Finding the Effects of Acids on Carbonates
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Protonation of Citraconic and Glutaconic Acid In
M. Jankulovska-Petkovska, M. S. Jankulovska, V. Dimova, “Protonation of citraconic and glutaconic acid…”, Technologica Acta , vol. 12, no. 1, pp. 1–8, 2019. 1 PROTONATION OF CITRAC ONIC AND GLUTACONIC ACID IN PERCHLORIC ACID MEDIA ORIGINAL SCIENTIFIC PAPER Milena Jankulovska-Petkovska 1, Mirjana S. 2 3 Jankulovska *, Vesna Dimova DOI: 10.5281/zenodo.3267263 RECEIVED ACCEPTED 1 Ss Kliment Ohridski University, Faculty of Veterinary Medicine in Bitola, Macedonia 2019-01-22 2019-04-05 2 Ss. Cyril and Methodius University, Faculty of Agricultural Sciences and Food in Skopje, Macedonia 3 Ss Cyril and Methodius University, Faculty of Technology and Metallurgy in Skopje, Macedonia * [email protected] ABSTRACT: The protonation process of citraconic and glutaconic acid in perchloric acid media was followed us- ing the method of UV spectroscopy. The observed changes in the UV spectra of investigated acids confirmed that the protonation process in perchloric acid with concentration from 5 to 10 mol/dm 3 occurred. Glutaconic acid be- haved as weak organic base in perchloric acid media and existed in its monoprotonated form. On the other hand, citraconic acid existed in its protonated form and as protonated anhydride at higher perchloric acid concentra- tion. Using the absorbance data the thermodynamic dissociation constants were calculated applying the methods of Yates and McClelland, Bunnett and Olsen, and the “excess acidity” function method. The solvatation parame- ters m, m* and φφφ were evaluated, as well. In order to correct the medium effect the method of characteristic vector analysis was applied. The possible site where the protonation may take place was discussed using the partial atomic charge values determined according to AM1 and PM3 semiempirical methods. -
Laboratory Analysis of Organic Acids, 2018 Update: a Technical Standard of the American College of Medical Genetics and Genomics (ACMG)
© American College of Medical Genetics and Genomics ACMG TECHNICAL STANDARD Laboratory analysis of organic acids, 2018 update: a technical standard of the American College of Medical Genetics and Genomics (ACMG) Renata C. Gallagher MD, PhD1, Laura Pollard, PhD2, Anna I. Scott, PhD3,4, Suzette Huguenin, PhD5, Stephen Goodman, MD6, Qin Sun, PhD7; on behalf of the ACMG Biochemical Genetics Subcommittee of the Laboratory Quality Assurance Committee Disclaimer: This laboratory standard is designed primarily as an educational resource for clinical laboratory geneticists to help them provide quality clinical laboratory genetic services. Adherence to this standard is voluntary and does not necessarily assure a successful medical outcome. This standard should not be considered inclusive of all proper procedures and tests or exclusive of other procedures and tests that are reasonably directed to obtaining the same results. In determining the propriety of any specific procedure or test, the clinical laboratory geneticist should apply his or her own professional judgment to the specific circumstances presented by the individual patient or specimen. Clinical laboratory geneticists are encouraged to document in the patient’s record the rationale for the use of a particular procedure or test, whether or not it is in conformance with this standard. They also are advised to take notice of the date any articular standard was adopted, and to consider other relevant medical and scientific information that becomes available after that date. It also would be prudent to consider whether intellectual property interests may restrict the performance of certain tests and other procedures. Organic acid analysis detects accumulation of organic acids in urine guidance for laboratory practices in organic acid analysis, and other body fluids and is a crucial first-tier laboratory test for a interpretation, and reporting. -
Is There an Acid Strong Enough to Dissolve Glass? – Superacids
ARTICLE Is there an acid strong enough to dissolve glass? – Superacids For anybody who watched cartoons growing up, the word unit is based on how acids behave in water, however as acid probably springs to mind images of gaping holes being very strong acids react extremely violently in water this burnt into the floor by a spill, and liquid that would dissolve scale cannot be used for the pure ‘common’ acids (nitric, anything you drop into it. The reality of the acids you hydrochloric and sulphuric) or anything stronger than them. encounter in schools, and most undergrad university Instead, a different unit, the Hammett acidity function (H0), courses is somewhat underwhelming – sure they will react is often preferred when discussing superacids. with chemicals, but, if handled safely, where’s the drama? A superacid can be