Pinfa Newsletter N° 22)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
OFR Staff Plan
Staff Briefing Package Project Plan: Organohalogen Flame Retardant Chemicals Assessment July 1, 2020 CPSC Consumer Hotline and General Information: 1-800-638-CPSC (2772) CPSC's Web Site: http://www.cpsc.gov THIS DOCUMENT HAS NOT BEEN REVIEWED CLEARED FOR PUBLIC RELEASE OR ACCEPTED BY THE COMMISSION UNDER CPSA 6(b)(1) Acknowledgments The preparation, writing, and review of this report was supported by a team of staff. We acknowledge and thank team members for their significant contributions. Michael Babich, Ph.D., Directorate for Health Sciences Charles Bevington, M.P.H., Directorate for Health Sciences Xinrong Chen, Ph.D., D.A.B.T., Directorate for Health Sciences Eric Hooker, M.S., D.A.B.T., Directorate for Health Sciences Cynthia Gillham, M.S., Directorate for Economic Analysis John Gordon, Ph.D., Directorate for Health Sciences Kristina Hatlelid, Ph.D., M.P.H., Directorate for Health Sciences Barbara Little, Attorney, Office of the General Counsel Joanna Matheson, Ph.D., Directorate for Health Sciences ii THIS DOCUMENT HAS NOT BEEN REVIEWED CLEARED FOR PUBLIC RELEASE OR ACCEPTED BY THE COMMISSION UNDER CPSA 6(b)(1) Table of Contents Briefing Memo ............................................................................................................................... iv 1. Executive summary .............................................................................................................. 5 2. Introduction ......................................................................................................................... -
Biocomposites
BIOCOMPOSITES Composite stand up for humanitarian causes, composites are environmentally responsible and the automation is the key for reducing the cost of manufacturing composite parts , are some of the words said before the winners of the Worldwide Competition of JEC Paris Innovation 2010 Award had heard and we totally agree. 3 / 25 CONTENTS OVERVIEW .................................................................................................................................................................. 5 BIO-COMPOSITES ....................................................................................................................................................... 6 1. FIBERS ............................................................................................................................................................. 8 a) Jute ........................................................................................................................................................ 9 b) Hemp................................................................................................................................................... 10 c) Kenaf ................................................................................................................................................... 11 d) Sisal ..................................................................................................................................................... 12 e) Coir ..................................................................................................................................................... -
Global Journal of Engineering Science and Researches Kenaf Fiber Reinforced Biocomposites:Critical Review P
[NCIME: October 2016] ISSN 2348 – 8034 Impact Factor- 4.022 GLOBAL JOURNAL OF ENGINEERING SCIENCE AND RESEARCHES KENAF FIBER REINFORCED BIOCOMPOSITES:CRITICAL REVIEW P. Ramesh*1, Dr.K.L. Narayana2, Dr. B. Durga Prasad3 and Dr. A. Mahamani4 *1Research scholar, JNT University, Ananthapuramu 2Professor in Mechanical Dept., SVCET, Chittoor 3Professor in Mechanical Dept., JNTUA, Ananthapuramu 4Professor in Mechanical Dept., SVCET, Chittoor ABSTRACT The development of biodegradable polymers has been subjected to great interest in materials science for both ecological and biomedical perspectives. Among the many types of natural assets, Kenaf fiber have been widely used over the past few existence which is a mostly attractive alternative due to its rapid growth at different climatic conditions and its ensuing low cost, kenaf fiber has gained some attention in replacing the glass fiber composite and making it purely a eco friendly. Therefore, in this paper, it is presented as