Toxicity of Common Houseplants
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Indoor Plants Or Houseplants
Visit us on the Web: www.gardeninghelp.org Indoor Plants or Houseplants Over the past twenty years houseplants have grown in popularity. Offered in a wide variety of sizes, shapes, colors and textures, houseplants beautify our homes and help soften our environment. They have been scientifically proven to improve our health by lowering blood pressure and removing pollutants from the air we breathe. When selecting a houseplant, choose reputable suppliers who specialize in growing houseplants. Get off to a good start by thoroughly examining each plant. Watch for brown edges and spindly growth with elongated stems and large gaps between new leaves. Inspect leaves and stem junctions for signs of insect or disease problems. Check any support stakes to make sure they are not hiding broken stems or branches. Finally, make sure the plant is placed in an area that suits its optimal requirements for light, temperature and humidity. Where to Place Your House Plants With the exception of the very darkest areas, you can always find a houseplant with growth requirements to match the environmental conditions in your home. The most important factors are light intensity and duration. The best way to determine the intensity of light at a window exposure area is to measure it with a light meter. A light meter measures light in units called foot-candles. One foot-candle is the amount of light from a candle spread over a square foot of surface area. Plants that prefer low light may produce dull, lifeless-looking leaves when exposed to bright light. Bright light can also cause leaf spots or brown-tipped scorched margins. -
1.P77-84(Gibasis Pellucida).Indd
林業研究季刊 36(2):77-84, 2014 77 Research paper Gibasis pellucida (Martens & Galeotti) D.R. Hunt (Commelinaceae), A Newly Naturalized Plant in Taiwan Chien-Ti Chao1 Yu-Lan Huang1 Si-Qian Liu2 Yen-Hsueh Tseng1,* 【Abstract】Commelinaceae is a monocot family mainly distributed in tropical and temperate region. Several naturalized species were recorded in Taiwan these years. Recently we found a newly naturalized species-Gibasis pellucida (Martens & Galeotti) D.R. Hunt in Northern Taiwan. This species was native to Mexico, and introduced as ornamental plant in many countries. This is a newly naturalized species and genus for Flora of Taiwan. Line drawing, photos and distribution map were provided in this study. Finally, we revised naturalized species of Commelinaceae in Taiwan, the naturalization of them were related to ornamental activity, some species had set up large population already, especially the Tradescantia species. Thus we need pay more attention to these potentially invasive plants. 【Key words】Gibasis pellucida, Commelinaceae, naturalized plant, Taiwan 研究報告 臺灣產鴨跖草科一新馴化植物-細梗鴨跖草 趙建棣1 黃郁嵐1 劉思謙2 曾彥學1,3 【摘要】鴨跖草科為熱帶常見的單子葉草本植物,之前多位學者已相繼報導數種本科的馴化植物。 最近作者等又於臺灣北部發現一種新馴化植物,經查為原產於墨西哥之細梗鴨跖草。本種為一園藝 觀賞植物,無性繁殖容易且適應力強,推測是人為引進而逸出於野外。根據這幾年野外的調查發現 其野外族群數量有穩定成長,未來動態值得注意。對台灣的植物誌而言,細梗鴨跖草屬與細梗鴨跖 草均為本島的新記錄。 【關鍵詞】鴨跖草科、細梗鴨跖草、馴化植物、臺灣 1. 國立中興大學森林學系,40227臺灣台中市南區國光路250號 Department of Forestry, National Chung-Hsing University, 250 Kuokwang Rd.,40227 Taichung, Taiwan. 2. 國立中興大學生命科學系,40227臺灣台中市南區國光路250號 Department of Life Sciences, National Chung- Hsing University, 250 Kuokwang Rd., 40227 Taichung, Taiwan. 3. 通訊作者 (E-mail:[email protected]) * Corresponding author, e-mail: [email protected]. Phone number: (04)2284-0345#139 78 Gibasis pellucida (Martens & Galeotti) D.R. Hunt (Commelinaceae), A Newly Naturalized Plant in Taiwan Introduction (Jacq.) L. -
Flavonoids and Stilbenoids of the Genera Dracaena and Sansevieria: Structures and Bioactivities
