Goodwood Junction Grade Separation Project; Adelaide Australia

Total Page:16

File Type:pdf, Size:1020Kb

Goodwood Junction Grade Separation Project; Adelaide Australia TECHNICAL ARTICLE AS PUBLISHED IN The Journal July 2017 Volume 135 Part 3 If you would like to reproduce this article, please contact: Alison Stansfield MARKETING DIRECTOR Permanent Way Institution [email protected] PLEASE NOTE THE OPINIONS EXPRESSED IN THIS JOURNAL ARE NOT NECESSARILY THOSE OF THE EDITOR OR OF THE INSTITUTION AS A BODY. TECHNICAL Goodwood AUTHORS: Dariusz Fanok and Andrew Kalionis Junction grade Department of Planning Transport and Infrastructure separation project; South Australia Adelaide Australia SUMMARY plan to revitalise the Adelaide rail system “leafy” suburbs whose residents were anxious generally. In simple terms, the proposed to avoid any unacceptable impact upon their For many years, one of the major bottlenecks project comprised of a rail under pass to take daily lives. Finally, and not least of all, the on the Adelaide Rail network was that at the Seaford line under the interstate freight line ARTC freight services were to be maintained Goodwood Junction which saw a grade conflict and the Belair passenger line. without interruption throughout the construction between, on the one hand, the Australian period. Rail Track Corporation (ARTC) standard The project was a complex one, being gauge interstate freight line and the Public contained as it was by a narrow rail corridor The management of the project was Transport Services (PTS) Belair broad gauge managed by two separate rail authorities; undertaken by the South Australian passenger line and, on the other hand, the PTS constrained by two level crossings; the Department of Planning, Transport and Seaford broad gauge passenger line. With an proximity of two pedestrian crossings; Infrastructure and this article outlines how increasing need to introduce more frequent Goodwood passenger station; the Glenelg the various challenges were addressed in the passenger services and the continuing growth/ Tram over pass; Brownhill Creek; a trunk sewer completion of a difficult job both on time and demand for greater freight capacity on the line and a variety of underground and overhead within budget. ARTC line, the South Australian government utility services. Another challenge presented concluded that a grade separation proposal during the implementation of the project was should be implemented as part a broader the fact that it was located in one of Adelaide’s Image 1: Aerial Project Overview 32 TECHNICAL CONTRIBUTION OF THE WORKS from subcontractors, who were engaged ARTC (STANDARD GAUGE) TO THE SERVICES PROVIDED BY and challenged to think outside the box in the conduct of even the most mundane tasks. • 560 lineal metres of track THE EMPLOYER • 1220 lineal meters of rail (reused existing) • 50kg rail The Melbourne to Adelaide railway is the OCCUPATIONAL HEALTH, • 74 welds busiest intermodal freight link in Australia and SAFETY, WELFARE AND • 836 sleepers with rail pad and 2 fast clips is a significant carrier of freight, with over 7 ENVIRONMENTAL ISSUES on each million tonnes of goods carried in 2011/12. ASSOCIATED WITH THE WORKS BELAIR (BROAD GAUGE) Freight movements are expected to increase To ensure the safety of personnel working from a minimum of the underlying economic in the rail corridor, whilst adjacent to an • 1110 lineal metres of track in mainline, growth up to 7%, as has been occurring on operational freight rail line, the team managed 225 lineal metres in the Belair Loop the Australian Rail Track Corporation (ARTC) the possession and the safety of the rail • 2670 lineal metres of rail network. Based on estimates provided by the corridor during the shutdown period of the • 50kg rail ARTC, the number of freight train movements passenger rail network, including integration • 186 welds could increase from around 80 per week with the adjacent operational ARTC rail line • 1993 gauge convertible sleepers with rail currently, to between 100 and 150 by 2024. and managing the operation of the contractors pad and 2 fast clips on each. involved in the project. Zero Lost Time Injuries • 120m passing loop (including two Prior to the Goodwood Junction Project, (LTI’s) occurred through diligent occupational turnouts – one new and one refurbished) the interstate mainline crossed over the health and safety implementation and suburban passenger lines, causing delays performance. SEAFORD (BROAD GAUGE) to the interstate trains as they waited for the suburban passenger trains to pass. With In addition to the existing safety provisions • Total Up and Down Track 3054 lineal the planned increase in passenger service that were implemented in accordance with metres of track (1121 lineal metres of frequency on the upgraded rail network, the the relevant standards and codes (e.g. bridge track slab) delays to interstate trains were anticipated to code), this approach resulted in changes to the • 3866 metres 50kg rail increase. design with the objective of reducing risks and • 2242 lineal metres 50kg head hardened improve safety, including: rail (through track slab) As a consequence of having to stop, the • 428 welds