Ices S Sym Mposiu Um
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Marine Mammals Around Marine Renewable Energy Devices Using Active Sonar
TRACKING MARINE MAMMALS AROUND MARINE RENEWABLE ENERGY DEVICES USING ACTIVE SONAR GORDON HASTIE URN: 12D/328: 31 JULY 2013 This document was produced as part of the UK Department of Energy and Climate Change's offshore energy Strategic Environmental Assessment programme © Crown Copyright, all rights reserved. 1 SMRU Limited New Technology Centre North Haugh ST ANDREWS Fife KY16 9SR www.smru.co.uk Switch: +44 (0)1334 479100 Fax: +44 (0)1334 477878 Lead Scientist: Gordon Hastie Scientific QA: Carol Sparling Date: Wednesday, 31 July 2013 Report code: SMRUL-DEC-2012-002.v2 This report is to be cited as: Hastie, G.D. (2012). Tracking marine mammals around marine renewable energy devices using active sonar. SMRU Ltd report URN:12D/328 to the Department of Energy and Climate Change. September 2012 (unpublished). Approved by: Jared Wilson Operations Manager1 1 Photo credit (front page): R Shucksmith (www.rshucksmith.co.uk) 2 TABLE OF CONTENTS Table of Contents ----------------------------------------------------------------------------------------------------------------------------------------- 3 Table of Figures ------------------------------------------------------------------------------------------------------------------------------------------- 5 1. Non technical summary --------------------------------------------------------------------------------------------------------------------- 9 2. Introduction ----------------------------------------------------------------------------------------------------------------------------------- 12 -
Single Particle Analysis of Particulate Pollutants in Yellowstone National Park During the Winter Snowmobile Season
SINGLE PARTICLE ANALYSIS OF PARTICULATE POLLUTANTS IN YELLOWSTONE NATIONAL PARK DURING THE WINTER SNOWMOBILE SEASON. Richard E. Peterson* and Bonnie J. Tyler** * Dept. of Chemistry and Biochemistry **Dept. of Chemical Engineering Montana State University, Bozeman, MT 59717, USA [email protected] Introduction: Particulate, or aerosol, pollution is a complex mixture of organic and inorganic compounds which includes a wide range of sizes and whose composition can vary widely depending on the time of year, geographical location, and both local and long range sources. Aerosol are important because of participation in atmospheric electricity, absorption and scattering of radiation (i.e. sunlight and thus affecting climate and visibility), their role as condensation nuclei for water vapor (and thus affecting precipitation chemistry and pH), and health effects. Particles greater than 2 micrometers in diameter (coarse) are generally formed by mechanical processes while smaller particles (fine) are formed by gas to particle conversion and accumulation/coagulation of these smallest aerosol. Because particles smaller than 2.5 micrometers (USEPA PM2.5) can become trapped deep in the lungs, it is of particular interest to identify toxic substances, such as heavy metals and polyaromatic hydrocarbons, that may be present in particles of this size range. Epidemiological studies have typically used particle size as the metric for identifying adverse health effects of particulate matter (PM), largely because data on PM size is available. Data on particle composition or other characteristics are less well known, if known at all in many cases. We are evaluating the potential for using Time of Flight Secondary Ion Mass Spectroscopy (TOF-SIMS) to study the composition of single particles from atmospheric aerosol. -
Linking Mesopelagic Prey Abundance and Distribution to the Foraging
