Effects of Mercury on Condition and Coloration of Belted Kingfishers

Total Page:16

File Type:pdf, Size:1020Kb

Effects of Mercury on Condition and Coloration of Belted Kingfishers W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 2007 Effects of Mercury on Condition and Coloration of Belted Kingfishers Ariel Elizabeth White College of William & Mary - Arts & Sciences Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Biodiversity Commons, Environmental Health and Protection Commons, and the Natural Resources and Conservation Commons Recommended Citation White, Ariel Elizabeth, "Effects of Mercury on Condition and Coloration of Belted Kingfishers" (2007). Dissertations, Theses, and Masters Projects. Paper 1539626860. https://dx.doi.org/doi:10.21220/s2-0956-qp64 This Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. EFFECTS OF MERCURY ON CONDITION AND COLORATION OF BELTED KINGFISHERS A Thesis Presented to The Faculty of the Department of Biology The College of William &, Mary in Virginia In Partial Fulfillment Of the Requirements for the Degree of Masters of Science by Ariel Elizabeth White 2007 APPROVAL SHEET This thesis is submitted in partial fulfillment of the requirements for the degree of Masters of Science ______________ CyuJjlj) ______________ Ariel White Approved, February 2007 Dan Crlstol Thesis Advisor Randy Chambers George/Gilchrist TABLE OF CONTENTS Acknowledgments viii List of Tables x List of Figures xii Abstract xiii 1 EFFECTS OF MERCURY ON THE REPRODUCTIVE SUCCESS OF BELTED KINGFISHERS (CERYLE ALCYON) 2 INTRODUCTION ....................... 2 Mercury as a Global Pollutant . 2 History of the Study Site . 4 Mercury in B ird s ............. 6 Toxicokinetics of mercury in birds . 6 Effects in birds . 8 Levels in Birds ................................. 10 Belted Kingfishers as an Indicator Species . 11 Major Objectives of this Study . 15 METHODS .......................... 15 Study Site Description . 15 South Fork Shenandoah River . 15 South River . 17 North River . 18 Middle River .......................................... 18 Nest Location and Excavation and Adult Capture . 19 Determination of Adult Age and Nestling Sex .... 21 Determination of Nestling Age and Nesting Chronology . 23 Morphological Measurements 24 Mercury Analysis . 25 Prey Collection ................................. 27 Research-related Mortality Events . 27 RESULTS.................... 28 Mercury Levels .................... 29 Adult Blood Levels . 29 Adult Feather Levels ............................. 29 Correlation Between Tissues in Adults . 32 Correlatioin between paired adults . 33 Nestling Blood Levels . 33 Nestling Feather Levels ................................. 36 Correlation Between Parents and Offspring . 36 Adult Natural History and Morphometries . 37 Age Class Distribution . 37 Recaptures .................... 38 Site Fidelity Estimate . 39 Adult Size and Condition . 40 Reproductive Parameters .... 44 Date of Clutch Initiation . 44 Clutch S ize............. 44 Number of Fledglings . 45 Sex R a tio s .................................... 45 Chick Morphometries and Growth Rates . 46 Growth Rate by Treatment Group . 46 iv Growth Rate of Individuals by Treatment Group 48 Growth Rate of Individuals by Sex 51 Fledging Size . 52 Prey Collection . 52 DISCUSSION........................................................................... 53 Comparison of Adult and Juvenile Mercury Levels . 55 Adult Morphometries . 58 Reproductive Parameters ....................... 60 Chick Morphometries and Growth Rates . 63 Prey Items . 64 2 THE EFFECT OF MERCURY ON AVIAN COLORATION 66 INTRODUCTION ................................. 66 Mechanisms of Feather Coloration . 66 Functions of Plumage Coloration . 67 Pollution and Bird Coloration . 69 Coloration of Study Species . 71 Belted Kingfishers 71 Eastern Bluebird . 72 Tree Swallow .................... 73 Major Objectives of This Study . 73 METHODS ........................................................... 73 Feather Collection for Spectral Analysis . 74 Belted Kingfishers 74 Eastern Bluebirds . 74 Tree Swallows . 74 Melanized Feathers . 75 Color Analysis . 75 v Color measurement .... 75 Colormetric Variables . 76 Spectral Analyses ... 77 Mercury Analysis .................... 77 RESULTS................................. 78 Adult Belted Kingfishers . 78 Blue B a c k ............. 78 Blue Chest ... 82 White Chest ... 83 Brown Chest ....................... 84 Eastern Bluebirds ............................. 84 Blue B a c k .................................... 85 White Chest............................. 86 Brown Chest ............................. 88 Tree Swallows ................................. 89 Green B a c k .......................... 90 White Chest.......................... 92 Juvenile Belted Kingfishers .................... 