typically 1500 metre long freight trains • Design of the underpass to reduce the • 3448 Pandrol Vipa Rail Fastening System decelerate and travel at reduced speed (down length of enclosed space and resulting pads (on trackslab) to 20 km/h) through the adjacent signaled road safety risk and avoiding the underpass • 2881 gauge convertible sleeps with fast level crossings. This causes considerable being classified as a tunnel clips delays to road traffic on Cross Roads, Leader Street and Victoria Street as vehicles queue, • Relocation of the underpass pump station IDENTIFIED DIFFICULTIES waiting for the interstate freight line to clear. chamber away from the rail overbridge to These delays were in the order of five minutes improve the stability of the bridge support ARTC TRACK SLEW on each separate occasion. piles A key challenge for several stages of the Grade separation of the Seaford and ARTC • Provision of a diagnostic and monitoring project was the continuing operation of the lines has significantly improved the speed and internet-based Aquaview system to ARTC freight line, which continued to operate efficiency of transporting goods i.e. typically 20 ensure that PTS maintenance staff through the worksite during construction. per cent less journeys have been required to and train control were aware of the This particular challenge required a number transport the same tonnage of freight. operational status of the pumps of safety measures to be implemented, including scaffolding and track protection for Freight train transit times have been reduced, • Provision of CCTV to identify and notify construction activities and tightly controlled and delivery services have been more reliable, train control of unauthorised access to scheduling of such activities. At Goodwood, whilst goods being transported by road have the underpass undertaking major civil works next to a live benefited by reduced delay times at railway freight rail line meant that the worksite had to level crossings i.e. boom gate activations at • Reducing the need for maintenance/ incorporate the existing, slewed, ARTC freight Victoria Street have reduced by approximately operational personnel to enter the drive, line as well as having to accommodate the 70 per cent due to the grade separation of the by accessing the pump station from a ultimate alignment in the context of maintaining Seaford passenger line. A more efficient freight ground level maintenance access point freight train movements. The project team line has resulted in fewer heavy vehicles on and by removing equipment that required minimised the rail slew length by completing our local roads with benefits to all road users maintenance from the underpass early demolition of existing infrastructure and (commuters, business, public transport and than relocating the passenger rail tracks. This emergency services). • Provision of throw screens at the top of enabled construction crews to maximise use of the underpass including areas of potential the limited space. More than 1,050 workers were employed to unauthorised access and consideration of design and build the Goodwood Junction potential locations for suicides Several modifications to the freight line underpass and its associated works. signalling system were required to separate The preferred management system was DEMONSTRATED ECONOMIES this system from the new signalling and instrumental in delivering outcomes that communications arrangements being deployed minimised community impact without IN THE SELECTION AND USE OF over the passenger network. All of this was jeopardising project deadlines and the MATERIALS undertaken in a very compressed timeline. resumption of train services. The Goodwood Junction Grade Separation Possession of the site was granted in early January and by 21 January, the first temporary The project lasted over 368,000 hours with involved the installation of the following slew on the eastern side of the corridor was an injury frequency rate of 2.72 and was materials: already completed. This realignment allowed completed with zero Lost Time Injuries, an the main bridge deck to be constructed. achievement resulting from positive buy-in 33 TECHNICAL Following the completion of the main bridge, TRACK SLAB The benefits included: the second slew was carried out on 23 March for the final alignment. The project was the first to utilise rail track • Less construction depth than the slab systems in the South Australian rail equivalent ballasted system reduced SIGNALLING network. Track slab is a form of railway the overall total depth of the railway track construction offering proven superior underpass, the volume of the cut and the The operational signalling had to be maintained performance in service and a longer life length of the piles throughout construction of the project and this than traditional ballasted track. The design • Sleeper gradients, which critically was made more difficult as a result of it being considered: reduced the total length of the underpass an old and delicate system. Both internal and and allowed it to fit between the two external expertise (PTS and Rail Industry • Rebound heave of clay soils following the existing constraints (i.e.