overview of the developments that are made in the area of kenaf reinforced composites in terms of their market, processing methods, fiber content, environmental effects, chemical treatments, mechanical properties. Several critical issues and suggestions which are helpful for further research are discussed, for the better future of this bio-based material through a value addition and for the enhancement of its uses. Keywords- Kenaf fiber; chemical treatment-methods; polymer matrix composites; fiber content; thermo-mechanical properties. I. INTRODUCTION Jeffrey Sachs [1] aimed to work for eradication of excessive poverty; to ensure environmental sustainability. The improved utilization of plastics throughout the world has resulted in enhanced plastic waste. Shekeil YAE et al. [2] identified that the recent developments in recyclable polymers plays vital role as today there is an uncertainty in petroleum usage in the world. -
Sustainable Biocomposites for Construction
COMPOSITES & POLYCON 2009 Potential applications for biocomposites within American Composites Manufacturers Association buildings include framing, walls and wallboard, window January 15-17, 2009 frames, doors, flooring, decorative paneling, cubicle Tampa, FL USA walls and ceiling panels. In construction, biocomposites could be used for formwork and scaffolding, for in- stance. The use of biocomposites for temporary and ad- justable components of buildings would limit landfill Sustainable Biocomposites for waste when the interior designs within the building are Construction changed or in seismic regions where non-structural dam- age may be significant after an earthquake. by Prior Biocomposite Research Sarah Christian, Stanford University Sarah Billington, Stanford University Mohanty et al. (3) and Wool & Sun (4) provide a thorough review of recent research on biocomposites, natural fibers and biopolymers. Much of the research on Abstract biocomposites has focused on mechanical testing of short-fiber biocomposites, micromechanical studies such as fiber treatments for improved fiber-matrix interface Typical construction materials and practices have a large properties, and modeling of biocomposite properties ecological footprint. Many materials are energy- from fiber and matrix properties. (3) intensive to produce, and construction and demolition debris constitutes a large percentage of U.S. landfill vo- Limited biocomposite research has extended to lume. Biocomposites are structural materials made from structural-scale studies. Where structural-scale testing renewable resources that biodegrade in an anaerobic en- has been conducted it has been primarily on partially bio- vironment after their useful service life to produce a fuel based composites using either synthetic matrices or syn- or feedstock to produce a biopolymer for a new genera- thetic fibers. -
Research Article Biocomposite of Cassava Starch Reinforced with Cellulose Pulp Fibers Modified with Deposition of Silica (Sio2) Nanoparticles
Hindawi Publishing Corporation Journal of Nanomaterials Volume 2015, Article ID 493439, 9 pages http://dx.doi.org/10.1155/2015/493439 Research Article Biocomposite of Cassava Starch Reinforced with Cellulose Pulp Fibers Modified with Deposition of Silica (SiO2) Nanoparticles Joabel Raabe,1 Alessandra de Souza Fonseca,1 Lina Bufalino,1 Caue Ribeiro,2 Maria Alice Martins,2 José Manoel Marconcini,2 Lourival M. Mendes,1 and Gustavo Henrique Denzin Tonoli1 1 DepartmentofForestScience(DCF),UniversidadeFederaldeLavras,P.O.Box3037,37200-000Lavras,MG,Brazil 2Laboratorio Nacional de Nanotecnologia para o Agronegocio (LNNA), Embrapa Instrumentacao, P.O. Box 741, 13560-970 Sao Carlos, SP, Brazil Correspondence should be addressed to Gustavo Henrique Denzin Tonoli; [email protected] Received 30 October 2014; Revised 27 January 2015; Accepted 29 January 2015 Academic Editor: Chuan Wang Copyright © 2015 Joabel Raabe et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Eucalyptus pulp cellulose fibers were modified by the sol-gel process for SiO2 superficial deposition and used as reinforcement of thermoplastic starch (TPS). Cassava starch, glycerol, and water were added at the proportion of 60/26/14, respectively. For com- posites, 5% and 10% (by weight) of modified and unmodified pulp fibers were added before extrusion. The matrix and composites were submitted to thermal stability, tensile strength, moisture adsorption, and SEM analysis. Micrographs of the modified fibers revealed the presence of SiO2 nanoparticles on fiber surface. The addition of modified fibers improved tensile strength in183% relation to matrix, while moisture adsorption decreased 8.3%. -