92 DISCUSSION......................................................................................................... 92 Changes in Coloration with Changes in Feather Mercury Concentrations 92 Correlation between Melanin and Mercury Concentrations . 95 Sex Differences ............................. 96 APPENDICIES 98 A 98 B 101 vi C 103 D 104 REFERENCES 106 VITA 119 vii ACKNOWLEDGMENTS This project was generously supported by grants from DuPont and logistical assistance was provided by the South River Science Team. Additional funding from the Williamsburg Bird Club and an endowed professorship for Dan Cristol was used for feather color analyses. I am grateful for the guidance and intense dedication to my project provided Dan Cristol. In addition, I would like to thank my committee members, Drs. George Gilchrist and Randy Chambers, for their time and assistance. I would like to thank 0 . Lane (of Biodiversity Research Institute) for teaching me the basics of kingfisher nest excavation. I would like to thank the undergraduates that helped with this project both in excavating nests and canoeing the river especially R. Fovargue, R. Jefferson-George, K. Hallinger, S. Koebley, A. Monroe, and J. Reese. Other volunteer canoe partners included C. Auckerman, A. Finfera, S. Hoskin, and M. Smith. I would like to thank the graduate students of the Cristol lab including R. Brasso, A. Condon, and S. Friedman for their support and help in the field. M. Howie and B. Schmidt identified all fish collected. Because kingfishers choose their nesting sites (and I could not), I would like to thank the many landowners living in the Shenandoah Valley that generously allowed me to dig holes in their property. I would also like to thank R. Taylor and D. Dooley and the Trace Elements Research Laboratory at Texas AVM for allowing me to analyze my feather samples using their equipment. LIST OF TABLES 1.1 Pearson correlations between feathers from adult belted kingfishers. 31 1.2 Between and within brood blood mercury variation. 35 1.3 Distribution of age classes by sex on each section of river .............. 38 1.4 Fidelity to the South River as determined by stability of feather mer­ cury concentrations. ....................... 40 1.5 Comparisons of adult morphological measurements ............................ 41 1.6 Factor loading for the principal components analysis of the morpho­ logical measurements taken on adult kingfishers . 42 1.7 Fledging size of kingfisher chicks................................................................. 53 1.8 Number and foraging guild of fish species collected on the South River, the South Fork of the Shenandoah River, and the Middle and North Rivers. 54 2.1 Pearson correlations between colormetric variables from belted king­ fisher feathers. 79 2.2 Correlation between principal component (PC) scores and colormetric variables for four body regions of belted kingfisher ......................... 80 2.3 ANOVA values and regressions of principal components (PCs) between sex and feather mercury concentrations in the belted kingfisher. 82 2.4 Pearson correlations between colormetric variables from eastern blue­ bird feathers . 85 2.5 Correlation between principal component (PC) scores and colormetric variables for three body regions of eastern bluebirds. 86 2.6 ANOVA values and regressions of principal components (PCs) between sex and feather mercury concentrations in the eastern bluebird. 88 ix 2.7 Pearson correlations between colormetric variables from female tree swallow feath ers.......................... 89 2.8 Correlation between principal component (PC) scores and colormetric variables for two body regions of female tree swallows ...................... 90 2.9 ANOVA values and regressions of principal components (PCs) and feather mercury concentrations in tree swallows. 91 A.l Mercury values in tissues of piscivorous birds and mammals ............. 98 A.2 Mercury values in tissues of piscivorous birds and mammals (continued). 99 A.3 Mercury values in tissues of piscivorous birds and mammals (continued). 100 B.l Kingfisher nesting sites and locations ......................... 101 B.2 Kingfisher nesting sites and locations (continued). 102 C.l Means correlations and ratios between blood and feathers collected on the South River . 103 D.l Index of prey captured by kingfishers ........................ 104 D.2 Index of prey captured by kingfishers (continued). 105 x LIST OF FIGURES 1.1 Entrance to an active kingfisher nest. 13 1.2 Map of the study area ....................................... 16 1.3 Accessing the chamber of a belted
Recommended publications
  • First Documented Observation of Ringed Kingfisher in Arizona by Jeff Coker, Vail, Az 85641 ([email protected])