Recommended publications
  • (RIHSAC) Presentation
    Welcome to RIHSAC 94 Dilip Sinha, Secretary, RIHSAC 15 October 2013 1 Who’s minding the gap? John Cartledge Safety Policy Adviser Presentation to RIHSAC 15 October 2013 Why does platform edge risk matter to passengers? “At Clapham Junction the height gap between the platform and the trains on platform 15 is a health and safety issue. Towards the eastern end of the platform I have seen elderly people unable to disembark because the gap was unmanageable.” Joanna Moorhead Thursday 22 December 2011 Yes, I do mind the gap – you don't have to be drunk to fall under a train As public information campaigns go, this one seemed a cracker. Travelling while you're drunk is dangerous; and to make the point in the runup to Christmas, British Transport police have released CCTV images of a drunken passenger on a train as she staggers off it. Thankfully, the woman in the film is fine, because someone saw her fall and the train was delayed while she was hauled from under it. But seeing those images makes me furious, because despite what Network Rail might like us to believe, you don't have to be drunk to fall under a train. According to the staff at my local station, Clapham Junction in south-west London, it happens to entirely sober passengers on a regular basis, because of ever-bigger gaps between platforms and trains. I know this is true, because over the last three years my daughters, who travel to secondary school through Clapham Junction, have twice told me about incidents in which friends of theirs fell on to the tracks.
    [Show full text]
  • A Cardiff Capital Region Metro: Impact Study: Metro Interventions Appraisal Report
    Report to the Minister for Economy, Science and Transport Merthyr Ebbw Hirwaun Tydfil Rhymney Tredegar Vale Brynmawr Abergavenny Aberdare Treherbert Abertillery Pontypool Bargoed Blackwood Newbridge Abercynon Cwmbran Pontypridd Ystrad Mynach Cross Keys Porth Maesteg Talbot Green Taffs Well Caerphilly Caerleon Pontyclun Cardiff Gate North West Heath Bridgend Cardiff Severn Queen Tunnel Ely Mill Street Newport Junction Porthcawl St Llanwern Chepstow Mellons Culverhouse Cross Pill Cardiff Cardiff Bay Bristol Airport Sports Village Cardiff Central Barry Penarth Porth Teigr A Cardiff Capital Region Metro: Impact Study: Metro Interventions Appraisal Report October 2013 Metro Interventions Appraisal Report FINAL Report | September 2013 Project No: CS/060195 Doc Ref: CS/060195 Rev: Client: Welsh Government Issue Date: September 2013 Metro Interventions Appraisal Report: FINAL Report Name Signature Date Author Michelle North-Jones 30/09/2013 Checker David McCallum 30/09/2013 Approver David McCallum 30/09/2013 Issue Record Rev Date Description/Comments Author/Prepared by: Approved for Issue by: “The report shall be for the private and confidential use of the clients for whom the report is undertaken and should not be reproduced in whole or in part or relied upon by third parties for any use whatsoever without the express written authority of the Consultant’ Metro Interventions Appraisal Report: FINAL Report September 2013 CONTENTS 1. Introduction 1 1.1 Context 1.2 Report Purpose and Structure 2. Appraisal Methodology 3 2.1. Modal Interventions 2.2 Appraisal Criteria 2.3 Intervention Assessment 3. Appraisal Results and Recommended Interventions Packages 10 3.1 Appraisal Results by Intervention Category 3.2 Intervention Packages 3.3 Quick Wins 4.