molecules Review Flavonoids and Stilbenoids of the Genera Dracaena and Sansevieria: Structures and Bioactivities Zaw Min Thu 1,* , Ko Ko Myo 1, Hnin Thanda Aung 2, Chabaco Armijos 3,* and Giovanni Vidari 4,* 1 Department of Chemistry, Kalay University, Kalay 03044, Sagaing Region, Myanmar; [email protected] 2 Department of Chemistry, University of Mandalay, Mandalay 100103, Myanmar; [email protected] 3 Departamento de Química y Ciencias Exactas, Universidad Técnica Particular de Loja, San Cayetano Alto s/n, Loja 1101608, Ecuador 4 Medical Analysis Department, Faculty of Science, Tishk International University, Erbil 44001, Iraq * Correspondence: [email protected] (Z.M.T.); [email protected] (C.A.); [email protected] (G.V.) Received: 18 May 2020; Accepted: 2 June 2020; Published: 3 June 2020 Abstract: The genera Dracaena and Sansevieria (Asparagaceae, Nolinoideae) are still poorly resolved phylogenetically. Plants of these genera are commonly distributed in Africa, China, Southeast Asia, and America. Most of them are cultivated for ornamental and medicinal purposes and are used in various traditional medicines due to the wide range of ethnopharmacological properties. Extensive in vivo and in vitro tests have been carried out to prove the ethnopharmacological claims and other bioactivities. These investigations have been accompanied by the isolation and identification of hundreds of phytochemical constituents. The most characteristic metabolites are steroids, flavonoids, stilbenes, and saponins; many of them exhibit potent analgesic, anti-inflammatory, antimicrobial, antioxidant, antiproliferative, and cytotoxic activities. This review highlights the structures and bioactivities of flavonoids and stilbenoids isolated from Dracaena and Sansevieria. Keywords: Dracaena; Sansevieria; biological/pharmacological activities; flavonoids; stilbenoids 1. Introduction The taxonomic boundaries of the dracaenoid genera Dracaena and Sansevieria have long been debated. -
Well-Known Plants in Each Angiosperm Order
Well-known plants in each angiosperm order This list is generally from least evolved (most ancient) to most evolved (most modern). (I’m not sure if this applies for Eudicots; I’m listing them in the same order as APG II.) The first few plants are mostly primitive pond and aquarium plants. Next is Illicium (anise tree) from Austrobaileyales, then the magnoliids (Canellales thru Piperales), then monocots (Acorales through Zingiberales), and finally eudicots (Buxales through Dipsacales). The plants before the eudicots in this list are considered basal angiosperms. This list focuses only on angiosperms and does not look at earlier plants such as mosses, ferns, and conifers. Basal angiosperms – mostly aquatic plants Unplaced in order, placed in Amborellaceae family • Amborella trichopoda – one of the most ancient flowering plants Unplaced in order, placed in Nymphaeaceae family • Water lily • Cabomba (fanwort) • Brasenia (watershield) Ceratophyllales • Hornwort Austrobaileyales • Illicium (anise tree, star anise) Basal angiosperms - magnoliids Canellales • Drimys (winter's bark) • Tasmanian pepper Laurales • Bay laurel • Cinnamon • Avocado • Sassafras • Camphor tree • Calycanthus (sweetshrub, spicebush) • Lindera (spicebush, Benjamin bush) Magnoliales • Custard-apple • Pawpaw • guanábana (soursop) • Sugar-apple or sweetsop • Cherimoya • Magnolia • Tuliptree • Michelia • Nutmeg • Clove Piperales • Black pepper • Kava • Lizard’s tail • Aristolochia (birthwort, pipevine, Dutchman's pipe) • Asarum (wild ginger) Basal angiosperms - monocots Acorales -
Cytogeography of Glechoma Hederacea Subsp. Grandis (Labiatae) in Japan
© 2010 The Japan Mendel Society Cytologia 75(3): 255–260, 2010 Cytogeography of Glechoma hederacea subsp. grandis (Labiatae) in Japan Norihito Miura and Yoshikane Iwatsubo* Graduate School of Science and Engineering, University of Toyama, Gofuku 3190, Toyama 930–8555, Japan Received February 26, 2010; accepted August 28, 2010 Summary In this study, we examined the chromosomal number for Glechoma hederacea subsp. grandis in a total of 1,030 specimens collected from different distribution areas in Japan. We found that G. hederacea subsp. grandis could be categorized into 3 cytotypes with 2nϭ36 (tetraploid), 2nϭ45 (pentaploid) and 2nϭ54 (hexaploid) chromosomes. Tetraploid plants were found throughout different areas in Japan; however, hexaploid plants were mainly distributed in central Honshu, Shikoku and Kyushu. Likewise, pentaploid plant distribution was found to overlap with hexaploid plant distribution areas. The pentaploid plant group appeared only in regions common to both tetraploid and hexaploid plants. All 3 cytotypes were found to have karyotypes which could be represented by the following equations: A) 6Mϩ4mϩ18smϩ8st for