Destructive Tsunami-Like Wave Generated by Surf Beat Over a Coral Reef During Typhoon Haiyan
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Two-Soliton Interaction As an Elementary Act of Soliton Turbulence in Integrable Systems
Two-soliton interaction as an elementary act of soliton turbulence in integrable systems E.N. Pelinovsky1,2, E.G. Shurgalina2, A.V. Sergeeva1, T.G. Talipova1, 3 3 G.A. El ∗ and R.H.J. Grimshaw 1 Department of Nonlinear Geophysical Processes, Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia 2 Department of Applied Mathematics, Nizhny Novgorod Technical University, Nizhny Novgorod, Russia 3 Department of Mathematical Sciences, Loughborough University, UK ∗Corresponding author. Tel: +44 1509 222869; Fax: +44 1509 223969; e-mail: [email protected] 1 Abstract Two-soliton interactions play a definitive role in the formation of the structure of soliton turbulence in integrable systems. To quantify the contribution of these interactions to the dynamical and statistical characteristics of the nonlinear wave field of soliton turbulence we study properties of the spatial moments of the two-soliton solution of the Korteweg – de Vries (KdV) equation. While the first two moments are integrals of the KdV evolution, the third and fourth moments undergo significant variations in the dominant interaction region, which could have strong effect on the values of the skewness and kurtosis in soliton turbulence. Keywords: KdV equation, soliton, turbulence 1 Introduction Solitons represent an intrinsic part of nonlinear wave field in weakly dispersive media and their deterministic dynamics in the framework of the Korteweg– de Vries (KdV) equation is understood very well (see e.g.[1, 2, 3]). At the same time, description of statistical properties of a random ensemble of solitons (or a more general problem of the KdV evolution of a random wave field) still remains to a large extent an unsolved problem, especially in the context of concrete physical applications. -
NANOOS Asset List 1 National Oceanic and Atmospheric
NANOOS Asset List 2008 NANOOS Asset List 1 National Oceanic and Atmospheric Administration 1.1 The CoastWatch West Coast Regional Node http://coastwatch.pfel.noaa.gov Daily – Monthly composites of satellite observations Sea Surface Temperature (GOES & POES) Ocean Color (MODIS and SeaWiFS) Ocean Winds (QuikSCAT) 1.2 The National Data Buoy Center http://seaboard.ndbc.noaa.gov/maps/Northwest.shtml 6 Minute – Hourly buoy observations Meteorological Observations (Air Temp., Pressure, Wind Speed and Direction) Ocean Observations (Water Temp., Wave Height, Period and Direction) 1.3 The Center for Operational Oceanographic Products and Services http://tidesandcurrents.noaa.gov http://opendap.co-ops.nos.noaa.gov/content 6 Minute near-shore station observations Meteorological Observations (Air Temp., Pressure, Wind Speed and Direction) Ocean Observations (Water Temp., Water Level) 1.4 NOAAWatch http://www.noaawatch.gov Information related to ongoing environmental events NOAAWatch themes include Air Quality, Droughts, Earthquakes, Excessive Heat, Fire, Flooding, Harmful Algal Blooms (HABs), Oil Spills, Rip Currents, Severe Weather, Space Weather, Tsunamis, and Volcanoes 1.5 National Weather Service http://www.weather.gov Environmental observations and forecasts Coastal and Marine Forecasts Weather Warnings 1 NANOOS Asset List 2008 Surface Pressure Maps Coastal and Marine Observations (Wind, Visibility, Sky Conditions, Temperature, Dew Point, Relative Humidity, Atmospheric Pressure, Pressure tendency) GOES Satellite Observations (Visible, -
Tllllllll:. Journal of Coastal Research, 17(4),919-930
