraordinary qualities of highperformance ceramic. With excellent properties, the optically perfected highperformance ceramic offers superior qualities for transparent extreme applications, for exam ple, in the areas of ARCHITECTURE SCANNERS & DISPLAYS INDUSTRY OPTICS & SENSORS JEWELLERY & DESIGN Let yourself be inspired by this innovative material: for a multitude of new application possibilities. SCRATCH-PROOF HARD CHEMICALLY RESISTANT TEMPERATURE-RESISTANT TRANSPARENT BRILLIANT Architecture Shining prospects for the architecture of the future Think beyond borders. Combine functionality with aesthetics in modern architecture. Transparent Ceramics PERLUCOR® is opening up new perspectives and possibilities. It sur passes the conventional borders of durability and remains abrasionresistant, nonslip, break proof and transparent. Perfect for applications in architecture, such as skywalks, stairways, glass flooring and lighting systems – when it comes to unclouded vision, the greatest stabil ity and lasting robustness. Scanners & Displays Longer-lasting visibility for data collection Scanners and modern displays for data collec tion and processing must consistently withstand high mechanical loads and constantly maintain optimal transparency. To enable data to be collected and processed fast, safely and without error. No problem with PERLUCOR®: its extreme robustness and its resistance to scratches, shocks, wear, chemicals and breakage provide longlasting protection. At airport checkins, or in fingerprint or hand scanners, for example. -
Trivex & Polycarbonate Lenses
Trivex Trivex was originally developed for the military, as visual armor. PPG Industries took the technology and adapted it for the optical industry. Trivex is a urethane-based pre-polymer. PPG named the material Trivex because of its three main performance properties. The three main properties are superior optics, ultra- lightweight, and extreme strength. Trivex has a high abbe value. Abbe value is a measure of the dispersion or color distortion of light through a lens into its color elements. Abbe number can also be referred to as v-value. The higher the abbe number, the less dispersion, the lower the number, the more dispersion. Trivex has an abbe number of 43-45. This is significantly higher than polycarbonate. Polycarbonate's abbe number is 30. Trivex has a very high level of light transmittance. The level is 91.4%. This is one of the highest levels of all lens materials. The high percentage is a factor that directly affects the brightness, clarity, and crispness of Trivex. Trivex has a specific gravity of 1.11. Specific gravity is the weight in grams of one cubic centimeter of the material. Specific gravity is also referred to as density. The higher the number, the more dense, or heavy, a lens material is. Trivex has the lowest specific gravity of any commonly used lens material. This makes Trivex the lightest lens material. Trivex is 16% lighter than CR-39, 25% lighter than 1.66, and 8% lighter than polycarbonate! Trivex has a refractive index of 1.53. This allows for a thinner lens than a CR-39 lens. -
Solid-State Lasers for Medical Applications 129
5 Solid- state lasers for medical applications J. ŠULC and H. JELÍNKOVÁ, Czech Technical University in Prague, Czech Republic DOI: 10.1533/9780857097545.2.127 Abstract: The goal of this chapter is to provide the fundamentals of solid- state lasers used in medical applications. After a brief introduction, the fundamental properties of solid- state laser active media are described. The main part of this chapter contains the description of a solid- state laser system, its pumping and cooling, modes of operation, and emission wavelength control, including a non- linear conversion of radiation. In the following part, a detailed description of selected solid- state laser types used in medical applications is given. At the end of this chapter, the construction and materials of some novel solid- state lasers are described. Key words: solid- state lasers, non- linear conversion of radiation, laser crystal, diode pumping, Q-switching, tunable solid- state laser. 