defined as any compound with an People don’t realise that these extraordinarily strong acids acidity greater than 100% pure sulphuric acid, which has a do exist, they’re just rarely seen outside of research labs Hammett acidity function (H0) of −12 [1]. Modern definitions due to their extreme potency. These acids are capable of define a superacid as a medium in which the chemical dissolving almost anything – wax, rocks, metals (even potential of protons is higher than it is in pure sulphuric acid platinum), and yes, even glass. [2]. Considering that pure sulphuric acid is highly corrosive, you can be certain that anything more acidic than that is What are Superacids? going to be powerful. What are superacids? Its all in the name – super acids are intensely strong acids. -
Organic Acids and Bases
H O H C C C C O = C C H = H C O H C O H3C aspirin CHEMISTRY 2000 Topic #3: Organic Chemistry Fall 2020 Dr. Susan Findlay See Exercises in Topic 12 Measuring Strength of Acids When you hear the term “organic acid”, it usually refers to a carboxylic acid. Carboxylic acids are readily deprotonated by strong bases: .O. .O. -... H .. H C .. H + .O H C .. + O H C O .. H C O.- .. 3 .. 3 ... acid base conjugate base conjugate acid This reaction is favoured in the forward direction because the products are lower in energy than the reactants. In particular, the conjugate base (acetate; ) is much more stable than the original base (hydroxide, ). − 32 Therefore, acetate is a weaker base than hydroxide.− Therefore, acetic acid is a stronger acid than water. 2 Measuring Strength of Acids An acid’s strength depends on the stability of its conjugate base: The conjugate base of (a strong acid; = 7) is (a very weak base) − − The conjugate base of (a weak acid; = 14) is (a relatively strong base) − 2 The strength of an acid can therefore be said to be inversely related to the strength of its conjugate base (and vice versa). Why is more stable than ? − − 32 3 Measuring Strength of Acids- Consider the reaction below. Identify the acid, base, conjugate acid and conjugate base. Is this reaction product-favoured or reactant-favoured? The of is 5. The of is 14. 32 The of 2 is 0. + 3 .O. .O. H .. H H ..+ H C .. H + O C . -
The Strongest Acid Christopher A
Chemistry in New Zealand October 2011 The Strongest Acid Christopher A. Reed Department of Chemistry, University of California, Riverside, California 92521, USA Article (e-mail: [email protected]) About the Author Chris Reed was born a kiwi to English parents in Auckland in 1947. He attended Dilworth School from 1956 to 1964 where his interest in chemistry was un- doubtedly stimulated by being entrusted with a key to the high school chemical stockroom. Nighttime experiments with white phosphorus led to the Headmaster administering six of the best. He obtained his BSc (1967), MSc (1st Class Hons., 1968) and PhD (1971) from The University of Auckland, doing thesis research on iridium organotransition metal chemistry with Professor Warren R. Roper FRS. This was followed by two years of postdoctoral study at Stanford Univer- sity with Professor James P. Collman working on picket fence porphyrin models for haemoglobin. In 1973 he joined the faculty of the University of Southern California, becoming Professor in 1979. After 25 years at USC, he moved to his present position of Distinguished Professor of Chemistry at UC-Riverside to build the Centre for s and p Block Chemistry. His present research interests focus on weakly coordinating anions, weakly coordinated ligands, acids, si- lylium ion chemistry, cationic catalysis and reactive cations across the periodic table. His earlier work included extensive studies in metalloporphyrin chemistry, models for dioxygen-binding copper proteins, spin-spin coupling phenomena including paramagnetic metal to ligand radical coupling, a Magnetochemi- cal alternative to the Spectrochemical Series, fullerene redox chemistry, fullerene-porphyrin supramolecular chemistry and metal-organic framework solids (MOFs). -
The Effect of Organic Acids on Base Cation Leaching from the Forest ¯Oor Under Six North American Tree Species
European Journal of Soil Science, June 2001, 52, 205±214 The effect of organic acids on base cation leaching from the forest ¯oor under six North American tree species a,c b b b a F. A. DIJKSTRA ,C.GEIBE ,S.HOLMSTROÈ M ,U.S.LUNDSTROÈ M &N.VAN BREEMEN aLaboratory of Soil Science and Geology, PO Box 37, 6700 AA Wageningen, The Netherlands, bDepartment of Chemistry and Process Technology, Mid Sweden University, 85170 Sundsvall, Sweden, and cInstitute of Ecosystem Studies, Box AB, Route 44A, Millbrook, NY 12545, USA Summary Organic acidity and its degree of neutralization in the forest ¯oor can have large consequences for base cation leaching under different tree species. We investigated the effect of organic acids on base cation leaching from the