Deep–Sea Research Part II 140 (2017) 163–170 Contents lists available at ScienceDirect Deep–Sea Research II journal homepage: www.elsevier.com/locate/dsr2 Linking mesopelagic prey abundance and distribution to the foraging MARK behavior of a deep-diving predator, the northern elephant seal ⁎ Daisuke Saijoa,1, Yoko Mitanib,1, , Takuzo Abec,2, Hiroko Sasakid, Chandra Goetsche, Daniel P. Costae, Kazushi Miyashitab a Graduate School of Environmental Science, Hokkaido University, 20-5 Bentencho, Hakodate, Hokkaido 040-0051, Japan b Field Science Center for Northern Biosphere, Hokkaido University, 20-5 Bentencho, Hakodate, Hokkaido 040-0051, Japan c School of Fisheries Science, Hokkaido University, 3-1-1 Minato cho, Hakodate, Hokkaido 041-8611, Japan d Arctic Environment Research Center, National Institute of Polar Research, 10-3, Midori-cho, Tachikawa, Tokyo 190-8518, Japan e Department of Ecology & Evolutionary Biology, University of California, Santa Cruz, CA 95060, United States ARTICLE INFO ABSTRACT Keywords: The Transition Zone in the eastern North Pacific is important foraging habitat for many marine predators. Deep-scattering layer Further, the mesopelagic depths (200–1000 m) host an abundant prey resource known as the deep scattering Transition Zone layer that supports deep diving predators, such as northern elephant seals, beaked whales, and sperm whales. fi mesopelagic sh Female northern elephant seals (Mirounga angustirostris) undertake biannual foraging migrations to this myctophid region where they feed on mesopelagic fish and squid; however, in situ measurements of prey distribution and subsurface chlorophyll abundance, as well as the subsurface oceanographic features in the mesopelagic Transition Zone are limited. While concurrently tracking female elephant seals during their post-molt migration, we conducted a ship-based oceanographic and hydroacoustic survey and used mesopelagic mid-water trawls to sample the deep scattering layer. -
Scruise Report R/V Roger Revelle Cruise RR0901 10 January 2009 To
SCruise Report R/V Roger Revelle Cruise RR0901 10 January 2009 to 24 February 2009 Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean DIMES Cruise US1 Deployment Cruise Chief Scientist James R. Ledwell Woods Hole Oceanographic Institution [email protected] Brian Guest, Leah Houghton, and Cynthia Sellers Woods Hole Oceanographic Institution Stewart C. Sutherland Lamont-Doherty Earth Observatory Peter Lazarevich and Nicolas Wienders Florida State University Ryan Abernathey and Cimarron J. L. Wortham Massachusetts Institution of Technology Byron Kilbourne University of Washington Magdalena Carranza and Uriel Zajaczkovski University of Buenos Aires Jonathan Meyer and Meghan K. Donohue Scripps Institution of Oceanography 2 November 2012 Acknowledgements Captain David Murline and the crew of R/V Roger Revelle provided excellent and steadfast support during this cruise. The marine operations and science support groups at Scripps Institution of Oceanography were thorough, professional and helpful, especially Jonathan Meyer and Meghan Donohue, the marine technicians on the cruise. Lawrence Anderson, Valery Kosneyrev, and Dennis McGillicuddy at the Woods Hole Oceanographic Institution helped enormously by calculating and sending estimates, including animations, of sea surface height from AVISO satellite altimetry data. Marjorie Parmenter, also of Woods Hole Oceanographic Institution, provided editorial assistance for this report. Funding for the project is from the National Science Foundation, Grants OCE 0622825 and OCE 1232962. ii -
Echosounders
The Pathway A program for regulatory certainty for instream tidal energy projects Report Scientific Echosounder Review for In-Stream Tidal Turbines Principle Investigators Dr. John Horne August 2019 Scientific-grade echosounders are a standard tool in fisheries science and have been used for monitoring the interactions of fish with tidal energy turbines in various high flow environments around the world. Some of the physical features of the Minas Passage present unique challenges in using echosounders for monitoring in this environment (e.g., entrained air and suspended sediment in the water column), but have helped to identify hydroacoustic technologies that are better suited than others for achieving monitoring goals. John Horne’s report and presentation will present a overview of echosounders and associated software that are currently available for monitoring fish in high-flow environments, and identify those that are prime candidates for monitoring tidal energy turbines in the Minas Passage. This project is part of “The Pathway Program” – a joint