Flora and Fauna of Wollongong Campus

Total Page:16

File Type:pdf, Size:1020Kb

Flora and Fauna of Wollongong Campus Flora and Fauna of Wollongong Campus University of Wollongong Facilities Management Division Prepared by Alison Scobie Environmental Officer, Facilities Management Division Assistance from Mark Haining, Landscape Supervisor, Anthony Wardle Landscape Horticulture and Fauna, Aaron McGrath and Melanie Foster, Landscape Team Leader, Facilities Management Division Approved by: David Low Senior Manager Environment, Facilities Management Division Contents 1.0 Introduction .............................................................................................................................................................................. 3 2.0 Background .............................................................................................................................................................................. 4 3.0 Fauna Species........................................................................................................................................................................... 5 3.1 Bird species .............................................................................................................................................................................. 5 Table 3.1 Bird species .......................................................................................................................................................... 5 3.2 Amphibian species ................................................................................................................................................................... 9 Table 3.2: Amphibian species ....................................................................................................................................................... 9 3.3 Reptile species ......................................................................................................................................................................... 9 Table 3.3: Reptile species ............................................................................................................................................................. 9 3.4 Mammal species ..................................................................................................................................................................... 10 Table 3.4: Mammal species ........................................................................................................................................................ 10 3.5 Fish and crustacean species .................................................................................................................................................... 11 Table 3.5: Fish and crustacean species........................................................................................................................................ 11 3.6 Introduced and pest fauna species .......................................................................................................................................... 11 Table 3.6: Introduced and pest fauna species .............................................................................................................................. 11 3.7 Threatened fauna species (known to occur on site) ................................................................................................................ 13 Table 3.7: Threatened fauna species (known to occur on site) .................................................................................................... 13 3.8 Threatened fauna species (that potentially occur or visit the site) .......................................................................................... 15 Table 3.8: Threatened fauna species (that potentially occur or visit the site) .............................................................................. 15 4.0 Flora Species .......................................................................................................................................................................... 16 4.1 Native flora species ................................................................................................................................................................ 16 Table 4.1 Native flora species............................................................................................................................................. 16 4.2 Threatened flora species ......................................................................................................................................................... 33 4.3 Threatened flora species ............................................................................................................................................... 33 4.3 Weed and introduced flora species ......................................................................................................................................... 33 4.3 Weed and introduced flora species ............................................................................................................................... 33 5.0 References .............................................................................................................................................................................. 