    Arizona Birds - Journal of Arizona Field Ornithologists Volume 2019 FIRST DOCUMENTED OBSERVATION OF RINGED KINGFISHER IN ARIZONA BY JEFF COKER, VAIL, AZ 85641 ([email protected]) On 9 September 2018 a Ringed Kingfisher (Megaceryle torquata, Figure 1) was observed at Dankworth Pond, Graham County, Arizona. This sighting is the first reported record of this species for Arizona. The bird remained in the general geographical area for approximately the next 6 months. The initial discovery of the Ringed Kingfisher was a very brief encounter. At approximately 0845 (MST) on 9 September 2018, I was birding along the southeast shore of Dankworth Pond just west of the small marsh with the pond’s outflow pipe (N 32° 43’ 08.89”, W 109° 42’ 14.76”). I looked to the north above the cattails (Typha spp.) and observed a kingfisher for about 2 seconds as it flew south across the pond towards me at a height of about 3.0-4.5 m above the surface before it dove behind the cattails and disappeared from Figure 1. Ringed Kingfisher 20 February 2019. my sight. The bird had a solid dark rufous/chestnut colored belly, a Photo by Lyndie M. Warner wide bold white band on the chin/neck, dark slate blue on the back, and a very large bill. My initial impression was that it was a Belted Kingfisher (Megaceryle alcyon), but I knew that species did not have an all-rufous belly. The rufous belly was indicative of Ringed Kingfisher, a species unexpected in southeast Arizona. I quickly walked back to the east along the pond’s shore, climbed on a picnic table, and scanned the pond, focusing on the southeast corner.
    [Show full text]
  • Belted Kingfisher Megaceryle Alcyon
    Belted Kingfisher Megaceryle alcyon Folk Name: Diver Status: Resident Abundance: Fairly Common Habitat: Lakes, ponds, streams, wires along roads with wet ditches The Belted Kingfisher is a popular and well-known bird here in the Central Carolinas. Solitary kingfishers can be found foraging on almost every local creek, wetland, pond, or lake at some point during the year. Though not numerous, residents living along the shoreline of our many lakes and ponds might see or hear one almost daily. The kingfisher is easily identified by its conspicuous field marks, its behavior, and its distinctive call. At 13 inches, it is about 2 inches larger than the Blue Jay—our only other bird with a crested blue head, blue back, and in pairs, instead of waking up the dead, with that blue tail. Unlike the jay, however, the kingfisher has a large outlandish voice from your great big head? head, stout bill, and a band of pale blue crosses its white Now you are not a game bird, Mr. Kingfisher, breast underneath. Female kingfishers have an additional nor have you any notes worth while, but the chatter belly band of rust underneath. The fishing behavior of the from that big head can be heard for quite a mile. kingfisher is distinctive as well. No other bird of this size hovers and dives, or perches and dives, into water to catch Ten years later in Charlotte, William McIlwaine wrote: fish. “Down by the creek I heard a sort of low rattling sound. The Belted Kingfisher is a year-round resident in this Going to investigate I caught the barest glimpse of a wing.
    [Show full text]
  • Breeding Biology of Blue-Eared Kingfisher Alcedo Meninting Sachin Balkrishna Palkar
    PALKAR: Blue-eared Kingfisher 85 Breeding biology of Blue-eared Kingfisher Alcedo meninting Sachin Balkrishna Palkar Palkar, S. B., 2016. Breeding biology of Blue-eared Kingfisher Alcedo meninting. Indian BIRDS 11 (4): 85–90. Sachin Balkrishna Palkar, Near D. B. J. College Gymkhana, Sathyabhama Sadan, House No. 100, Mumbai–Goa highway, Chiplun 415605, Ratnagiri District, Maharashtra, India. E-mail: [email protected] Manuscript received on 30 November 2015. Abstract The breeding biology of the Blue-eared Kingfisher Alcedo meninting was studied in Ratnagiri District, Maharashtra, India, between 2012 and 2015. Thirteen clutches of four pairs were studied. Its breeding season extended from June till September. Pairs excavated tunnels ranging in lengths from 18 to 30 cm, with nest entrance diameters varying from 5.3 to 6.0 cm. The same pair probably reuse a nest across years. A typical clutch comprised six eggs. The incubation period was 21 days (20–23 days), while fledgling period was 23 days (20–27 days). Almost 40% of the nests were double-brooded, which ratio probably depends on the strength of the monsoon. Of 75 eggs laid, 66 hatched (88%), of which 60 fledged (90.9%; a remarkable breeding success of 80%. Introduction and not phillipsi. It is also found in the Andaman Islands (A. The Blue-eared KingfisherAlcedo meninting [113, 114] is m. rufiagastra), where it is, apparently, more abundant than morphologically similar to the Common KingfisherA. atthis but the Common Kingfisher, contrary to its status elsewhere in its is neither as common, nor as widely distributed, in India, as the range (Rasmussen & Anderton 2012).