Journal of Coastal Research 919-930 West Palm Beach, Florida Fall 2001 Obliquely Incident Wave Reflection and Runup on Steep Rough Slope Nobuhisa Kobayashi and Entin A. Karjadi Center for Applied Coastal Research University of Delaware Newark, DE 19716 ABSTRACT _ KOBAYASHI, N. and KARJADI, E.A., 2001. Obliquely incident wave reflection and runup on steep rough slope. .tllllllll:. Journal of Coastal Research, 17(4),919-930. West Palm Beach (Florida), ISSN 0749-0208. ~ A two-dimensional, time-dependent numerical model for finite amplitude, shallow-water waves with arbitrary incident eusss~~ angles is developed to predict the detailed wave motions in the vicinity of the still waterline on a slope. The numerical --+4 method and the seaward and landward boundary algorithms are fairly general but the lateral boundary algorithm is b--- limited to periodic boundary conditions. The computed results for surging waves on a rough 1:2.5 slope are presented for the incident wave angles in the range 0-80°. The time-averaged continuity, momentum and energy equations are used to check the accuracy of the numerical model as well as to examine the cross-shore variations of wave setup, return current, longshore current, momentum fluxes, energy fluxes and dissipation rates. The computed reflected waves and waterline oscillations are shown to have the same alongshore wavelength as the specified nonlinear inci dent waves. The computed variations of the reflected wave phase shift and wave runup are shown to be consistent with available empirical formulas. More quantitative comparisons will be required to evaluate the model accuracy. ADDITIONAL INDEX WORDS: Oblique waves, reflection, runup, revetments, breakwaters, wave setup, return current, longshore current. -
Part II-1 Water Wave Mechanics
Chapter 1 EM 1110-2-1100 WATER WAVE MECHANICS (Part II) 1 August 2008 (Change 2) Table of Contents Page II-1-1. Introduction ............................................................II-1-1 II-1-2. Regular Waves .........................................................II-1-3 a. Introduction ...........................................................II-1-3 b. Definition of wave parameters .............................................II-1-4 c. Linear wave theory ......................................................II-1-5 (1) Introduction .......................................................II-1-5 (2) Wave celerity, length, and period.......................................II-1-6 (3) The sinusoidal wave profile...........................................II-1-9 (4) Some useful functions ...............................................II-1-9 (5) Local fluid velocities and accelerations .................................II-1-12 (6) Water particle displacements .........................................II-1-13 (7) Subsurface pressure ................................................II-1-21 (8) Group velocity ....................................................II-1-22 (9) Wave energy and power.............................................II-1-26 (10)Summary of linear wave theory.......................................II-1-29 d. Nonlinear wave theories .................................................II-1-30 (1) Introduction ......................................................II-1-30 (2) Stokes finite-amplitude wave theory ...................................II-1-32 -
Dynamics of Wave Setup Over a Steeply Sloping Fringing Reef
DECEMBER 2015 B U C K L E Y E T A L . 3005 Dynamics of Wave Setup over a Steeply Sloping Fringing Reef MARK L. BUCKLEY AND RYAN J. LOWE School of Earth and Environment, and The Oceans Institute, and ARC Centre of Excellence for Coral Reef Studies, University of Western Australia, Crawley, Western Australia, Australia JEFF E. HANSEN School of Earth and Environment, and The Oceans Institute, University of Western Australia, Crawley, Western Australia, Australia AP R. VAN DONGEREN Unit ZKS, Department AMO, Deltares, Delft, Netherlands (Manuscript received 6 April 2015, in final form 8 September 2015) ABSTRACT High-resolution observations from a 55-m-long wave flume were used to investigate the dynamics of wave setup over a steeply sloping reef profile with a bathymetry representative of many fringing coral reefs. The 16 runs incorporating a wide range of offshore wave conditions and still water levels were conducted using a 1:36 scaled fringing reef, with a 1:5 slope reef leading to a wide and shallow reef flat. Wave setdown and setup observations measured at 17 locations across the fringing reef were compared with a theoretical balance between the local cross-shore pressure and wave radiation stress gradients. This study found that when ra- diation stress gradients were calculated from observations of the radiation stress derived from linear wave theory, both wave setdown and setup were underpredicted for the majority of wave and water level conditions tested. These underpredictions were most pronounced for cases with larger wave heights and lower still water levels (i.e., cases with the greatest setdown and setup). -