39 2 | FLORA AND FAUNA OF THE WOLLONGONG CAMPUS 1.0 Introduction Wollongong Campus occupies a site of 82.4 hectares beside the escarpment of Mount Keira. The campus now occupies what was once a cleared farm. Before it was cleared for farming it would have contained rainforest as well as moist and dry sclerophyll forest. When the University first commenced building on the site in 1962 there was very little vegetation present. Existing vegetation was located in the riparian corridors and on the escarpment as well as a few isolated trees. In the 1970s the University commenced transforming the site by planting local native species. Approximately 50,000 trees and shrubs have been planted on campus since 1975. Ponds and water features have also been built. The campus has two management zones: Landscaped areas and Natural areas refer to Figure 1. The landscaped areas are located within the built areas of the campus and contain lawns, sport fields as well as the managed gardens. The natural areas are the riparian corridors and the escarpment lands that contain the remnant vegetation that was present onsite before the University was built. Figure 1 Campus Landscape Management Zones (red shading natural areas, blue shading landscaped areas) This document outlines the flora and fauna species that are known or potentially occur on the Wollongong Campus and associated habitat information and threatening processes. This document should be considered as a starting point for understanding biodiversity and ecological values and 3 | FLORA AND FAUNA OF THE WOLLONGONG CAMPUS issues on the campus. It has been prepared based on desktop review and should not be used as the sole basis for decision making. 2.0 Background Biodiversity conservation and protection is outlined in National and State level legislation and a range of policies, plans and agreements exist at all levels of government. The following summary has been prepared to provide context to the status of the species listed in Section 3 and 4 of this document. At a national level is the Commonwealth Environmental Protection and Biodiversity Conservation Act 1999 (EPBC Act) outlines approval and assessment requirements for activities that impact on matters of national environmental significance. These matters include threatened species and endangered communities, migratory species listed in international agreements (JAMBA, CAMBA, ROKAMBA) as well as places such as World Heritage Places and Marine Areas. At a state level the Biodiversity Conservation Act 2016 (BC Act) and the Fisheries Management Act 1994 (FM Act) identify threatened species, communities and populations, critical habitat. This legislation also outlines mechanisms for managing and protecting them such as recovery plans, priority action statements and threat abatement plans. Key Threatening Processes (KTPs) are also listed. Threatened species and community listings in NSW and the Commonwealth are based on the best practice standard developed by the International Union for Conservation of Nature (IUCN), as used to create the Red List of Threatened Species, with some amendments to suit the Australian context using IUCN criteria. The IUCN Red List of Threatened Species is a critical indicator of the health of the world’s biodiversity. It is also important to note that all native flora and fauna is protected under the NSW Biodiversity Conservation Act 2016 (BC Act). The Intergovernmental Agreement on Biosecurity, or IGAB, (Council of Australian Governments 2012) is an agreement between the Commonwealth, State and Territory governments (with the exception of Tasmania) that aims to improve shared management of risks posed by pests and diseases entering, emerging, establishing or spreading in Australia. The Australian Pest Animal Strategy 2017 -2027 and the Australian Weeds Strategy 2017-2027 outline the framework for managing weeds and pests in Australia. In NSW weeds and pest animals are managed under the NSW Biosecurity Act 2015. A biosecurity risk exists where weed or pest has the potential to negatively impact on agriculture, industry, the liveability of our city, human health or the environment. Landowners or land managers have a general biosecurity duty to prevent,
Recommended publications
  • Toward a Resolution of Campanulid Phylogeny, with Special Reference to the Placement of Dipsacales
    TAXON 57 (1) • February 2008: 53–65 Winkworth & al. • Campanulid phylogeny MOLECULAR PHYLOGENETICS Toward a resolution of Campanulid phylogeny, with special reference to the placement of Dipsacales Richard C. Winkworth1,2, Johannes Lundberg3 & Michael J. Donoghue4 1 Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Caixa Postal 11461–CEP 05422-970, São Paulo, SP, Brazil. [email protected] (author for correspondence) 2 Current address: School of Biology, Chemistry, and Environmental Sciences, University of the South Pacific, Private Bag, Laucala Campus, Suva, Fiji 3 Department of Phanerogamic Botany, The Swedish Museum of Natural History, Box 50007, 104 05 Stockholm, Sweden 4 Department of Ecology & Evolutionary Biology and Peabody Museum of Natural History, Yale University, P.O. Box 208106, New Haven, Connecticut 06520-8106, U.S.A. Broad-scale phylogenetic analyses of the angiosperms and of the Asteridae have failed to confidently resolve relationships among the major lineages of the campanulid Asteridae (i.e., the euasterid II of APG II, 2003). To address this problem we assembled presently available sequences for a core set of 50 taxa, representing the diver- sity of the four largest lineages (Apiales, Aquifoliales, Asterales, Dipsacales) as well as the smaller “unplaced” groups (e.g., Bruniaceae, Paracryphiaceae, Columelliaceae). We constructed four data matrices for phylogenetic analysis: a chloroplast coding matrix (atpB, matK, ndhF, rbcL), a chloroplast non-coding matrix (rps16 intron, trnT-F region, trnV-atpE IGS), a combined chloroplast dataset (all seven chloroplast regions), and a combined genome matrix (seven chloroplast regions plus 18S and 26S rDNA). Bayesian analyses of these datasets using mixed substitution models produced often well-resolved and supported trees.