    [Show full text]
  • Spring 2018 Dear Adults Puzzles and Activities
    Spring 2018 Spring Across 2. The way water moves through an ecosystem (Water Cycle) Coloring and Games.………...10-11 and Coloring 4. A small narrow river (Stream) Spotlight on Kingfishers…….....8-9 on Spotlight 8. Tall "hot dog" plants (Cattails) 10. Tall wading bird (Great Blue Heron) 6-7 I Spy…………….. I 13. Fish that migrate from the river to ocean and back (Salmon) …………………..…... 14. Insect that can fly backwards (Dragonfly) Food Webs……………………….……4-5 Food 15. Seattle Audubon's logo bird (Cormorant) 16. A small body of fresh water (Pond) Let’s Go Outside................................3 Go Let’s Down 1. Bird with red wing patch on the shoulder (Red Winged Blackbird) Dear Adults……………………..….........2 Dear 3. Two things that tired, hungry migrating birds get from wetlands (Food and Rest) Inside 5. Falling water from the sky (Rain) 6. Duck with green head (Mallard) Seattle Times Photo Contest Photo Times Seattle 7. Flying south for the winter (Migration) Photo credit: Jerry Ackerson, Seattle Audubon – Audubon Seattle Ackerson, Jerry credit: Photo 9. Water in the sky (Clouds) 11. How water turns from liquid to gas (Evaporation) 12. This month's cover bird (Belted Kingfisher) Answers from kingfisher page: 1) True, 2) True, 3) False, some kingfishers don’t eat any fish at all!, 4) True, 5) False, They come in all different colors and sizes! A-4, B-2, C-1, D-3 and not feed them at all! at them feed not and simply enjoy their presence presence their enjoy simply Or better yet, you could also also could you yet, better Or seed, or frozen peas or corn.
    [Show full text]
  • Pre-Lesson Plan
    Pre-Lesson Plan Prior to taking part in the Winged Migration program at Tommy Thompson Park it is recommended that you complete the following lessons to familiarize your students with some of the birds they might see and some of the concepts they will learn during their field trip. The lessons can easily be integrated into your Science, Language Arts, Social Studies and Physical Education programs. Part 1: Amazing Birds As a class, read the provided “Wanted” posters. The posters depict a very small sampling of some of the amazing feats and features of birds. To complement these readings, display the following websites so that students can see some of these birds “up close.” Common Loon http://www.schollphoto.com/gallery/thumbnails.php?album=1 Black-Capped Chickadee http://sdakotabirds.com/species_photos/black_capped_chickadee.htm Ruby-Throated Hummingbird http://www.surfbirds.com/cgi-bin/gallery/search2.cgi?species=Ruby- throated%20Hummingbird Downy Woodpecker http://www.pbase.com/billko/downy_woodpecker Great Horned Owl www.owling.com/Great_Horned.htm When you visit Tommy Thompson Park, you may see chickadees, hummingbirds, and woodpeckers. These birds all breed in southern Ontario. However, you probably will not see a Great Horned Owl, because this specific bird is usually flying around at night. Below is a list of some other birds students might see when they visit Tommy Thompson Park. Have them chose one bird each and write a “Wanted” poster for it, focusing on a cool fact about that bird. Some web sites that will help them get started
    [Show full text]
  • 2020 National Bird List
    2020 NATIONAL BIRD LIST See General Rules, Eye Protection & other Policies on www.soinc.org as they apply to every event. Kingdom – ANIMALIA Great Blue Heron Ardea herodias ORDER: Charadriiformes Phylum – CHORDATA Snowy Egret Egretta thula Lapwings and Plovers (Charadriidae) Green Heron American Golden-Plover Subphylum – VERTEBRATA Black-crowned Night-heron Killdeer Charadrius vociferus Class - AVES Ibises and Spoonbills Oystercatchers (Haematopodidae) Family Group (Family Name) (Threskiornithidae) American Oystercatcher Common Name [Scientifc name Roseate Spoonbill Platalea ajaja Stilts and Avocets (Recurvirostridae) is in italics] Black-necked Stilt ORDER: Anseriformes ORDER: Suliformes American Avocet