Hexabromocyclododecane (HBCD) Action Plan
U.S. Environmental Protection Agency 8/18/2010 Hexabromocyclododecane (HBCD) Action Plan I. Overview HBCD is a brominated flame retardant found world-wide in the environment and wildlife. Human exposure is evidenced from its presence in breast milk, adipose tissue and blood. It bioaccumulates and biomagnifies in the food chain. It persists and is transported long distances in the environment, and highly toxic to aquatic organisms. It also presents potential human health concerns based on animal test results indicating potential reproductive, developmental and neurological effects. For these reasons, the Environmental Protection Agency (EPA) intends to consider initiating action under the Toxic Substances Control Act to address the manufacturing, processing, distribution in commerce, and use of HBCD. As part of the Agency's efforts to address HBCD, EPA also intends to evaluate the potential for disproportionate impact on children and other sub-populations. II. Introduction As part of EPA’s efforts to enhance the existing chemicals program under the Toxic Substances Control Act (TSCA)1, the Agency has identified certain widely recognized chemicals, including HBCD, for action plan development based on their presence in humans; persistent, bioaccumulative, and toxic (PBT)2 characteristics; use in consumer products; production volume; or other similar factors. This Action Plan is based on EPA’s initial review of readily available use, exposure, and hazard information on HBCD. EPA considered which of the various authorities provided under TSCA and other statutes might be appropriate to address potential concerns with HBCD in developing the Action Plan. The Action Plan is intended to describe the courses of action the Agency plans to pursue in the near term to address its concerns. -
Composites from Bast Fibres Page 1 of 22
Composites from bast fibres Page 1 of 22 COMPOSITES FROM BAST FIBRES - PROSPECTS AND POTENTIAL IN THE CHANGING MARKET ENVIRONMENT Rajesh D. Anandjiwala1 and Sunshine Blouw2 ABSTRACT Composite materials reinforced with natural fibres, such as flax, hemp, kenaf and jute, are gaining increasing importance in automotive, aerospace, packaging and other industrial applications due to their lighter weight, competitive specific strength and stiffness, improved energy recovery, carbon dioxide sequestration, ease and flexibility of manufacturing and environmental friendliness besides the benefit of the renewable resources of bast fibres. The market scenario for composite applications is changing due to the introduction of newer bio- degradable polymers, such as PLA synthesized from corn, development of composite making techniques and new stringent environmental laws requiring improved recyclability or biodegradability for industrial applications where stress bearing capacities and micro- mechanical failures dictate serviceability. Bast fibre reinforced composites, made from bio- degradable polymers, will have to compete with conventional composites in terms of their mechanical behaviour. Bio-composites, in which natural fibres such as kenaf, jute, flax, hemp, sisal, corn stalk, bagasse or even grass are embedded in a biodegradable matrix, made as bioplastics from soybean, corn and sugar, have opened-up new possibilities for applications in automotive and building products. Obviously, new approaches to research and development will be required to assess their mechanical properties and also their commercial 1 Ph.D., C.Text. FTI, Business Area Manager – Dry Processing, Centre for Fibre, Textile & Clothing, Manufacturing & Materials Division, CSIR, P.O. Box 1124, Port Elizabeth 6000, South Africa, E-mail: [email protected] and Senior Lecturer, Department of Textile Science, Faculty of Science, University of Port Elizabeth, P.O. -
Retting Process of Some Bast Plant Fibres and Its Effect on Fibre Quality: a Review