    [Show full text]
  • Enhancing Interoperability for Facilitation of International Railway Transport
    ENHANCING INTEROPERABILITY FOR FACILITATION OF INTERNATIONAL RAILWAY TRANSPORT This study was prepared by Transport Division ESCAP. The draft of the study was prepared by Mr. Vasile-Neculai OLIEVSCHI, Consultant, under the supervision of Mr. Sandeep Raj Jain, Economic Affairs Officer, Transport Division ESCAP. The views expressed in this guide are those of the authors and do not necessarily reflect the views of the United Nations Secretariat. The opinions, figures and estimates set forth in this guide are the responsibility of the authors, and should not necessarily be considered as reflecting the views or carrying the endorsement of the United Nations. The designations employed and the presentation of the material in this study do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. Mention of firm names and commercial products does not imply the endorsement of the United Nations. This study is issued without formal editing. ______________________ ENHANCING INTEROPERABILITY FOR FACILITATION OF INTERNATIONAL RAILWAY TRANSPORT Bangkok, 2018 Table of Contents EXECUTIVE SUMMARY .................................................................................................................... 1 I. BACKGROUND ......................................................................................................................... 3 II. ASIAN
    [Show full text]
  • Sizewell C DCO Application, Rail Proposals
    Sizewell C DCO application, Rail Proposals Preliminary technical review Suffolk County Council V0-5 Final Project number: 60445024 17 September 2020 Sizewell C DCO application, Rail Proposals Project number: 60445024 Quality information Prepared by Checked by Verified by Approved by Julian Sindall Claire Falkiner Bevin Carey Simon Middleton Revision History Revision Revision date Details Authorized Name Position 0-1 07 Sep 2020 Work in progress 0-2 08 Sep 2020 Work in progress 0-3 08 Sep 2020 DRAFT 0-4 14 Sep 2020 Final 0-5 17 Sep 2020 Final Bevin Carey Bevin Carey Associate Director Prepared for: Suffolk County Council AECOM and Cadenza Sizewell C DCO application, Rail Proposals Project number: 60445024 Prepared for: Suffolk County Council Prepared by: Table 1 List of contributing organisations AECOM Limited Cadenza Transport Consulting Ltd AECOM Limited 8-10 South Street 3rd Floor, Portwall Place Epsom Portwall Lane Surrey Bristol BS1 6NA KT18 7PF United Kingdom United Kingdom T: +44 117 901 7000 M: +44 7786 430420 aecom.com cadenza.co.uk © 2020 AECOM Limited. All Rights Reserved. This document has been prepared by AECOM Limited (“AECOM”) for sole use of our client (the “Client”) in accordance with generally accepted consultancy principles, the budget for fees and the terms of reference agreed between AECOM and the Client. Any information provided by third parties and referred to herein has not been checked or verified by AECOM, unless otherwise expressly stated in the document. No third party may rely upon this document without the prior and express written agreement of AECOM. Prepared for: Suffolk County Council AECOM and Cadenza Sizewell C DCO application, Rail Proposals Project number: 60445024 Table of Contents Executive Summary ..................................................................................................