Recurvirostra Ducks, Geese, and Swans (Anatidae) Cormorants (Phalacrocoracidae) americana Black-bellied Whistling-duck Double-crested Cormorant Sandpipers, Phalaropes, and Allies Snow Goose Phalacrocorax auritus (Scolopacidae) Canada Goose Branta canadensis Darters (Anhingidae) Spotted Sandpiper Trumpeter Swan Anhinga Anhinga anhinga Ruddy Turnstone Wood Duck Aix sponsa Frigatebirds (Fregatidae) Dunlin Calidris alpina Mallard Anas platyrhynchos Magnifcent Frigatebird Wilson’s Snipe Northern Shoveler American Woodcock Scolopax minor Green-winged Teal ORDER: Ciconiiformes Gulls, Terns, and Skimmers (Laridae) Canvasback Deep-water Waders (Ciconiidae) Laughing Gull Hooded Merganser Wood Stork Ring-billed Gull Herring Gull Larus argentatus ORDER: Galliformes ORDER: Falconiformes Least Tern Sternula antillarum Partridges, Grouse, Turkeys, and
    [Show full text]
  • Common Birds of Namibia and Botswana 1 Josh Engel
    Common Birds of Namibia and Botswana 1 Josh Engel Photos: Josh Engel, [[email protected]] Integrative Research Center, Field Museum of Natural History and Tropical Birding Tours [www.tropicalbirding.com] Produced by: Tyana Wachter, R. Foster and J. Philipp, with the support of Connie Keller and the Mellon Foundation. © Science and Education, The Field Museum, Chicago, IL 60605 USA. [[email protected]] [fieldguides.fieldmuseum.org/guides] Rapid Color Guide #584 version 1 01/2015 1 Struthio camelus 2 Pelecanus onocrotalus 3 Phalacocorax capensis 4 Microcarbo coronatus STRUTHIONIDAE PELECANIDAE PHALACROCORACIDAE PHALACROCORACIDAE Ostrich Great white pelican Cape cormorant Crowned cormorant 5 Anhinga rufa 6 Ardea cinerea 7 Ardea goliath 8 Ardea pupurea ANIHINGIDAE ARDEIDAE ARDEIDAE ARDEIDAE African darter Grey heron Goliath heron Purple heron 9 Butorides striata 10 Scopus umbretta 11 Mycteria ibis 12 Leptoptilos crumentiferus ARDEIDAE SCOPIDAE CICONIIDAE CICONIIDAE Striated heron Hamerkop (nest) Yellow-billed stork Marabou stork 13 Bostrychia hagedash 14 Phoenicopterus roseus & P. minor 15 Phoenicopterus minor 16 Aviceda cuculoides THRESKIORNITHIDAE PHOENICOPTERIDAE PHOENICOPTERIDAE ACCIPITRIDAE Hadada ibis Greater and Lesser Flamingos Lesser Flamingo African cuckoo hawk Common Birds of Namibia and Botswana 2 Josh Engel Photos: Josh Engel, [[email protected]] Integrative Research Center, Field Museum of Natural History and Tropical Birding Tours [www.tropicalbirding.com] Produced by: Tyana Wachter, R. Foster and J. Philipp,
    [Show full text]
  • Ceryle Rudis)
    bioRxiv preprint doi: https://doi.org/10.1101/409201; this version posted September 7, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Sustained hovering, head stabilization and vision through the water surface in the Pied 2 kingfisher (Ceryle rudis) 3 4 Gadi Katzir*, Department of Evolutionary and Environmental Biology, Faculty of Life Sciences, 5 University of Haifa, Mt Carmel, Haifa 3498838, Israel. Email: [email protected] 6 7 Dotan Berman, Department of Marine Sciences, Faculty of Life Sciences, University of Haifa, Mt Carmel, 8 Haifa 3498838, Israel. [email protected] 9 Moshe Nathan, Faculty of Life Sciences, Bar Ilan University, Ramat Gan, 52900, Israel. Email: 10 [email protected] 11 12 Daniel Weihs, Faculty of Aerospace Engineering and Autonomous Systems Program, Technion, Haifa, 13 3200003, Israel. Email: [email protected] 14 15 16 17 18 * Corresponding author 19 20 Abstract. Pied kingfishers (Ceryle rudis) capture fish by plunge diving from hovering that may last 21 several minutes. Hovering is the most energy-consuming mode of flight and depends on active wing 22 flapping and facing headwind. The power for hovering is mass dependent increasing as the cube of 23 the size, while aerodynamic forces increase only quadratically with size. Consequently, birds above 24 a certain body mass can hover only with headwind and for very short durations. Hummingbirds are 25 referred to as the only birds capable of hovering without wind (sustained hovering) due to their 26 small size (ca.