Sea State in Marine Safety Information Present State, Future Prospects
Sea State in Marine Safety Information Present State, future prospects Henri SAVINA – Jean-Michel LEFEVRE Météo-France Rogue Waves 2004, Brest 20-22 October 2004 JCOMM Joint WMO/IOC Commission for Oceanography and Marine Meteorology The future of Operational Oceanography Intergovernmental body of technical experts in the field of oceanography and marine meteorology, with a mandate to prepare both regulatory (what Member States shall do) and guidance (what Member States should do) material. TheThe visionvision ofof JCOMMJCOMM Integrated ocean observing system Integrated data management State-of-the-art technologies and capabilities New products and services User responsiveness and interaction Involvement of all maritime countries JCOMM structure Terms of Reference Expert Team on Maritime Safety Services • Monitor / review operations of marine broadcast systems, including GMDSS and others for vessels not covered by the SOLAS convention •Monitor / review technical and service quality standards for meteo and oceano MSI, particularly for the GMDSS, and provide assistance and support to Member States • Ensure feedback from users is obtained through appropriate channels and applied to improve the relevance, effectiveness and quality of services • Ensure effective coordination and cooperation with organizations, bodies and Member States on maritime safety issues • Propose actions as appropriate to meet requirements for international coordination of meteorological and related communication services • Provide advice to the SCG and other Groups of JCOMM on issues related to MSS Chair selected by Commission. OPEN membership, including representatives of the Issuing Services for GMDSS, of IMO, IHO, ICS, IMSO, and other user groups GMDSS Global Maritime Distress & Safety System Defined by IMO for the provision of MSI and the coordination of SAR alerts on a global basis. -
Sea State Effect on the Sea Surface Emissivity at L-Band
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by UPCommons. Portal del coneixement obert de la UPC IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 41, NO. 10, OCTOBER 2003 2307 Sea State Effect on the Sea Surface Emissivity at L-Band Jorge José Miranda, Mercè Vall-llossera, Member, IEEE, Adriano Camps, Senior Member, IEEE, Núria Duffo, Member, IEEE, Ignasi Corbella, Member, IEEE, and Jacqueline Etcheto Abstract—In May 1999, the European Space Agency (ESA) temperature images will provide looks of the same pixel under selected the Earth Explorer Opportunity Soil Moisture and incidence angles from 0 to almost 65 , which requires the Ocean Salinity (SMOS) mission to obtain global and frequent soil development of soil and sea emission models in the whole moisture and ocean salinity maps. SMOS single payload is the Microwave Imaging Radiometer by Aperture Synthesis (MIRAS), range of incidence angles, and suitable geophysical parameters an L-band two-dimensional aperture synthesis radiometer with retrieval algorithms. multiangular observation capabilities. At L-band, the brightness The dielectric permittivity for seawater is determined, among temperature sensitivity to the sea surface salinity (SSS) is low, other variables, by salinity. Therefore, in principle, it is possible approximately 0.5 K/psu at 20 C, decreasing to 0.25 K/psu at to retrieve SSS from passive microwave measurements as long 0 C, comparable to that to the wind speed 0.2 K/(m/s) at nadir. However, at a given time, the sea state does not depend only as the variables influencing the brightness temperature (TB) on local winds, but on the local wind history and the presence signal (sea surface temperature, roughness, and foam) can be of waves traveling from far distances. -
Marine Forecasting at TAFB [email protected]