5.1 Introduction Solid- state lasers (SSL) are attractive sources of coherent radiation for various scientifi c as well as industrial applications. As was mentioned in Chapter 2 , lasers can be divided into fi ve groups: solid- state, semiconductor, liquid, gas, and plasma lasers. According to the state of a laser active environment, solid- state and semiconductor lasers can be integrated into one group, because both these active media are in solid form. But, in a narrower sense of the term, solid-state lasers are systems whose active medium consists of a transparent solid matrix (e.g. crystal, glass or ceramics) doped by an optically active ion and using optical pumping for excitation. -
Strategic Marketing Innovations, Incorporated
Overview of the Advanced Ceramics Industry in the United States John E. Holowczak Chair, United States Advanced Ceramics Association Associate Director – Advanced Materials United Technologies Research Center Glen Mandigo and Doug Freitag, USACA 1020 Nineteenth St. NW Suite 375 Washington, D.C. 20036 This document does not contain any export controlled technical data. Introduction to USACA Established in 1985 to promote the research, development, and application of advanced ceramics 38 member companies and organizations USACA works to promote advanced ceramic materials, disseminate information about the materials, and interface with the U.S. government on behalf of the industry. Members advise federal agencies through technology roadmaps and conferences. Active technology roadmaps include: Advanced Ceramics Technology Roadmap, 2001 Advanced Ceramics for Distributed Energy, 2004 Ceramic Composites Affordability and Producibility Initiative, 2009 Transparent Ceramic Armor Producibility Roadmap, 2013 Transparent Ceramic Sensor Windows Roadmap, 2017 Ceramic Composites Affordability and Producibility Roadmap update, 2016 2 This page does not contain any export controlled technical data. What are Advanced Ceramics Lightweight, strong materials capable of performing in extreme environments: High Temperature and Pressure High Stiffness and Durability Ultra Hard & Tough Surface Not This! 3 This page does not contain any export controlled technical data. Membership Across the Supply Chain Design/Stds/ Raw Test & Research Fabrication Machining -
Transparent Ballistic Armour Ceramics. Recent Advances and Issues to Be Overcome
Transparent ballistic armour ceramics. Recent advances and issues to be overcome Felipe Orgaz Instituto de Ceramica y Vidrio, CSIC, Spain Transparent armour is a system designed to be -Transparent ceramics offer significant ballistic optically transparent to support dynamic protection in relation to conventional glass/plastic fragmentation when subjected to the high strain systems. A few companies produce this kind of rates produced by ballistic impacts. They are mainly products: Surmet (ALON® technology), Armorline used to protect vehicle occupants from terrorist (Spinel), Saint Gobain Group (Sapphire), Technology actions and other hostile conflicts, as visors for non- Assessment and Transfer (TA&T) (Spinel). For combat use like riot control or explosive actions, etc. technology transfer: Fraunhofer Institut (IKTS). Light weight, small thickness, low optical distortion, compatibility with night vision equipment and multi Some issues must be overcome: commercial hit capability are needed to defeat armour piercing availability, very high cost raw materials, high ammunitions (AP) threats. These systems consist of investments, complex processing techniques (hot a sandwich structure with a hard front layer of pressing, hot isostatic pressing, Spark Plasma transparent ceramic joined to several plies of glass