    [Show full text]
  • Volume 2E - Revised Baseline Ecological Risk Assessment Hudson River Pcbs Reassessment
    PHASE 2 REPORT FURTHER SITE CHARACTERIZATION AND ANALYSIS VOLUME 2E - REVISED BASELINE ECOLOGICAL RISK ASSESSMENT HUDSON RIVER PCBS REASSESSMENT NOVEMBER 2000 For U.S. Environmental Protection Agency Region 2 and U.S. Army Corps of Engineers Kansas City District Book 2 of 2 Tables, Figures and Plates TAMS Consultants, Inc. Menzie-Cura & Associates, Inc. PHASE 2 REPORT FURTHER SITE CHARACTERIZATION AND ANALYSIS VOLUME 2E- REVISED BASELINE ECOLOGICAL RISK ASSESSMENT HUDSON RIVER PCBs REASSESSMENT RI/FS CONTENTS Volume 2E (Book 1 of 2) Page TABLE OF CONTENTS ........................................................ i LIST OF TABLES ........................................................... xiii LIST OF FIGURES ......................................................... xxv LIST OF PLATES .......................................................... xxvi EXECUTIVE SUMMARY ...................................................ES-1 1.0 INTRODUCTION .......................................................1 1.1 Purpose of Report .................................................1 1.2 Site History ......................................................2 1.2.1 Summary of PCB Sources to the Upper and Lower Hudson River ......4 1.2.2 Summary of Phase 2 Geochemical Analyses .......................5 1.2.3 Extent of Contamination in the Upper Hudson River ................5 1.2.3.1 PCBs in Sediment .....................................5 1.2.3.2 PCBs in the Water Column ..............................6 1.2.3.3 PCBs in Fish .........................................7
    [Show full text]
  • Bird Species I Have Seen World List
    bird species I have seen U.K tally: 279 US tally: 393 Total world: 1,496 world list 1. Abyssinian ground hornbill 2. Abyssinian longclaw 3. Abyssinian white-eye 4. Acorn woodpecker 5. African black-headed oriole 6. African drongo 7. African fish-eagle 8. African harrier-hawk 9. African hawk-eagle 10. African mourning dove 11. African palm swift 12. African paradise flycatcher 13. African paradise monarch 14. African pied wagtail 15. African rook 16. African white-backed vulture 17. Agami heron 18. Alexandrine parakeet 19. Amazon kingfisher 20. American avocet 21. American bittern 22. American black duck 23. American cliff swallow 24. American coot 25. American crow 26. American dipper 27. American flamingo 28. American golden plover 29. American goldfinch 30. American kestrel 31. American mag 32. American oystercatcher 33. American pipit 34. American pygmy kingfisher 35. American redstart 36. American robin 37. American swallow-tailed kite 38. American tree sparrow 39. American white pelican 40. American wigeon 41. Ancient murrelet 42. Andean avocet 43. Andean condor 44. Andean flamingo 45. Andean gull 46. Andean negrito 47. Andean swift 48. Anhinga 49. Antillean crested hummingbird 50. Antillean euphonia 51. Antillean mango 52. Antillean nighthawk 53. Antillean palm-swift 54. Aplomado falcon 55. Arabian bustard 56. Arcadian flycatcher 57. Arctic redpoll 58. Arctic skua 59. Arctic tern 60. Armenian gull 61. Arrow-headed warbler 62. Ash-throated flycatcher 63. Ashy-headed goose 64. Ashy-headed laughing thrush (endemic) 65. Asian black bulbul 66. Asian openbill 67. Asian palm-swift 68. Asian paradise flycatcher 69. Asian woolly-necked stork 70.