tetraploids, B) 6Mϩ15mϩ19smϩ5st for pentaploids, and C) 6Mϩ26mϩ20smϩ2st for hexaploids. Pentaploid specimen karyotypes had half the tetraploid and half the hexaploid chromosomal set, indicating that this specimen was a hybrid between tetraploid and hexaploid plants. Key words Geographic distribution, Glechoma hederacea subsp. grandis, Hybrid, Karyotype, Polyploidy. Glechoma L. (Labiatae), distributed across north temperate zones in Eurasia, is a small genus with 4 to 8 species (Budantsev 2004). One of its species, G. hederacea L., has a wide distribution range occurring spontaneously throughout Eurasia. Furthermore, this species can be divided into subsp. hederacea distributed in Europe, and subsp. -
Country Compass 41
COUNTRY COMPASS 41 NWFPs: present and future activities Potential Ongoing activities of government Activities needed NWFPs and non-government agencies Fruit and The World Bank’s Poverty and Health Production of quality fruit and timber Development Profile (PHDP) and the Ministry timber seedlings for better trees of Agriculture, United States Agency for utilization as food, fuelwood, International Development (USAID), German fodder, wood, etc. for local Technical Cooperation (GTZ) and the Bangladesh consumption and to reduce Rural Advancement Committee (BRAC) are forest depletion implementing a project for quality seedling production with community people, local entrepreneurs and farmers’ associations Medicinal No detailed information on medicinal plants Explore medicinal plant plants was found but rural people are using herbal potential throughout the country medicines at large and vendors of herbal as the rural population is medicines exist throughout the country dependent on herbal medicines AFGHANISTAN % Dried Local entrepreneurs produce export quality dried Best-quality fruit fruits figs, black and green raisins, dried apricots production and processing A land of non-wood forest products and nuts and pistachios in different parts of the country of dried fruits and nuts Afghanistan is an exquisitely beautiful for local consumption and export to the Islamic could constitute important country comprised of mountains, scattered Republic of Iran and neighbouring countries export-oriented NWFPs forests and lakes, located in the Hindu Saffron -
Sansevieria in Florida-Past and Present1
Proc. Fla. State Hort. Soc. 95:295-298. 1982. SANSEVIERIA IN FLORIDA-PAST AND PRESENT1 Richard W. Henley R. Dodge (5) mentioned he found Sansevieria zeylanica University of Florida, IFAS, growing in several localities in southern Florida. Leaf sam Ornamental Horticultural Department, ples collected from Boca Chica Key measured approximately Stationed at Agricultural Research Center, 6 ft in length. Dodge prepared a more extensive report on Route 3, Box 580, Apopka, FL 32703 leaf fibers in the United States, published by USDA in 1893 (6) in which he mentioned the fiber of 5. guineensis, listed in Hortus Third (2) as S. hyacinthoides (L.) Druce., African Abstract. The genus Sansevieria has special significance bowstring hemp. It was sufficiently strong for hawsers and in Florida horticulture, where it has been grown as an experi cables and fine enough to be used by jewelers to string mental fiber crop, as an ornamental for interior use and, to a pearls. He further stated that the fiber was too valuable to lesser extent, landscaping outside. Introduction of Sansevieria be used as cordage because manila, sisal and common hemp to Florida is estimated to have occurred between 1765 and were sufficiently abundant and strong. He also indicated that 1820. By the 1890s there was limited testing of a few species the term bowstring hemp was also applied to S. zeylanica of Sansevieria in South Florida, primarily by private interests, (now S. trifasciata) and S. latifolia Bojer. Dodge mentioned for quality and yield of cordage fiber. During World War II, that fiber yield per acre was large because of the rank growth U. -
Extrapolating Demography with Climate, Proximity and Phylogeny: Approach with Caution