Sintering), machining and polishing costs, large with polymer inter layers and polycarbonate formats and curved shapes, new structural designs backing. Advances in material science and for multi hit capability, etc technology over the last 40 years has made available sub-μm grain size polycrystalline α- Al2O3 -Several programs are investigating for cost aluminium oxynitride (AlON) , magnesium aluminate reduction, new processing ways and scale up of spinel (MgAl2O4)3 and these materials: As strategies are proposed: single crystal sapphire (Al2O3) as alternative ceramic Conventional pressureless sintering, gel casting, materials able to satisfy the requirements of nanotechnology, nanocomposite optical ceramics transparency and hardness for armours application. -
Optical Glass
OPTICAL GLASS JAN. 2020 Contents New Glass Types . 4 3. Chemical Properties . 87 OHARA Group . 21 3 1. Water Resistance RW(p) and Main Products . 22 Acid Resistance RA(p) (Powder Method) . 88 Comparative Table of Optical Glasses, 3 .2 Weathering Resistance W(s) (Surface Method) . 89 Codes and Glass-types . 26 3 .3 Acid Resistance (SR) . 89 3 .4 Phosphate Resistance (PR) . 92 1. Designation of OHARA’s Optical Glass Types . 80 4. Thermal Properties . 93 4 1. Transformation Temperature (Tg), 2. Optical Properties . 81 Yield Point (At) . 93 2 1. Refractive Index . 81 4 .2 Softening Point (SP) . 94 2 2. Dispersion . 82 4 .3 Annealing Point (AP) . 94 2 .3 Partial Dispersion Ratio, Anomalous Dispersion 82 4.4 Linear Coefficient of Thermal Expansion (α) . 94 2 .4 Temperature Coefficient of 4 .5 Thermal Conductivity (k) . 94 Refractive Index (dn/dTrelative) . 83 2 5. Coloring . 85 2.6 Internal Transmittance λ0 .80 / λ 0 .05 . 86 2 .7 CCI . 86 2 5. Mechanical Properties . 95 8. Forms of Supply . 104 5 1. Knoop Hardness (Hk) . 95 8 1. Glass Blocks . 104 5 .2 Abrasion (Aa) . 96 8 .2 Pressings (Reheat Pressings – RP) . 105 8 .3 Saw-cut Centerless Ground Cylindrical 6. Other Properties . 97 Blanks . 107 6.1 Photoelastic Constant (β) . 97 8 .4 Dimensional Specified Blanks . 108 6 .2 Specific Gravity (d) . 97 8 .5 High Homogeneity Blanks . 109 8 .6 Polished Balls . 110 7. Guarantees of Quality . 98 8 7. Polished Preforms . 111 7 1. Refractive Index and Abbe Number . 98 8 .8 Aspherical Glass Mold Lenses . -
Abbe Number 404 Absorption 570 by Transition Metals 234 Edge 333
INDEX (Bold Type indicates Chapter) A c Cab-O-SiI™ 7 Abbe number 404 Cadmium sulfide 332 Absorption 570 selenide 338 by transition metals 234 telluride 338 edge 333 Calorimetry 209 Acetyl acetonates 159, 176,239 Catalysis 360 Aerogels 23, 96, 366 Catalysts for hydrolysis 41 Aerosol 161 acid 3, 86 ammonia 86, 330 Alumina 160, 170, 376 base 86 Aluminosilicate 302 Catalyst supports 343 Li/Mg0365 Auger electron spectroscopy (AES) 179, 492 Ru/Si02 359 Autoclaving 24 Pd/Si02359 Pt/Ti02363 B Pt-Sn/AI203364 Barium titanate 43 Cerarners 427 BET method 345, 547 Cermet Birefringence 272, 441 silica-precious metal 344 Bloating 26 Chalcogenides 473 Boria 402, 493 Chelating agents b-diketones 44, 259, 457 Boric acid 17 5 glycol 259, 426 Borosilicates 493 Chemical leaching 296, 375 with baria 407 584 Chemical vapor deposition (CVD) 256 Conductivity modified (MCVD) 157 electrical 268 thermal 24 Chlorination 27, 103 Conventional melting 60, 83, 328 Chromophores bipyridyltriscarbonylchloro Copper bromide 340 rhenium (ReCI(CO)3 birpy) 302 Copper chloride 340 DEANST (diethylamino nitrostyrene) 429 Coupling efficiency 525 HNPP (N -(3-hydroxy-4-nitro phenyl)-(L)-prolinol) Crosslinking 49, 451 429 NPP (N--(4-nitrophenyl)-(L) Crystallization 28, 132, 207, 266, 332, prolinol) 429 502 PNA (para-nitroaniline) 420 D Clean room conditions 144,470 Defects Coatings (see also Layers, Thin Films) bubbles 66 adhesion of 268 colored 233 Dehydration conductive 173,269,431 chemical 27, 66, 102 electroc:hromic 178,497 chlorine treatments 27, 103 multilayer 171, 242 thermal