    [Show full text]
  • Tramway Track Standard
    SYDNEY TRAMWAY MUSEUM TRAMWAY TRACK STANDARD MARCH 2016NOVEMBER 2019 SYDNEY TRAMWAY MUSEUM Document Control Record 1. Document Details: Name: Tramway track Standard Number STM6024 Version Number: 1.89 Document Status: Working Draft X Approved for Issue Archived Next Scheduled Review Date: 2. Version History: Version Number Date Reason/Comments 1.0 20/01/2007 Initial issue 1.1 09/01/2009 Changed Report title 1.2 09/07/2009 Added Tie Bar drawing 1.3 31/05/2010 Changes made to satisfy the 2009 ITSRR audit. 1.4 31/07/2010 Changes made to satisfy the 2009 ITSR audit. 1.5 03/09/2010 Updated Appendix D and other minor changes. 1.6 15/05/2011 Added the Pandrol Information as the RNP uses this equipment 1.7 21/8/2015 Added Loading gauge drawing and reference to STM6072 1.8 31/03/2016 Amended Distribution List format Better defining the sleeper standard (Good, Fair, Poor) by photos 1.9 21/11/2019 and description in Section 10.11. Approved by Signature & Date 3. Distribution List Position Date Location of Documents Rail Safety Manager Original held on GOOGLE secure Website STM WEB SITE Updated regularly and put onto the STM Web site. STM Office STM Office Computer STM Office STM Office cupboard STM6024 Tramway track Standard Page 2 of 55 Version 1.9 – 21/11/2019 SYDNEY TRAMWAY MUSEUM 1. Purpose To explain the various tramway track standards at the Sydney tramway Museum. Also the purpose of this document is to set down, in printed form, a history of the construction, operation and maintenance of the STM for the benefit of future generations called upon to further the aims of the society.
    [Show full text]
  • Improving Railway Operations Through the Integration of Macroscopic and Microscopic Modelling with Optimisation
    Improving railway operations through the integration of macroscopic and microscopic modelling with optimisation By Silvia Umiliacchi A thesis submitted to The University of Birmingham for the degree of DOCTOR OF PHILOSOPHY School of Electronic, Electrical and Systems Engineering College of Engineering and Physical Sciences The University of Birmingham, UK November 2016 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. Abstract Britain's railway industry is implementing the vision of the system in the next thirty years, as outlined in the Rail Technical Strategy (2012); the main objectives to achieve are: carbon and cost reduction, capacity increase and customer satisfaction. The timetable design process is identified as a key enabler of the strategy's implementation. The current method in use is considered as a lengthy process with little computer support and optimisation. This study tries to overcome the outlined weaknesses of the existing method by proposing a more automated process in which the optimisation of a timetable is a properly design stage. The method has been applied to minimise the total energy consumption of five trains on the Aberdeen-Inverness line, while meeting operational and safety con- straints.
    [Show full text]
  • Rail Accident Report
    Rail Accident Report Derailment of a freight train at Maltby North 28 June 2006 Report 24/2007 July 2007 This investigation was carried out in accordance with: l the Railway Safety Directive 2004/49/EC; l the Railways and Transport Safety Act 2003; and l the Railways (Accident Investigation and Reporting) Regulations 2005. © Crown copyright 2007 You may re-use this document/publication (not including departmental or agency logos) free of charge in any format or medium. You must re-use it accurately and not in a misleading context. The material must be acknowledged as Crown copyright and you must give the title of the source publication. Where we have identified any third party copyright material you will need to obtain permission from the copyright holders concerned. This document/publication is also available at www.raib.gov.uk. Any enquiries about this publication should be sent to: RAIB Email: [email protected] The Wharf Telephone: 01332 253300 Stores Road Fax: 01332 253301 Derby UK Website: www.raib.gov.uk DE21 4BA This report is published by the Rail Accident Investigation Branch, Department for Transport. Derailment of a freight train at Maltby North 28 June 2006 Contents Introduction 5 Summary 6 Key facts about the incident 6 Key conclusions 6 Recommendations 7 The Accident 8 Summary of the accident 8 The parties involved 10 The signalling 10 Events preceding the accident 11 Events during the accident 12 Events following the accident 15 Previous occurrences of a similar character 15 Analysis 17 Sources of evidence 17 Identification
    [Show full text]
  • Engineering Assessment of Aurizon Network's Capital Expenditure Claim 2013-14 (CIC)
    Queensland Competition Authority Engineering Assessment of Aurizon Network’s Capital Expenditure Claim 2013-14 22 MAY 2015 Commercial in Confidence (CIC) Solutions & & Title Engineering Assessment of Aurizon Network's Capital Expenditure Claim 2013-14 (CIC) Version: FINAL Authors: Clara Tetther CMT Solutions Paul Tribley CMT Solutions Rod Carr Marsden Jacob Associates Matthew Clarke Marsden Jacob Associates Etienne Coudray Atkins Date: 22 May 2015 Engineering assessment of Aurizon Network's 2013-14 Capital Expenditure Claim (CIC) Page ii of 98 CMT, Atkins and Marsden Jacob Associates for the Queensland Competition Authority Contents 1 INTRODUCTION 1 1.1 Background 1 1.2 Extent of the Review 2 1.3 Structure of this report 2 1.4 Supplementary Report 3 2 AURIZON NETWORK 2013-14 CAPITAL EXPENDITURE CLAIM 4 2.1 Aurizon Network 2013-14 CAPEX Submission Claim 4 2.2 Structure of claim 4 2.3 Supporting information 5 3 PRUDENCY ASSESSMENT METHODOLOGY AND CRITERIA 7 3.1 Overall methodology for prudency assessment 7 3.2 Risk matrix 13 3.3 Assessment forms 14 3.4 Projects review – Aurizon Network 15 4 ASSESSMENT RESULTS AND RECOMMENDATIONS 16 4.1 General 16 4.2 Projects selected for economic review 21 4.3 Procurement 21 4.4 Feasibility studies – market analysis 27 5 PROJECT ASSESSMENT SUMMARIES 32 5.1 Project assessments – Schedule 3 Expansion 32 5.2 Project assessments – Schedule 4 TACA 34 5.3 Project assessments – Schedule 5 Electrical 37 5.4 Project assessments – Schedule 6 S&TSS 39 5.5 Project assessments – Schedule 7 Telecommunications 43 5.6
    [Show full text]
  • SZC Bk6 ES V9 Ch3 Alternati
    The Sizewell C Project 6.10 Volume 9 Rail Chapter 3 Alternatives and Design Evolution Revision: 1.0 Applicable Regulation: Regulation 5(2)(a) PINS Reference Number: EN010012 May 2020 Planning Act 2008 Infrastructure Planning (Applications: Prescribed Forms and Procedure) Regulations 2009 SIZEWELL C PROJECT – ENVIRONMENTAL STATEMENT NOT PROTECTIVELY MARKED Contents 3 Alternatives and Design Evolution – Rail .................................................................. 1 3.1 Introduction ............................................................................................................... 1 3.2 Scheme requirements ............................................................................................... 2 3.3 Alternative schemes for the green rail route ............................................................. 2 3.4 Alternative designs and design evolution for the green rail route ............................. 9 3.5 Alternative schemes and design evolution – Proposed rail improvement works ..... 23 References .......................................................................................................................... 41 Tables Table 3.1: Stage 3 - East Suffolk line level crossing proposals. .......................................... 30 Table 3.2: Stage 3 – Saxmundham to Leiston branch line level crossing proposals. .......... 32 Table 3.3: Stage 4 – Summary of changes to the Stage 3 PEI ............................................ 38 Plates Plate 3.1: Stage 1 options for the rail route extension ..........................................................