    [Show full text]
  • BEHAVIOUR of NEW ZEALAND KINGFISHERS FEEDING CHICKS by LYNLEY MARIE HAYES
    BEHAVIOUR OF NEW ZEALAND KINGFISHERS FEEDING CHICKS By LYNLEY MARIE HAYES ABSTRACT Behaviour of Kingfishers (Halcyon sancta vagans) was studied at three nests in Canterbury. Courtship feeding was observed. Chicks were fed by both parents, predominantly on lizards, crabs and insects. No difference was found in the proportion of prey sizes fed to chicks of different ages (~2=0.02, p>0.05). Chicks were fed about every 20 min in the first week, the rate increasing to every 10 min in the latter stages of nesting. Kingfishers were aggressive during nesting and attacked a wide variety of species as well as other Kingfishers. Mortality during nesting of adult Kingfishers was heavy in suburban habitats. INTRODUCTION Relatively little information is available on the breeding biology of New Zealand Kingfishers (Halcyon sancta vagans). During my studies of Kingfisher feeding behaviour, I found several nests and observed Kingfishers feeding their young. Kingfisher chicks fledge about 24 days after hatching. Juvenile plumage is similar to that of adults except that the breast feathers have a dark edging, giving the chest a mottled look, and the upper wing-coverts are tipped with cream. Chicks remain with their parents for several weeks after leaving the nest and then disperse to winter habitats (Stead 1932). Information about the diet of nestlings is largely restricted to analyses of food pellets and droppings, which have shown that Kingfisher chicks are fed a wide variety of invertebrates and some vertebrates (O'Donnell 1981, Fitzgerald et al. 1986). In a direct observation of Kingfisher chicks being fed by their parents, Guthrie-Smith (1927) found that chicks were fed mainly lizards and dragonflies and occasionally cicadas and locusts.
    [Show full text]
  • 2020 Indiana Bird List
    2020 INDIANA BIRD LIST Kingdom – ANIMALIA ORDER: Cathartiformes Larks (Alaudidae) New World Vultures (Cathartidae) Horned Lark Phylum – CHORDATA Turkey Vulture Cathartes aura Subphylum – VERTEBRATA ORDER: Gruiformes Swallows (Hirundinidae) Class - AVES Rails, Gallinules, and Coots (Rallidae) Purple Martin Family Group (Family Name) American Coot Barn Swallow Hirundo rustica Common Name [Scientific name Chickadees and Titmice (Paridae) is in italics] ORDER: Charadriiformes Tufted Titmouse Baeolophus bicolor ORDER: Anseriformes Lapwings and Plovers (Charadriidae) Nuthatches (Sittidae) Ducks, Geese, and Swans (Anatidae) Killdeer Charadrius vociferus Red-breasted Nuthatch Sitta canadensis Snow Goose Sandpipers, Phalaropes, and Allies Wrens (Troglodytidae) Canada Goose Branta canadensis (Scolopacidae) Wood Duck Aix sponsa Carolina Wren Spotted Sandpiper Kinglets (Regulidae) Mallard Anas platyrhynchos Gulls, Terns, and Skimmers (Laridae) Golden-crowned Kinglet Ring-billed Gull Ruby-crowned Kinglet ORDER: Galliformes Herring Gull Larus argentatus Partridges, Grouse, Turkeys, and Old Thrushes (Turdidae) Eastern Bluebird World Quail (Phasianidae) ORDER: Columbiformes *Ring-necked Pheasant Pigeons and Doves (Columbidae) American Robin Turdus migratorius Mockingbirds and Thrashers (Mimidae) Ruffed Grouse Bonasa umbellus Mourning Dove Zenaida macroura Wild Turkey Meleagris gallopavo Gray Catbird Northern Mockingbird Mimus polyglottos Northern Bobwhite ORDER: Strigiformes Typical Owls (Strigidae) Brown Thrasher Toxostoma rufum ORDER: Gaviiformes Great
    [Show full text]