PEER-REVIEWED ARTICLE bioresources.com RETTING PROCESS OF SOME BAST PLANT FIBRES AND ITS EFFECT ON FIBRE QUALITY: A REVIEW Paridah Md. Tahir,a Amel B. Ahmed,a Syeed O. A. SaifulAzry,a and Zakiah Ahmed b Retting is the main challenge faced during the processing of bast plants for the production of long fibre. The traditional methods for separating the long bast fibres are by dew and water retting. Both methods require 14 to 28 days to degrade the pectic materials, hemicellulose, and lignin. Even though the fibres produced from water retting can be of high quality, the long duration and polluted water have made this method less attractive. A number of other alternative methods such as mechanical decortication, chemical, heat, and enzymatic treatments have been reported for this purpose with mixed findings. This paper reviews different types of retting processes used for bast plants such as hemp, jute, flax, and kenaf, with an emphasis on kenaf. Amongst the bast fibre crops, kenaf apparently has some advantages such as lower cost of production, higher fibre yields, and greater flexibility as an agricultural resource, over the other bast fibres. The fibres produced from kenaf using chemical retting processes are much cleaner but low in tensile strength. Enzymatic retting has apparent advantages over other retting processes by having significantly shorter retting time and acceptable quality fibres, but it is quite expensive. Keywords: Kenaf; Bast long fibres; Retting; Fibre characteristics; Pectic materials; Enzyme Contact information: a: -
Recent Progress in Hybrid Biocomposites: Mechanical Properties, Water Absorption, and Flame Retardancy
materials Review Recent Progress in Hybrid Biocomposites: Mechanical Properties, Water Absorption, and Flame Retardancy Mohsen Bahrami * , Juana Abenojar and Miguel Ángel Martínez Materials Science and Engineering and Chemical Engineering Department, University Carlos III de Madrid, 28911 Leganes, Spain; [email protected] (J.A.); [email protected] (M.Á.M.) * Correspondence: [email protected]; Tel.: +34-91-6249401 Received: 4 October 2020; Accepted: 12 November 2020; Published: 15 November 2020 Abstract: Bio-based composites are reinforced polymeric materials in which one of the matrix and reinforcement components or both are from bio-based origins. The biocomposite industry has recently drawn great attention for diverse applications, from household articles to automobiles. This is owing to their low cost, biodegradability, being lightweight, availability, and environmental concerns over synthetic and nonrenewable materials derived from limited resources like fossil fuel. The focus has slowly shifted from traditional biocomposite systems, including thermoplastic polymers reinforced with natural fibers, to more advanced systems called hybrid biocomposites. Hybridization of bio-based fibers/matrices and synthetic ones offers a new strategy to overcome the shortcomings of purely natural fibers or matrices. By incorporating two or more reinforcement types into a single composite, it is possible to not only maintain the advantages of both types but also alleviate some disadvantages of one type of reinforcement by another one. This approach leads to improvement of the mechanical and physical properties of biocomposites for extensive applications. The present review article intends to provide a general overview of selecting the materials to manufacture hybrid biocomposite systems with improved strength properties, water, and burning resistance in recent years. -
No 1223/2009 of the EUROPEAN PARLIAMENT and of the COUNCIL of 30 November 2009 on Cosmetic Products (Recast) (Text with EEA Relevance) (OJ L 342, 22.12.2009, P
02009R1223 — EN — 03.12.2020 — 025.001 — 1 This text is meant purely as a documentation tool and has no legal effect. The Union's institutions do not assume any liability for its contents. The authentic versions of the relevant acts, including their preambles, are those published in the Official Journal of the European Union and available in EUR-Lex. Those official texts are directly accessible through the links embedded in this document ►B REGULATION (EC) No 1223/2009 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 30 November 2009 on cosmetic products (recast) (Text with EEA relevance) (OJ L 342, 22.12.2009, p. 59) Amended by: Official Journal No page date ►M1 Commission Regulation (EU) No 344/2013 of 4 April 2013 L 114 1 25.4.2013 ►M2 Commission Regulation (EU) No 483/2013 of 24 May 2013 L 139 8 25.5.2013 ►M3 Commission Regulation (EU) No 658/2013 of 10 July 2013 L 190 38 11.7.2013 ►M4 Commission Regulation (EU) No 1197/2013 of 25 November 2013 L 315 34 26.11.2013 ►M5 Commission Regulation (EU) No 358/2014 of 9 April 2014 L 107 5 10.4.2014 ►M6 Commission Regulation (EU) No 866/2014 of 8 August 2014 L 238 3 9.8.2014 ►M7 Commission Regulation (EU) No 1003/2014 of 18 September 2014 L 282 1 26.9.2014 ►M8 Commission Regulation (EU) No 1004/2014 of 18 September 2014 L 282 5 26.9.2014 ►M9 Commission Regulation (EU) 2015/1190 of 20 July 2015 L 193 115 21.7.2015 ►M10 Commission Regulation (EU) 2015/1298 of 28 July 2015 L 199 22 29.7.2015 ►M11 Commission Regulation (EU) 2016/314 of 4 March 2016 L 60 59 5.3.2016 ►M12 Commission Regulation (EU) -