    [Show full text]
  • List of Frost Suceptable Native Species
    1 FROST HARDINESS Some people have attempted to make a rudimentary assessment of frost hardy species as illustrated in the table below. Following the severe frosts of 27-7-07, Initial observations are on the foliage “burn” and it remains to be seen whether the stems/trunks die or merely re-shoot. Note: * = Exotic; # = Not native to the area; D = dead; S = survived but only just e.g. sprouting lower down; R = recovering well Very Susceptible Species Common Name Notes Alphitonia excelsa red ash R Alphitonia petriei pink ash R Annona reticulata custard apple S Archontophoenix alexandrae# Alexander palm D, R Asplenium nidus bird’s nest fern R,S Beilschmiedia obtusifolia blush walnut Calliandra spp.* S,R Cassia brewsteri Brewster’s cassia R Cassia javanica* S Cassia siamea* S Citrus hystrix* Kaffir lime S,D Clerodendrum floribundum lolly bush R,S Colvillea racemosa* Colville’s glory R Commersonia bartramia brown kurrajong S,R Cordyline petiolaris tree lily R Cyathea australis common treefern R Delonix regia* R Elaeocarpus grandis silver quandong D,S Eugenia reinwardtiana beach cherry S Euroschinus falcata pink poplar, mangobark, R ribbonwood, blush cudgerie Ficus benjamina* weeping fig S Ficus obliqua small-leaved fig S Flindersia bennettiana Bennett’s ash Harpullia pendula tulipwood R Harpullia hillii blunt-leaved tulipwood Hibiscus heterophyllus native hibiscus S Jagera pseudorhus pink foambark R Khaya anthotheca* E African mahogany R Khaya senegalensis* W African mahogany R Koelreuteria paniculata* Chinese golden shower tree R Lagerstroemia
    [Show full text]
  • The Native Vegetation of the Nattai and Bargo Reserves
    The Native Vegetation of the Nattai and Bargo Reserves Project funded under the Central Directorate Parks and Wildlife Division Biodiversity Data Priorities Program Conservation Assessment and Data Unit Conservation Programs and Planning Branch, Metropolitan Environmental Protection and Regulation Division Department of Environment and Conservation ACKNOWLEDGMENTS CADU (Central) Manager Special thanks to: Julie Ravallion Nattai NP Area staff for providing general assistance as well as their knowledge of the CADU (Central) Bioregional Data Group area, especially: Raf Pedroza and Adrian Coordinator Johnstone. Daniel Connolly Citation CADU (Central) Flora Project Officer DEC (2004) The Native Vegetation of the Nattai Nathan Kearnes and Bargo Reserves. Unpublished Report. Department of Environment and Conservation, CADU (Central) GIS, Data Management and Hurstville. Database Coordinator This report was funded by the Central Peter Ewin Directorate Parks and Wildlife Division, Biodiversity Survey Priorities Program. Logistics and Survey Planning All photographs are held by DEC. To obtain a Nathan Kearnes copy please contact the Bioregional Data Group Coordinator, DEC Hurstville Field Surveyors David Thomas Cover Photos Teresa James Nathan Kearnes Feature Photo (Daniel Connolly) Daniel Connolly White-striped Freetail-bat (Michael Todd), Rock Peter Ewin Plate-Heath Mallee (DEC) Black Crevice-skink (David O’Connor) Aerial Photo Interpretation Tall Moist Blue Gum Forest (DEC) Ian Roberts (Nattai and Bargo, this report; Rainforest (DEC) Woronora, 2003; Western Sydney, 1999) Short-beaked Echidna (D. O’Connor) Bob Wilson (Warragamba, 2003) Grey Gum (Daniel Connolly) Pintech (Pty Ltd) Red-crowned Toadlet (Dave Hunter) Data Analysis ISBN 07313 6851 7 Nathan Kearnes Daniel Connolly Report Writing and Map Production Nathan Kearnes Daniel Connolly EXECUTIVE SUMMARY This report describes the distribution and composition of the native vegetation within and immediately surrounding Nattai National Park, Nattai State Conservation Area and Bargo State Conservation Area.
    [Show full text]
  • Brooklyn, Cloudland, Melsonby (Gaarraay)
    BUSH BLITZ SPECIES DISCOVERY PROGRAM Brooklyn, Cloudland, Melsonby (Gaarraay) Nature Refuges Eubenangee Swamp, Hann Tableland, Melsonby (Gaarraay) National Parks Upper Bridge Creek Queensland 29 April–27 May · 26–27 July 2010 Australian Biological Resources Study What is Contents Bush Blitz? Bush Blitz is a four-year, What is Bush Blitz? 2 multi-million dollar Abbreviations 2 partnership between the Summary 3 Australian Government, Introduction 4 BHP Billiton and Earthwatch Reserves Overview 6 Australia to document plants Methods 11 and animals in selected properties across Australia’s Results 14 National Reserve System. Discussion 17 Appendix A: Species Lists 31 Fauna 32 This innovative partnership Vertebrates 32 harnesses the expertise of many Invertebrates 50 of Australia’s top scientists from Flora 62 museums, herbaria, universities, Appendix B: Threatened Species 107 and other institutions and Fauna 108 organisations across the country. Flora 111 Appendix C: Exotic and Pest Species 113 Fauna 114 Flora 115 Glossary 119 Abbreviations ANHAT Australian Natural Heritage Assessment Tool EPBC Act Environment Protection and Biodiversity Conservation Act 1999 (Commonwealth) NCA Nature Conservation Act 1992 (Queensland) NRS National Reserve System 2 Bush Blitz survey report Summary A Bush Blitz survey was conducted in the Cape Exotic vertebrate pests were not a focus York Peninsula, Einasleigh Uplands and Wet of this Bush Blitz, however the Cane Toad Tropics bioregions of Queensland during April, (Rhinella marina) was recorded in both Cloudland May and July 2010. Results include 1,186 species Nature Refuge and Hann Tableland National added to those known across the reserves. Of Park. Only one exotic invertebrate species was these, 36 are putative species new to science, recorded, the Spiked Awlsnail (Allopeas clavulinus) including 24 species of true bug, 9 species of in Cloudland Nature Refuge.