forest ¯oor under six common North American tree species. Forest ¯oor samples were analysed for exchangeable cations and forest ¯oor solutions for cations, anions, simple organic acids and acidic properties. Citric and lactic acid were the most common of the acids under all species. Malonic acid was found mainly under Tsuga canadensis (hemlock) and Fagus grandifolia (beech). The organic acids were positively correlated with dissolved organic carbon and contributed signi®cantly to the organic acidity of the solution (up to 26%). Forest ¯oor solutions under Tsuga canadensis contained the most dissolved C and the most weak acidity among the six tree species. Under Tsuga canadensis we also found signi®cant amounts of strong acidity caused by deposition of sulphuric acid from the atmosphere and by strong organic acids. Base cation exchange was the most important mechanism by which acidity was neutralized. -
Superacid Chemistry
SUPERACID CHEMISTRY SECOND EDITION George A. Olah G. K. Surya Prakash Arpad Molnar Jean Sommer SUPERACID CHEMISTRY SUPERACID CHEMISTRY SECOND EDITION George A. Olah G. K. Surya Prakash Arpad Molnar Jean Sommer Copyright # 2009 by John Wiley & Sons, Inc. All rights reserved Published by John Wiley & Sons, Inc., Hoboken, New Jersey Published simultaneously in Canada No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission. Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. -
Supporting Document 1
Supporting document 1 Risk and Technical Assessment Report – Application A1103 Citric & Lactic Acids as Food Additives in Beer and related products Executive Summary FSANZ received an Application from DB Breweries Limited seeking to amend Standard 1.3.1 – Food Additives of the Australia New Zealand Food Standards Code (the Code) to permit the addition of citric and lactic acids as food additives in beer. Within Standard 1.3.1, this permission would apply to the food category 14.2.1 - Beer and related products. Citric and lactic acids are currently permitted as food additives in a large range of foods at levels consistent with Good Manufacturing Practice (GMP). For the proposed use of citric and lactic acids in beer and related products, this Application also requests GMP permission. The food technology assessment concluded that certain types of beers exhibit improved flavour profiles due to pH reduction achieved by the addition of citric and lactic acids. Maximum levels of addition are expected to be approximately 3 g per litre of beer (total of citric acid plus lactic acid). Citric acid and lactic acid are substances of very low toxicity. Citric acid occurs in many foods, with levels of approximately 10 and 50 g/L in orange juice and lemon juice, respectively. Lactic acid levels are highest in foods produced by fermentation, with levels of approximately 10 g/kg reported for cheese and yogurt. The Joint FAO/WHO Expert Committee on Food Additives (JECFA) concluded that establishment of an Acceptable Daily Intake (ADI) expressed in numerical terms was unnecessary for either substance. -
Laboratory Manual
International Program UAM-Boston University Laboratory Manual Organic Chemistry I 2013-2014 Departamento de Química Orgánica Ernesto Brunet Romero Ana María Martín Castro Ramón Gómez Arrayás Laboratory Manual Table of Contents ............................................................................... 1 Introduction ............................................................................... 2 Prelab preparation ............................................................................... 2 Notebook ............................................................................. 3 Safety .............................................................................. 3 Laboratory Practices and Safety Rules ............................................................. 4 Accidents and injuries ........................................................................... 5 Fires ............................................................................. 5 Chemical Wastes ............................................................................. 6 Cleaning Responsibilities ............................................................................. 6 Lab cleanliness ............................................................................. 6 Laboratory Equipment ............................................................................. 7 Proper use of glassware ............................................................................. 8 Some techniques in lab experiments Heating, cooling and stirring ............................................................................ -
Role of Organic Acids in the Mechanisms of Biological Soil Disinfestation (BSD)