    [Show full text]
  • Coleraine to Londonderry Relay
    Coleraine to Londonderry Track Renewals Project Addendum to 2010 Appraisal September 2011 1 1. Background The Coleraine and Derry Line is a predominantly single track line with a passing loop at Castlerock Station. There is one other intermediate stop at Bellarena, located north east of Limavady. The line is 33.5 miles long with track that dates to approximately 1978. In 2010 KPMG prepared an economic appraisal for NIR for the Coleraine to Derry Track Renewals Project which sought to identify the least cost option for delivering the Minister’s decision to provide a rail service to Derry. The preferred option was Option 3a which was a full relay of the existing track with the addition of a new passing loop and a new signalling system to be operated from Coleraine. The capital cost of this option, including optimism bias was budgeted at £75m. The project was approved by NITHC / Translink’s executive group, the NITHC Board and DRD and DFP for implementation between April 2012 and March 2013. However, funding constraints have meant that the project could not go ahead as planned and a decision was made to defer a full line relay until a later date. In the interim, and in order to keep the line open, a project was set up to deal specifically with safety related works on the line. The economic appraisal, Coleraine – Londonderry Track Safety Improvements Works was approved by the Executive Group in April 2011, the NITHC Board in May 2011 and DFP in June 2011. Translink received a letter of offer from DRD to proceed with the project in June 2011.
    [Show full text]
  • John Castle's Story
    MY ‘O’ GAUGE STORY JOHN CASTLE Canham Junction track and wiring diagram Canham Junction and the Tilbrook branch are privately owned and are sited in a 20ft x 14ft shed across a 14ft roadway opposite the club room. The two sheds are connected by a removable bridging piece in two sections. These sections are covered against the weather, which can be very wet and windy. The double track line enters at one end under Canham station road over bridge and leaves the other end under a three arch bridge over which a narrow country lane passes to Tilbrook. The branch leaves the main line and swings to the left, under another small road bridge, over a small stream and still swinging to the left passes over a level crossing and into the little country terminus of Tilbrook. At Canham there are 2 station shunters a J50 and an F7, and a D49 ‘Derbyshire’ ready to depart with the morning local passenger to the north. At the end of the branch at Tilbrook shed is another D49 ‘Berkshire’ preparing the through parcels to Bath, a push-pull fitted G5 for the 2 coach branch passenger train, a J24 to deal with the 2 goods trains daily each way, and an ex Wisbech & Upwell 0-4-0tramloco’ as a shunter. Tilbrook track and wiring diagram ne Christmas in the middle ’70s, the With the help of two club members, Dennis Peterborough & District Model Railway Ingram & Alan Rawson I started a J-50. Alan OClub gave me three 3H wagon kits, a was very meticulous with his modelling, and all, three plank open, a five plank open and a seven and I mean all excess solder had to be removed, plank mineral plus a yard of Peco track.
    [Show full text]
  • Railway Traffic Management: Meet and Pass Problem
    Journal of System and Management Sciences Vol.1 No.1, Dec. 2011 Railway Traffic Management: Meet and Pass Problem Pedro A. Afonso, Carlos F. Bispo Instituto de Sistemas e Rob´otica, Instituto Superior T´ecnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal [email protected], [email protected] Abstract With the growing interest in the railway sector, mainly because of energetic reasons, there is also a need to increase the efficiency of the railway lines. One way to optimize this sector is to improve quality in the train control process itself. Nowadays, train dispatching is still mostly done by human operators that use elementary tools and thereby solving conflicts sub-optimally. Motivated by these factors, this report presents a model capable of detecting and solving conflicts, for single track railways. More specifically, this model proposes two resolutions methods: a heuristic resolution and a search for the optimal solution. To evaluate the quality of the developed model, several tests were made, obtaining encouraging results. These results showed that it is possible to solve conflicts optimally or near optimally, in a feasible amount of time. This program comes with a graphic interface so that the interaction with the dispatcher can be more user friendly. The major novelties of this work regard the improvement on the conflict detection process, the introduction of capacity conflicts, and the creation of several parameters to adjust the search for the optimal solution. Keywords: Re-scheduling, Single Track, Railway, Meet and Pass, Train, Conflict, Decision Support System. 1. Introduction The railway industry plays a vital role in many countries.
    [Show full text]