initiative between the Offshore Energy Research Association of Nova Scotia (OERA) and the Fundy Ocean Research Center for Energy (FORCE) to establish a suite of environmental monitoring technologies that provide regulatory certainty for tidal energy development in Nova Scotia. Final Report: Scientific Echosounder Review for In-Stream Tidal Turbines Prepared for: Offshore Energy Research Association of Nova Scotia Prepared by: John K Horne, University of Washington Service agreement: 190606 Date submitted: August 2019 Objectives: The overall goal of this exercise is to evaluate features and performance of current and future scientific echosounders that could be used for biological monitoring at in-stream tidal turbine sites. -
Censusing Non-Fish Nekton
WORKSHOP SYNOPSIS Censusing Non-Fish Nekton Carohln Levi, Gregory Stone and Jerry R. Schubel New England Aquarium ° Boston, Massachusetts USA his is a brief summary of a "Non-Fish SUMMARIES OF WORKING GROUPS Nekton" workshop held on 10-11 December 1997 at the New England Aquarium. The overall goals Cephalopods were: (1) to assess the feasibility of conducting a census New higher-level taxa are yet to be discovered, of life in the sea, (2) to identify the strategies and especially among coleoid cephalopods, which are components of such a census, (3) to assess whether a undergoing rapid evolutionary radiation. There are periodic census would generate scientifically worth- great gaps in natural history and ecosystem function- while results, and (4) to determine the level of interest ing, with even major commercial species largely of the scientific community in participating in the unknown. This is particularly, complex, since these design and conduct of a census of life in the sea. short-lived, rapidly growing animals move up through This workshop focused on "non-fish nekton," which trophic levels in a single season. were defined to include: marine mammals, marine reptiles, cephalopods and "other invertebrates." During . Early consolidation of existing cephalopod data is the course of the workshop, it was suggested that a needed, including the vast literatures in Japanese more appropriate phase for "other invertebrates" is and Russian. Access to and evaluation of historical invertebrate micronekton. Throughout the report we survey, catch, biological and video image data sets have used the latter terminology. and collections is needed. An Internet-based reposi- Birds were omitted only because of lack of time. -
Guidance for Using Continuous Monitors in Pm Monitoring
United States Office of Air Quality EPA-454/R-98-012 Environmental Protection Planning and Standards May 1998 Agency Research Triangle Park, NC 27711 Air GUIDANCE FOR USING CONTINUOUS MONITORS IN PM2.5 MONITORING NETWORKS GUIDANCE FOR USING CONTINUOUS MONITORS IN PM2.5 MONITORING NETWORKS May 29, 1998 PREPARED BY John G. Watson1 Judith C. Chow1 Hans Moosmüller1 Mark Green1 Neil Frank2 Marc Pitchford3 PREPARED FOR Office of Air Quality Planning and Standards U.S. Environmental Protection Agency Research Triangle Park, NC 27711 1Desert Research Institute, University and Community College System of Nevada, PO Box 60220, Reno, NV 89506 2U.S. EPA/OAQPS, Research Triangle Park, NC, 27711 3National Oceanic and Atmospheric Administration, 755 E. Flamingo, Las Vegas, NV 89119 DISCLAIMER The development of this document has been funded by the U.S. Environmental Protection Agency, under cooperative agreement CX824291-01-1, and by the Desert Research Institute of the University and Community College System of Nevada. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. This draft has not been subject to the Agency’s peer and administrative review, and does not necessarily represent Agency policy or guidance. ii ABSTRACT This guidance provides a survey of alternatives for continuous in-situ measurements of suspended particles, their chemical components, and their gaseous precursors. Recent and anticipated advances in measurement technology provide reliable and practical instruments for particle quantification over averaging times ranging from minutes to hours. These devices provide instantaneous, telemetered results and can use limited manpower more efficiently than manual, filter-based methods. -