Marine Forecasting at TAFB [email protected] 1 Waves 101 Concepts and basic equations 2 Have an overall understanding of the wave forecasting challenge • Wave growth • Wave spectra • Swell propagation • Swell decay • Deep water waves • Shallow water waves 3 Wave Concepts • Waves form by the stress induced on the ocean surface by physical wind contact with water • Begin with capillary waves with gradual growth dependent on conditions • Wave decay process begins immediately as waves exit wind generation area…a.k.a. “fetch” area 4 5 Wave Growth There are three basic components to wave growth: • Wind speed • Fetch length • Duration Wave growth is limited by either fetch length or duration 6 Fully Developed Sea • When wave growth has reached a maximum height for a given wind speed, fetch and duration of wind. • A sea for which the input of energy to the waves from the local wind is in balance with the transfer of energy among the different wave components, and with the dissipation of energy by wave breaking - AMS. 7 Fetches 8 Dynamic Fetch 9 Wave Growth Nomogram 10 Calculate Wave H and T • What can we determine for wave characteristics from the following scenario? • 40 kt wind blows for 24 hours across a 150 nm fetch area? • Using the wave nomogram – start on left vertical axis at 40 kt • Move forward in time to the right until you reach either 24 hours or 150 nm of fetch • What is limiting factor? Fetch length or time? • Nomogram yields 18.7 ft @ 9.6 sec 11 Wave Growth Nomogram 12 Wave Dimensions • C=Wave Celerity • L=Wave Length • -
Waves and Structures
WAVES AND STRUCTURES By Dr M C Deo Professor of Civil Engineering Indian Institute of Technology Bombay Powai, Mumbai 400 076 Contact: [email protected]; (+91) 22 2572 2377 (Please refer as follows, if you use any part of this book: Deo M C (2013): Waves and Structures, http://www.civil.iitb.ac.in/~mcdeo/waves.html) (Suggestions to improve/modify contents are welcome) 1 Content Chapter 1: Introduction 4 Chapter 2: Wave Theories 18 Chapter 3: Random Waves 47 Chapter 4: Wave Propagation 80 Chapter 5: Numerical Modeling of Waves 110 Chapter 6: Design Water Depth 115 Chapter 7: Wave Forces on Shore-Based Structures 132 Chapter 8: Wave Force On Small Diameter Members 150 Chapter 9: Maximum Wave Force on the Entire Structure 173 Chapter 10: Wave Forces on Large Diameter Members 187 Chapter 11: Spectral and Statistical Analysis of Wave Forces 209 Chapter 12: Wave Run Up 221 Chapter 13: Pipeline Hydrodynamics 234 Chapter 14: Statics of Floating Bodies 241 Chapter 15: Vibrations 268 Chapter 16: Motions of Freely Floating Bodies 283 Chapter 17: Motion Response of Compliant Structures 315 2 Notations 338 References 342 3 CHAPTER 1 INTRODUCTION 1.1 Introduction The knowledge of magnitude and behavior of ocean waves at site is an essential prerequisite for almost all activities in the ocean including planning, design, construction and operation related to harbor, coastal and structures. The waves of major concern to a harbor engineer are generated by the action of wind. The wind creates a disturbance in the sea which is restored to its calm equilibrium position by the action of gravity and hence resulting waves are called wind generated gravity waves. -
Air-Sea Interaction and Surface Waves
712 Air-Sea Interaction and Surface Waves Peter A.E.M. Janssen, Øyvind Breivik, Kristian Mogensen, Frédéric Vitart, Magdalena Balmaseda, Jean-Raymond Bidlot, Sarah Keeley, Martin Leutbecher, Linus Magnusson, and Franco Molteni. Research Department November 2013 Series: ECMWF Technical Memoranda A full list of ECMWF Publications can be found on our web site under: http://www.ecmwf.int/publications/ Contact: [email protected] ©Copyright 2013 European Centre for Medium-Range Weather Forecasts Shinfield Park, Reading, RG2 9AX, England Literary and scientific copyrights belong to ECMWF and are reserved in all countries. This publication is not to be reprinted or translated in whole or in part without the written permission of the Director- General. Appropriate non-commercial use will normally be granted under the condition that reference is made to ECMWF. The information within this publication is given in good faith and considered to be true, but ECMWF accepts no liability for error, omission and for loss or damage arising from its