    [Show full text]
  • Bruxner Park Flora Reserve Working Plan
    Bruxner Park Flora Reserve Working Plan Working Plan for Bruxner Park Flora Reserve No 3 Upper North East Forest Agreement Region North East Region Contents Page 1. DETAILS OF THE RESERVE 2 1.1 Introduction 2 1.2 Location 2 1.3 Key Attributes of the Reserve 2 1.4 General Description 2 1.5 History 6 1.6 Current Usage 8 2. SYSTEM OF MANAGEMENT 9 2.1 Objectives of Management 9 2.2 Management Strategies 9 2.3 Management Responsibility 11 2.4 Monitoring, Reporting and Review 11 3. LIST OF APPENDICES 11 Appendix 1 Map 1 Locality Appendix 1 Map 2 Cadastral Boundaries, Forest Types and Streams Appendix 1 Map 3 Vegetation Growth Stages Appendix 1 Map 4 Existing Occupation Permits and Recreation Facilities Appendix 2 Flora Species known to occur in the Reserve Appendix 3 Fauna records within the Reserve Y:\Tourism and Partnerships\Recreation Areas\Orara East SF\Bruxner Flora Reserve\FlRWP_Bruxner.docx 1 Bruxner Park Flora Reserve Working Plan 1. Details of the Reserve 1.1 Introduction This plan has been prepared as a supplementary plan under the Nature Conservation Strategy of the Upper North East Ecologically Sustainable Forest Management (ESFM) Plan. It is prepared in accordance with the terms of section 25A (5) of the Forestry Act 1916 with the objective to provide for the future management of that part of Orara East State Forest No 536 set aside as Bruxner Park Flora Reserve No 3. The plan was approved by the Minister for Forests on 16.5.2011 and will be reviewed in 2021.
    [Show full text]
  • An Infrageneric Classification of Syzygium (Myrtaceae)
    Blumea 55, 2010: 94–99 www.ingentaconnect.com/content/nhn/blumea RESEARCH ARTICLE doi:10.3767/000651910X499303 An infrageneric classification of Syzygium (Myrtaceae) L.A. Craven1, E. Biffin 1,2 Key words Abstract An infrageneric classification of Syzygium based upon evolutionary relationships as inferred from analyses of nuclear and plastid DNA sequence data, and supported by morphological evidence, is presented. Six subgenera Acmena and seven sections are recognised. An identification key is provided and names proposed for two species newly Acmenosperma transferred to Syzygium. classification molecular systematics Published on 16 April 2010 Myrtaceae Piliocalyx Syzygium INTRODUCTION foreseeable future. Yet there are many rewarding and worthy floristic and other scientific projects that await attention and are Syzygium Gaertn. is a large genus of Myrtaceae, occurring from feasible in the shorter time frame that is a feature of the current Africa eastwards to the Hawaiian Islands and from India and research philosophies of short-sighted institutions. southern China southwards to southeastern Australia and New One impediment to undertaking studies of natural groups of Zealand. In terms of species richness, the genus is centred in species of Syzygium, as opposed to floristic studies per se, Malesia but in terms of its basic evolutionary diversity it appears has been the lack of a framework or context within which a set to be centred in the Melanesian-Australian region. Its taxonomic of species can be the focus of specialised research. Below is history has been detailed in Schmid (1972), Craven (2001) and proposed an infrageneric classification based upon phylogenies Parnell et al. (2007) and will not be further elaborated here.