Meridional Patterns in the Deep Scattering Layers and Top Predator Distribution in the Central Equatorial Pacific
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Publications, Agencies and Staff of the U.S. Department of Commerce U.S. Department of Commerce 2010 Meridional patterns in the deep scattering layers and top predator distribution in the central equatorial Pacific Elliott L. Hazen NOAA SWFSC Pacific Fisheries Environmental Lab, [email protected] David W. Johnston Duke University Marine Lab, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/usdeptcommercepub Part of the Environmental Sciences Commons Hazen, Elliott L. and Johnston, David W., "Meridional patterns in the deep scattering layers and top predator distribution in the central equatorial Pacific" (2010). Publications, Agencies and Staff of the U.S. Department of Commerce. 275. https://digitalcommons.unl.edu/usdeptcommercepub/275 This Article is brought to you for free and open access by the U.S. Department of Commerce at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Publications, Agencies and Staff of the U.S. Department of Commerce by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. FISHERIES OCEANOGRAPHY Fish. Oceanogr. 19:6, 427–433, 2010 SHORT COMMUNICATION Meridional patterns in the deep scattering layers and top predator distribution in the central equatorial Pacific ELLIOTT L. HAZEN1,2,* AND DAVID W. component towards understanding the behavior and JOHNSTON1 distribution of highly migratory predator species. 1 Division of Marine -
Blue-Sea Thinking
TECHNOLOGY QUARTERLY March 10th 2018 OCEAN TECHNOLOGY Blue-sea thinking 20180310_TQOceanTechnology.indd 1 28/02/2018 14:26 TECHNOLOGY QUARTERLY Ocean technology Listening underwater Sing a song of sonar Technology is transforming the relationship between people and the oceans, says Hal Hodson N THE summer of 1942, as America’s Pacific has always been. The subsurface ocean is inhospitable fleet was sluggingit out at the battle ofMidway, to humans and their machines. Salt water corrodes ex- the USS Jasper, a coastal patrol boat, was float- posed mechanisms and absorbs both visible light and ALSO IN THIS TQ ing 130 nautical miles (240km) off the west radio waves—thus ruling out radar and long-distance UNDERSEA MINING coast of Mexico, listening to the sea below. It communication. The lack of breathable oxygen se- Race to the bottom was alive with sound: “Some fish grunt, others verely curtails human visits. The brutal pressure Iwhistle or sing, and some just grind their teeth,” reads makes its depths hard to access at all. FISH FARMING the ship’s log. The discovery of the deep scattering layer was a Net gains The Jasper did not just listen. She sang her own landmark in the use of technology to get around these song to the sea—a song of sonar. Experimental equip- problems. It was also a by-blow. The Jasperwas not out MILITARY ment on board beamed chirrups of sound into the there looking for deepwater plankton; it was working APPLICATIONS depths and listened for their return. When they came out how to use sonar (which stands forSound Naviga- Mutually assured back, they gave those on board a shock. -
Nearshore Benthic Habitat Mapping Based On
Article Nearshore Benthic Habitat Mapping Based on Multi-Frequency, Multibeam Echosounder Data Using a Combined Object-Based Approach: A Case Study from the Rowy Site in the Southern Baltic Sea Lukasz Janowski 1,*, Karolina Trzcinska 1, Jaroslaw Tegowski 1, Aleksandra Kruss 1, Maria Rucinska-Zjadacz 1 and Pawel Pocwiardowski 2 1 Institute of Oceanography, University of Gdansk, al. Marszalka Pilsudskiego 46, 81-378 Gdynia, Poland; [email protected] (K.T.); [email protected] (J.T.); [email protected] (A.K.); [email protected] (M.R.