use. Air-Sea Interaction and Surface Waves 1 Introduction Presently we are developing a coupled earth system model that allows for efficient, sequential interaction of the ocean/sea-ice, atmosphere and ocean waves components, and, therefore it becomes feasible to introduce sea state effects on the upper ocean mixing and dynamics (Mogensen et al., 2012). By the end of 2013, a first version of this system will be introduced in operations in the medium-range/monthly ensemble forecasting system. The main purpose of this operational change is that coupling between atmosphere and ocean is switched on from initial time, rather than from day 9-10 in the forecast. -
The Contribution of Wind-Generated Waves to Coastal Sea-Level Changes
1 Surveys in Geophysics Archimer November 2011, Volume 40, Issue 6, Pages 1563-1601 https://doi.org/10.1007/s10712-019-09557-5 https://archimer.ifremer.fr https://archimer.ifremer.fr/doc/00509/62046/ The Contribution of Wind-Generated Waves to Coastal Sea-Level Changes Dodet Guillaume 1, *, Melet Angélique 2, Ardhuin Fabrice 6, Bertin Xavier 3, Idier Déborah 4, Almar Rafael 5 1 UMR 6253 LOPSCNRS-Ifremer-IRD-Univiversity of Brest BrestPlouzané, France 2 Mercator OceanRamonville Saint Agne, France 3 UMR 7266 LIENSs, CNRS - La Rochelle UniversityLa Rochelle, France 4 BRGMOrléans Cédex, France 5 UMR 5566 LEGOSToulouse Cédex 9, France *Corresponding author : Guillaume Dodet, email address : [email protected] Abstract : Surface gravity waves generated by winds are ubiquitous on our oceans and play a primordial role in the dynamics of the ocean–land–atmosphere interfaces. In particular, wind-generated waves cause fluctuations of the sea level at the coast over timescales from a few seconds (individual wave runup) to a few hours (wave-induced setup). These wave-induced processes are of major importance for coastal management as they add up to tides and atmospheric surges during storm events and enhance coastal flooding and erosion. Changes in the atmospheric circulation associated with natural climate cycles or caused by increasing greenhouse gas emissions affect the wave conditions worldwide, which may drive significant changes in the wave-induced coastal hydrodynamics. Since sea-level rise represents a major challenge for sustainable coastal management, particularly in low-lying coastal areas and/or along densely urbanized coastlines, understanding the contribution of wind-generated waves to the long-term budget of coastal sea-level changes is therefore of major importance. -
6 Water Waves 35 6 Water Waves
6 WATER WAVES 35 6 WATER WAVES Surface waves in water are a superb example of a stationary and ergodic random process. The model of waves as a nearly linear superposition of harmonic components, at random phase, is confirmed by measurements at sea, as well as by the linear theory of waves, the subject of this section. We will skip some elements of fluid mechanics where appropriate, and move quickly to the cases of two-dimensional, inviscid and irrotational flow. These are the major assumptions that enable the linear wave model. 6.1 Constitutive and Governing Relations First, we know that near the sea surface, water can be considered as incompressible, and that the density ½ is nearly uniform. In this case, a simple form of conservation of mass will hold: @u @v @w + + = 0; @x @y @z where the Cartesian space is [x; y; z], with respective particle velocity vectors [u; v; w]. In words, the above equation says that net flow into a differential volume has to equal net flow out of it. Considering a box of dimensions [±x; ±y; ±z], we see that any ±u across the x-dimension, has to be accounted for by ±v and ±w: ±u±y±z + ±v±x±z + ±w±x±y = 0: w + Gw v + Gv Gy z y Gx u u + Gu x Gz v w Next, we invoke Newton’s law, in the three directions: " # " # @u @u @u @u @p @2u @2u @2u ½ + u + v + w = ¡ + ¹ + + ; @t @x @y @z @x @x2 @y2 @z2 " # " # @v @v @v @v @p @2v @2v @2v ½ + v + w + u = ¡ + ¹ + + ; @t @x @y @z @y @x2 @y2 @z2 " # " # @w @w @w @w @p @2w @2w @2w ½ + w + u + v = ¡ + ¹ + + ¡ ½g: @t @x @y @z @z @x2 @y2 @z2 6 WATER WAVES 36 Here the left-hand side of each equation is the acceleration of the fluid particle, as it moves @u through the differential volume.