    [Show full text]
  • Ecological Influences in the Biogeography of the Austral Sedges
    ECOLOGICALINFLUENCESINTHEBIOGEOGRAPHYOFTHE AUSTRALSEDGES jan-adriaan viljoen Dissertation presented in fulfillment of the requirements for the degree MSc in Botany Department of Biological Sciences Faculty of Sciences University of Cape Town UniversityFebruary of2016 Cape Town The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non- commercial research purposes only. Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University of Cape Town Jan-Adriaan Viljoen. Ecological influences in the biogeography of the aus- tral sedges. MSc dissertation. University of Cape Town. Cape Town. February 2016. supervisors: A. Muthama Muasya G. Anthony Verboom ABSTRACT The biogeographic history of a species is a result of both stochastic processes such as dispersal and habitat filters that determine where a population with a given set of biological requirements can become es- tablished. In this dissertation, I examine the geographical and ecolog- ical distribution of the sedge tribe Schoeneae in conjunction with its inferred speciation history in order to determine the pattern of disper- sal and the environmental factors that have influenced establishment. The biogeographic reconstruction indicates numerous transoceanic dispersal events consistent with random diffusion from an Australian point of origin, but with a bias towards habitats with vegetation type and moisture regime similar to the ancestral conditions of the given subgroup (open and dry habitats in the majority of cases). The global distribution of the tribe also suggests a preference for low-nutrient soils, which I investigate at the local (microhabitat) scale by contrast- ing the distributions of the tribes Schoeneae and Cypereae on the Cape Peninsula along soil fertility axes.
    [Show full text]
  • Rehabilitating Shoalhaven Landscapes
    Rehabilitating Shoalhaven Landscapes REHABILITATING SHOALHAVEN LANDSCAPES Garry Daly © Garry Daly 1 Gaia Research Pty Ltd Rehabilitating Shoalhaven Landscapes Copyright © Garry Daly 2012 All intellectual property and copyright reserved. Apart from any fair dealing for the purpose of private study, research, criticism or review, as permitted under the Copyright Act, 1968, no part of this report may be reproduced, transmitted, stored in a retrieval system or adapted in any form or by any means (electronic, mechanical, photocopying, recording or otherwise) without written permission. Enquiries should be addressed to Garry Daly, Director Gaia Research Pty Ltd. Disclaimer The findings of this report are based on the author's analysis and interpretation of survey results. Views and interpretations presented in the report are those of the authors and not necessarily those of other parties. I have compiled this text in good faith, exercising all due care and attention. Shoalhaven Landcare Association Inc does not accept responsibility for any inaccurate or incomplete information supplied by third parties. No representation is made about the accuracy, completeness or suitability of the information in this publication for any particular purpose. We shall not be liable for any damage, which may occur to any person or organisation taking action or not on the basis of this publication. Readers should seek appropriate advice when applying the information to their specific needs. Cover photo: Garry Daly Gaia Research Pty Ltd PO Box 3109 NORTH NOWRA NSW 2541 Email: [email protected] Published by: Shoalhaven Landcare Association Inc 45 Ironbark Rd, Tapitallee NSW 2540 National Library of Australia Cataloguing-in-Publication entry: Daly, G.
    [Show full text]
  • Rare Or Threatened Vascular Plant Species of Wollemi National Park, Central Eastern New South Wales
    Rare or threatened vascular plant species of Wollemi National Park, central eastern New South Wales. Stephen A.J. Bell Eastcoast Flora Survey PO Box 216 Kotara Fair, NSW 2289, AUSTRALIA Abstract: Wollemi National Park (c. 32o 20’– 33o 30’S, 150o– 151oE), approximately 100 km north-west of Sydney, conserves over 500 000 ha of the Triassic sandstone environments of the Central Coast and Tablelands of New South Wales, and occupies approximately 25% of the Sydney Basin biogeographical region. 94 taxa of conservation signiicance have been recorded and Wollemi is recognised as an important reservoir of rare and uncommon plant taxa, conserving more than 20% of all listed threatened species for the Central Coast, Central Tablelands and Central Western Slopes botanical divisions. For a land area occupying only 0.05% of these divisions, Wollemi is of paramount importance in regional conservation. Surveys within Wollemi National Park over the last decade have recorded several new populations of signiicant vascular plant species, including some sizeable range extensions. This paper summarises the current status of all rare or threatened taxa, describes habitat and associated species for many of these and proposes IUCN (2001) codes for all, as well as suggesting revisions to current conservation risk codes for some species. For Wollemi National Park 37 species are currently listed as Endangered (15 species) or Vulnerable (22 species) under the New South Wales Threatened Species Conservation Act 1995. An additional 50 species are currently listed as nationally rare under the Briggs and Leigh (1996) classiication, or have been suggested as such by various workers. Seven species are awaiting further taxonomic investigation, including Eucalyptus sp.