! ∀#∀#∃ %& ∋(∀∀!∃ ∀)∗+∋ ,+−, ./ ∃ ∋∃ 0∋∀ /∋0 0 ∃0 . ∃0 1##23%−34 ∃−5 6 Extrapolating demography with climate, proximity and phylogeny: approach with caution Shaun R. Coutts1,2,3, Roberto Salguero-Gómez1,2,3,4, Anna M. Csergő3, Yvonne M. Buckley1,3 October 31, 2016 1. School of Biological Sciences. Centre for Biodiversity and Conservation Science. The University of Queensland, St Lucia, QLD 4072, Australia. 2. Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, UK. 3. School of Natural Sciences, Zoology, Trinity College Dublin, Dublin 2, Ireland. 4. Evolutionary Demography Laboratory. Max Planck Institute for Demographic Research. Rostock, DE-18057, Germany. Keywords: COMPADRE Plant Matrix Database, comparative demography, damping ratio, elasticity, matrix population model, phylogenetic analysis, population growth rate (λ), spatially lagged models Author statement: SRC developed the initial concept, performed the statistical analysis and wrote the first draft of the manuscript. RSG helped develop the initial concept, provided code for deriving de- mographic metrics and phylogenetic analysis, and provided the matrix selection criteria. YMB helped develop the initial concept and advised on analysis. All authors made substantial contributions to editing the manuscript and further refining ideas and interpretations. 1 Distance and ancestry predict demography 2 ABSTRACT Plant population responses are key to understanding the effects of threats such as climate change and invasions. However, we lack demographic data for most species, and the data we have are often geographically aggregated. We determined to what extent existing data can be extrapolated to predict pop- ulation performance across larger sets of species and spatial areas. We used 550 matrix models, across 210 species, sourced from the COMPADRE Plant Matrix Database, to model how climate, geographic proximity and phylogeny predicted population performance. -
Scarlet Ammannia (Ammannia Robusta) in Canada
PROPOSED Species at Risk Act Recovery Strategy Series Adopted under Section 44 of SARA Recovery Strategy for the Scarlet Ammannia (Ammannia robusta) in Canada Scarlet Ammannia 2014 Recommended citation: Environment Canada. 2014. Recovery Strategy for the Scarlet Ammannia (Ammannia robusta) in Canada [Proposed]. Species at Risk Act Recovery Strategy Series. Environment Canada, Ottawa. XXI pp. + Appendix. For copies of the recovery strategy, or for additional information on species at risk, including the Committee on the Status of Endangered Wildlife in Canada (COSEWIC) Status Reports, residence descriptions, action plans, and other related recovery documents, please visit the Species at Risk (SAR) Public Registry (www.sararegistry.gc.ca). Cover illustration: © Emmet J. Judziewicz Également disponible en français sous le titre « Programme de rétablissement de l’ammannie robuste (Ammannia robusta) au Canada [Proposition] » © Her Majesty the Queen in Right of Canada, represented by the Minister of the Environment, 2014. All rights reserved. ISBN Catalogue no. Content (excluding the illustrations) may be used without permission, with appropriate credit to the source. RECOVERY STRATEGY FOR THE SCARLET AMMANNIA (Ammannia robusta) IN CANADA 2014 Under the Accord for the Protection of Species at Risk (1996), the federal, provincial, and territorial governments agreed to work together on legislation, programs, and policies to protect wildlife species at risk throughout Canada. In the spirit of cooperation of the Accord, the Government of British Columbia has given permission to the Government of Canada to adopt the “Recovery Strategy for the scarlet ammannia (Ammannia robusta) in British Columbia and Ontario” (Part 2) under Section 44 of the Species at Risk Act (SARA). -
A Distributional Study of the Butterflies of the Sierra De Tuxtla in Veracruz, Mexico. Gary Noel Ross Louisiana State University and Agricultural & Mechanical College
Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1967 A Distributional Study of the Butterflies of the Sierra De Tuxtla in Veracruz, Mexico. Gary Noel Ross Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Ross, Gary Noel, "A Distributional Study of the Butterflies of the Sierra De Tuxtla in Veracruz, Mexico." (1967). LSU Historical Dissertations and Theses. 1315. https://digitalcommons.lsu.edu/gradschool_disstheses/1315 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. This dissertation has been microfilmed exactly as received 67-14,010 ROSS, Gary Noel, 1940- A DISTRIBUTIONAL STUDY OF THE BUTTERFLIES OF THE SIERRA DE TUXTLA IN VERACRUZ, MEXICO. Louisiana State University and Agricultural and Mechanical CoUege, Ph.D., 1967 Entomology University Microfilms, Inc., Ann Arbor, Michigan A DISTRIBUTIONAL STUDY OF THE BUTTERFLIES OF THE SIERRA DE TUXTLA IN VERACRUZ, MEXICO A D issertation Submitted to the Graduate Faculty of the Louisiana State University and A gricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Entomology by Gary Noel Ross M.S., Louisiana State University, 196*+ May, 1967 FRONTISPIECE Section of the south wall of the crater of Volcan Santa Marta. May 1965, 5,100 feet. ACKNOWLEDGMENTS Many persons have contributed to and assisted me in the prep aration of this dissertation and I wish to express my sincerest ap preciation to them all. -
Invasive Landscape Plants in Arkansas
Invasive Landscape Plants in Arkansas Janet B. Carson Extension Horticulture Specialist Not all Landscape Plants are invasive Invasive plants are not all equally invasive. An invasive plant has the ability to thrive and spread aggressively outside its natural range. Top 10 Arkansas Landscape Invasives Alphabetically 1. Bamboo Phyllostachys species 2. Bradford Pears Pyrus calleryana ‘Bradford’ They are coming up everywhere! 3. English Ivy Hedera helix 4. Japanese Honeysuckle Lonicera japonica 5. Kudzu Pueraria montana 6. Mimosa Albizia julibrissin 7. Privet Ligustrum sinense Privet is the most invasive plant in Arkansas! 8. Running Monkey Grass Liriope spicata 9. Large leaf vinca Vinca major 10. Wisteria Wisteria floribunda Other Invasive Landscape Plants The following plants have been invasive in some landscape situations, and should be used with caution. They are more invasive under certain soil and weather conditions. Bishop’s Weed Aegopodium podagraria Ajuga Ajuga reptans Garlic Chives Allium tuberosum Devil’s Walking Stick Aralia spinosa Ardisia Ardisia japonica Artemesia Artemisia vulgaris Artemisia absinthium 'Oriental Limelight' Trumpet Creeper Campsis radicans Sweet Autumn Clematis Clematis terniflora Mexican Hydrangea Clereodendron bungei Wild Ageratum Conoclinium coelestinum Queen Ann’s Lace Daucus carota Russian Olive Elaeagnus angustifolia Horsetail - Scouring Rush Equisetum hyemale Wintercreeper Euonymus Euonymus fortunei Carolina Jessamine Gelsemium sempervirens Ground Ivy Glechoma hederacea Chameleon Plant Houttuynia cordata -
And Sansevieria
CACTOLOGIA PHANTASTICA 9(1) ISSN 2590-3403 17 January 2019 doi:10.5281/zenodo.3611373 ×Dravieria: Valid Publication of a Nothogeneric Name for Hybrids Between Dracaena and Sansevieria (Asparagaceae) MAARTEN H. J. VAN DER MEER1 Abstract—The nothogeneric name ×Dravieria is proposed for hybrids between Dracaena and Sansevieria . Dracaena Vand., as traditionally circumscribed, is paraphyletic in regards to Sansevieria Thunb. (Lu e t al. 2014; Takawira-Nyenya e t al. 2018) Takawira-Nyenya et al. (2018) consequently subsumed S ansevieria into D racaena. This change has not yet found its way to the general public, which will likely hold on to the familiar Sansevieria for decades to come. The only intergeneric hybrid between D racaena and S ansevieria known to me is a purported cross between S ansevieria parva N.E.Br. (≡ D racaena parva (N.E.Br.) Byng & Christenh.) and D racaena surculosa Lindl. (as D racaena godseffiana hort.) patented in 2016 under the name ‘SUDRASAN01’ (Suphachadiwong 2016). This cultivar is likely identical to the plant recently brought on the market in the Netherlands as D ravieria FIREFLIES. To my knowledge, the nothogeneric name D ravieria has not been validly published, which is why I propose it here: ×Dravieria anon. ex M.van der Meer n othogen. nov. = D racaena Vand. × S ansevieria Thunb. 1 Roggekamp 379 NL-2592 VV Den Haag [email protected] ORCiD: 0000-0002-5182-9615 CC BY-SA 4.0 1 CACTOLOGIA PHANTASTICA 9(1) ISSN 2590-3403 17 January 2019 doi:10.5281/zenodo.3611373 ×Dravieria ‘SUDRASAN01’ (reproduced from Suphachadiwong 2016) ×Dravieria FIREFLIES at garden center GroenRijk de Wilskracht in The Hague, the Netherlands CC BY-SA 4.0 2 CACTOLOGIA PHANTASTICA 9(1) ISSN 2590-3403 17 January 2019 doi:10.5281/zenodo.3611373 Literature Lu, P., & Morden, C.