-Z.) 2 NORBIT-Poland Sp. z o.o., al. Niepodleglosci 813-815/24, 81-810 Sopot, Poland; [email protected] * Correspondence: [email protected] or [email protected]; Tel.: +48-58-523-6820 Received: 29 October 2018; Accepted: 4 December 2018; Published: 7 December 2018 Abstract: Recently, the rapid development of the seabed mapping industry has allowed researchers to collect hydroacoustic data in shallow, nearshore environments. Progress in marine habitat mapping has also helped to distinguish the seafloor areas of varied acoustic properties. As a result of these new developments, we have collected a multi-frequency, multibeam echosounder dataset from the valuable nearshore environment of the southern Baltic Sea using two frequencies: 150 kHz and 400 kHz. Despite its small size, the Rowy area is characterized by diverse habitat conditions and the presence of red algae, unique on the Polish coast of the Baltic Sea. This study focused on the utilization of multibeam bathymetry and multi-frequency backscatter data to create reliable maps of the seafloor. -
The Development of SONAR As a Tool in Marine Biological Research in the Twentieth Century
Hindawi Publishing Corporation International Journal of Oceanography Volume 2013, Article ID 678621, 9 pages http://dx.doi.org/10.1155/2013/678621 Review Article The Development of SONAR as a Tool in Marine Biological Research in the Twentieth Century John A. Fornshell1 and Alessandra Tesei2 1 National Museum of Natural History, Department of Invertebrate Zoology, Smithsonian Institution, Washington, DC, USA 2 AGUAtech, Via delle Pianazze 74, 19136 La Spezia, Italy Correspondence should be addressed to John A. Fornshell; [email protected] Received 3 June 2013; Revised 16 September 2013; Accepted 25 September 2013 Academic Editor: Emilio Fernandez´ Copyright © 2013 J. A. Fornshell and A. Tesei. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The development of acoustic methods for measuring depths and ranges in the ocean environment began in the second decade of the twentieth century. The two world wars and the “Cold War” produced three eras of rapid technological development in the field of acoustic oceanography. By the mid-1920s, researchers had identified echoes from fish, Gadus morhua, in the traces from their echo sounders. The first tank experiments establishing the basics for detection of fish were performed in 1928. Through the 1930s, the use of SONAR as a means of locating schools of fish was developed. The end of World War II was quickly followed by the advent of using SONAR to track and hunt whales in the Southern Ocean and the marketing of commercial fish finding SONARs for use by commercial fisherman. -
Seabed Mapping Using Multibeam Sonar and Combining with Former Bathymetric Data a Thesis Submitted to the Graduate School Of
SEABED MAPPING USING MULTIBEAM SONAR AND COMBINING WITH FORMER BATHYMETRIC DATA A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY BY FATİH FURKAN GÜRTÜRK IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN ELECTRICAL AND ELECTRONIC ENGINEERING DECEMBER 2015 ii Approval of the thesis: SEABED MAPPING USING MULTIBEAM SONAR AND COMBINING WITH FORMER BATHYMETRIC DATA submitted by FATİH FURKAN GÜRTÜRK in partial fulfillment of the requirements for the degree of Master of Science in Electrical and Electronics Engineering Department, Middle East Technical University by, Prof. Dr. Gülbin Dural Ünver _______________ Dean, Graduate School of Natural and Applied Sciences Prof. Dr. Gönül Turhan Sayan _______________ Head of Department, Electrical and Electronics Engineering Prof. Dr. Kemal Leblebicioğlu _______________ Supervisor, Electrical and Electronics Engineering Dept., METU Examining Committee Members: Prof. Dr. Tolga Çiloğlu _______________ Electrical and Electronics Engineering Dept., METU Prof. Dr. Kemal Leblebicioğlu _______________ Electrical and Electronics Engineering Dept., METU Assoc. Prof. Dr. Çağatay Candan _______________ Electrical and Electronics Engineering Dept., METU Assist. Prof. Dr. Elif Vural _______________ Electrical and Electronics Engineering Dept., METU Assist. Dr. Yakup Özkazanç _______________ Electrical and Electronics Engineering Dept., Hacettepe Uni. Date: _______________ iii I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work. Name, Last name : Fatih Furkan, Gürtürk Signature : iv ABSTRACT SEABED MAPPING USING MULTIBEAM SONAR AND COMBINING WITH FORMER BATHYMETRIC DATA Gürtürk, Fatih Furkan M.S., Department of Electrical and Electronic Engineering Supervisor: Prof.