Kenaf for Biocomposite: an Overview
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Journals of Universiti Tun Hussein Onn Malaysia (UTHM) Journal of Science and Technology Kenaf For Biocomposite: An Overview 1Izran Kamal*, 2Mohd. Zharif Thirmizir 3Guenter Beyer, 4Mohamad Jani Saad, 5Noor Azrieda Abdul Rashid, and 6Yanti Abdul Kadir 1Advanced Processing and Design Programme, Timber Technology Centre, Forest Research Institute Malaysia (FRIM), 52109 Kepong, Selangor Darul Ehsan, Malaysia 2Science and Engineering Research Centre (SERC), Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang, Malaysia 3Physical and Chemical Laboratories, Kabelwerk EUPEN AG,B-4700 Eupen, Belgium 4Rice and Industrial Crops Research Center, Malaysian Agricultural Research and Development Institute (MARDI), Persiaran MARDI-UPM, 43400 Serdang, Selangor Darul Ehsan 5 Wood Mycology Laboratory, Forest Research Institute Malaysia (FRIM), 52109 Kepong, Selangor Darul Ehsan, Malaysia 6Furniture Design Laboratory, Forest Research Institute Malaysia (FRIM), 52109 Kepong, Selangor Darul Ehsan, Malaysia *Corresponding email:[email protected] Abstract Increase of the awareness on the importance of protecting the environment has urged researchers around the globe to find ways to produce goods that can minimize harm to the environment. Biocomposite is a product that has been shown to be helpful in achieving this objective. Biocomposite is produced using natural or semi-natural materials, therefore it can easily be disposed, thus, minimize harm to the environment. Kenaf is a natural plant which has began to gain attention as a material in the production of biocomposite. Kenaf is selected as an additional alternative material for producing biocomposite because of its fast-growing properties which makes it capable to deliver a large volume of raw material in a short period of time. -
Bsef Factsheet TBBPA 24 09 Os9
HBCD Factsheet Brominated Flame retardant October 2012 Hexabromocyclododecane HBCD Factsheet Hexabromocyclododecane > Introduction Hexabromocyclododecane (HBCD) 1 is a brominated flame retardant used for many years mainly in thermal insulation foams and in textile coatings. In these applications, HBCD is a unique flame retardant protecting human lives and property from fire. Summary: HBCD is used in industrial applications with proven socio-economic benefits due to their key role in both fire safe ty and energy efficiency. HBCD has undergone an EU scientific assessment which identified no risk to consumers. At European level, HBCD is currently being reviewed under the REACH procedure. In this context, HBCD has been identified as a Substance of Very High Concern (SVHC) 2 and is subject to the Authorisation procedure (REACH Annex XIV) 3. HBCD is also being reviewed under the UNEP Stockholm Convention on Persistent Organic Pollutants and the UNECE Convention on Long-Range Transboundary Air Pollution on Persistent Organic Pollutants. Given the risks identified for the environment, HBCD producers and users are committed to ensuring a responsible use of HBCD and have launched voluntary programmes aiming at controlling and reducing emissions to the envi ronment. > Applications and Fire safety POLYSTYRENE (PS) HBCD provides a high degree of INSULATION FOAMS flame retardancy when used at very low concentrations. HBCD’s main use is in Expanded and Extruded Polystyrene (EPS and XPS) While alternatives to HBCD in EPS insulation foam boards which are widely and XPS have been identified, these are used by the construction sector. at variously advanced development stages. It will take several years before EPS and XPS insulation foams play a sufficient volume of HBCD alternatives a key role in helping governments covering the needs of the market meet a significant part of global, becomes commercially available.