    [Show full text]
  • Evaluating the Conservation Significance of Basin
    Evaluating the conservation significance of basin wetlands within the Avon Natural Resource Management region: Stage Three Assessment Method Susan Jones, Adrian Pinder, Lien Sim and Stuart Halse MAY 2009 1 2 Evaluating the conservation significance of basin wetlands within the Avon Natural Resource Management region: Stage Three Assessment Method May 2009 Prepared by Science Division Department of Environment and Conservation 3 4 Executive summary: Evaluating the conservation significance of basin wetlands within the Avon Natural Resource Management region: Stage Three Assessment Method . Introduction This publication describes a wetland evaluation and classification methodology for use at the individual wetland scale in the Avon Natural Resource Management (NRM) region. A trial of this method at two example wetlands in each biological wetland type is presented in section 6. Table 1 - Form of wetland inventory Form of wetland inventory Methodology Application Identification Delineation Classification √√√ Evaluation √√√ Publication details This methodology has been developed by the Science Division, Department of Environment and Conservation (DEC), Western Australia. The report was written by Susan Jones, Adrian Pinder, Lien Sim and Stuart Halse (DEC). The authors of this document would like to acknowledge the following people for their important contributions: • Members of the Wetland Status Working Group and Wetlands Coordinating Committee • John Lizamore, Danielle Halliday, Cara Francis, Margaret Collins, Anna Leung, Kirsty Quinlan
    [Show full text]
  • Invasion and Management of a Woody Plant, Lantana Camara L., Alters Vegetation Diversity Within Wet Sclerophyll Forest in Southeastern Australia
    University of Wollongong Research Online Faculty of Science - Papers (Archive) Faculty of Science, Medicine and Health 2009 Invasion and management of a woody plant, Lantana camara L., alters vegetation diversity within wet sclerophyll forest in southeastern Australia Ben Gooden University of Wollongong, [email protected] Kris French University of Wollongong, [email protected] Peter J. Turner Department of Environment and Climate Change, NSW Follow this and additional works at: https://ro.uow.edu.au/scipapers Part of the Life Sciences Commons, Physical Sciences and Mathematics Commons, and the Social and Behavioral Sciences Commons Recommended Citation Gooden, Ben; French, Kris; and Turner, Peter J.: Invasion and management of a woody plant, Lantana camara L., alters vegetation diversity within wet sclerophyll forest in southeastern Australia 2009. https://ro.uow.edu.au/scipapers/4953 Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] Invasion and management of a woody plant, Lantana camara L., alters vegetation diversity within wet sclerophyll forest in southeastern Australia Abstract Plant invasions of natural communities are commonly associated with reduced species diversity and altered ecosystem structure and function. This study investigated the effects of invasion and management of the woody shrub Lantana camara (lantana) in wet sclerophyll forest on the south-east coast of Australia. The effects of L. camara invasion and management on resident vegetation diversity and recruitment were determined as well as if invader management initiated community recovery. Vascular plant species richness, abundance and composition were surveyed and compared across L.
    [Show full text]
  • Post-Fire Recovery of Woody Plants in the New England Tableland Bioregion
    Post-fire recovery of woody plants in the New England Tableland Bioregion Peter J. ClarkeA, Kirsten J. E. Knox, Monica L. Campbell and Lachlan M. Copeland Botany, School of Environmental and Rural Sciences, University of New England, Armidale, NSW 2351, AUSTRALIA. ACorresponding author; email: [email protected] Abstract: The resprouting response of plant species to fire is a key life history trait that has profound effects on post-fire population dynamics and community composition. This study documents the post-fire response (resprouting and maturation times) of woody species in six contrasting formations in the New England Tableland Bioregion of eastern Australia. Rainforest had the highest proportion of resprouting woody taxa and rocky outcrops had the lowest. Surprisingly, no significant difference in the median maturation length was found among habitats, but the communities varied in the range of maturation times. Within these communities, seedlings of species killed by fire, mature faster than seedlings of species that resprout. The slowest maturing species were those that have canopy held seed banks and were killed by fire, and these were used as indicator species to examine fire immaturity risk. Finally, we examine whether current fire management immaturity thresholds appear to be appropriate for these communities and find they need to be amended. Cunninghamia (2009) 11(2): 221–239 Introduction Maturation times of new recruits for those plants killed by fire is also a critical biological variable in the context of fire Fire is a pervasive ecological factor that influences the regimes because this time sets the lower limit for fire intervals evolution, distribution and abundance of woody plants that can cause local population decline or extirpation (Keith (Whelan 1995; Bond & van Wilgen 1996; Bradstock et al.
    [Show full text]