J Gen Plant Pathol (2006) 72:247–252 © The Phytopathological Society of Japan DOI 10.1007/s10327-006-0274-z and Springer-Verlag Tokyo 2006 FUNGAL DISEASES Short communication Noriaki Momma · Kazuhiro Yamamoto · Peter Simandi Masahiro Shishido Role of organic acids in the mechanisms of biological soil disinfestation (BSD) Received: May 18, 2005 / Accepted: December 9, 2005 Abstract Biological soil disinfestation (BSD), or reductive Although other chemical disinfestants for soil treatment soil disinfestation, achieved by amendment with organic such as chloropicrin, 1,3-dichloropropene, and methyl materials such as wheat bran followed by flooding and isothiocyanate, are still available, soil disinfestation using covering the soil surface, has been used to control some these chemicals has become widely recognized as measures soilborne diseases including Fusarium wilt and bacterial incompatible with sustainable agriculture. Therefore, it is wilt of tomato. During a BSD treatment, accumulation of imperative to find alternatives to chemical fumigation for acetic acid and/or butyric acid was detected with high- disinfesting soils. performance liquid chromatography. Survival of Fusarium A number of soilborne pathogens can be suppressed oxysporum f. sp. lycopersici or Ralstonia solanacearum was under anaerobic conditions (Cook and Baker 1983; Blok suppressed by these organic acids. Amendment of these et al. 2000). For example, populations of soilborne pa- organic acids into soil suppressed the survival of R. thogens in rice paddies can decrease during the flooding solanacearum at lower concentrations than the maximum period, and this suppression is often enhanced by the detected in BSD treatment, indicating that production of incorporation of readily decomposable organic matter such these organic acids is one of the mechanisms of control. -
George A. Olah 151
MY SEARCH FOR CARBOCATIONS AND THEIR ROLE IN CHEMISTRY Nobel Lecture, December 8, 1994 by G EORGE A. O L A H Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, CA 90089-1661, USA “Every generation of scientific men (i.e. scientists) starts where the previous generation left off; and the most advanced discov- eries of one age constitute elementary axioms of the next. - - - Aldous Huxley INTRODUCTION Hydrocarbons are compounds of the elements carbon and hydrogen. They make up natural gas and oil and thus are essential for our modern life. Burning of hydrocarbons is used to generate energy in our power plants and heat our homes. Derived gasoline and diesel oil propel our cars, trucks, air- planes. Hydrocarbons are also the feed-stock for practically every man-made material from plastics to pharmaceuticals. What nature is giving us needs, however, to be processed and modified. We will eventually also need to make hydrocarbons ourselves, as our natural resources are depleted. Many of the used processes are acid catalyzed involving chemical reactions proceeding through positive ion intermediates. Consequently, the knowledge of these intermediates and their chemistry is of substantial significance both as fun- damental, as well as practical science. Carbocations are the positive ions of carbon compounds. It was in 1901 that Norris la and Kehrman lb independently discovered that colorless triphe- nylmethyl alcohol gave deep yellow solutions in concentrated sulfuric acid. Triphenylmethyl chloride similarly formed orange complexes with alumi- num and tin chlorides. von Baeyer (Nobel Prize, 1905) should be credited for having recognized in 1902 the salt like character of the compounds for- med (equation 1). -
Isolation and Characterization of a Non-Rigid Hexamethylbenzene-SO 2+ Complex Moritz Malischewski, Konrad Seppelt
Isolation and Characterization of a Non-Rigid Hexamethylbenzene-SO 2+ Complex Moritz Malischewski, Konrad Seppelt To cite this version: Moritz Malischewski, Konrad Seppelt. Isolation and Characterization of a Non-Rigid Hexamethylbenzene-SO 2+ Complex. Angewandte Chemie International Edition, Wiley-VCH Verlag, 2017, 56 (52), pp.16495-16497. 10.1002/anie.201708552. hal-01730776 HAL Id: hal-01730776 https://hal.sorbonne-universite.fr/hal-01730776 Submitted on 13 Mar 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Isolation and characterization of a non-rigid hexamethylbenzene- SO2+ complex Moritz Malischewski*[a],[b] and Konrad Seppelt[a] In memoriam of George Olah (1927-2017) Abstract: During our preparation of the pentagonal-pyramidal up besides recrystallization directly from the reaction mixture is 2+ 2+ - hexamethylbenzene-dication C6(CH3)6 we isolated the possible. Although C6(CH3)6SO (AsF6 )2 is the main component 2+ - unprecedented dicationic species C6(CH3)6SO (AsF6 )2 from the of the isolated material, ionic side-products co-precipitate due to reaction of hexamethylbenzene with a mixture of anhydrous HF, their low solubility in HF at low temperatures. AsF5 and liquid SO2. This compound can be understood as a complex of unknown SO2+ with hexamethylbenzene.