The Cerebral Venous Anatomy & Management Of
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Why Should We Report Posterior Fossa Emissary Veins?
Diagn Interv Radiol 2014; 20:78–81 NEURORADIOLOGY © Turkish Society of Radiology 2014 PICTORIAL ESSAY Why should we report posterior fossa emissary veins? Yeliz Pekçevik, Rıdvan Pekçevik ABSTRACT osterior fossa emissary veins pass through cranial apertures and par- Posterior fossa emissary veins are valveless veins that pass ticipate in extracranial venous drainage of the posterior fossa dural through cranial apertures. They participate in extracranial ve- sinuses. These emissary veins are usually small and asymptomatic nous drainage of the posterior fossa dural sinuses. The mas- P toid emissary vein, condylar veins, occipital emissary vein, in healthy people. They protect the brain from increases in intracranial and petrosquamosal sinus are the major posterior fossa emis- pressure in patients with lesions of the neck or skull base and obstructed sary veins. We believe that posterior fossa emissary veins can internal jugular veins (1). They also help to cool venous blood circulat- be detected by radiologists before surgery with a thorough understanding of their anatomy. Describing them using tem- ing through cephalic structures (2). Emissary veins may be enlarged in poral bone computed tomography (CT), CT angiography, patients with high-flow vascular malformations or severe hypoplasia or and cerebral magnetic resonance (MR) venography exam- inations results in more detailed and accurate preoperative aplasia of the jugular veins. They are associated with craniofacial syn- radiological interpretation and has clinical importance. This dromes (1, 3). Dilated emissary veins may cause tinnitus (4, 5). pictorial essay reviews the anatomy of the major and clini- We aim to emphasize the importance of reporting posterior fossa em- cally relevant posterior fossa emissary veins using high-reso- lution CT, CT angiography, and MR venography images and issary veins prior to surgeries that are related to the posterior fossa and discusses the clinical importance of reporting these vascular mastoid region. -
Why Do Bridging Veins Rupture Into the Virtual Subdural Space?
J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.47.2.121 on 1 February 1984. Downloaded from Journal of Neurology, Neurosurgery, and Psychiatry 1984;47:121-127 Why do bridging veins rupture into the virtual subdural space? T YAMASHIMA, RL FRIEDE From the Department ofNeuropathology, University of Gottingen, Gottingen, Federal Republic of Germany SUMMARY Electron microscopic data on human bridging veins show thin walls of variable thick- ness, circumferential arrangement of collagen fibres and a lack of outer reinforcement by arach- noid trabecules, all contributory to the subdural portion of the vein being more fragile than its subarachnoid portion. These features explain the laceration of veins and the subdural location of resultant haematomas. Most subdural haematomas due to venous bleeding walls are delicate, lacking muscle fibres, with only a have been attributed to lacerations in bridging veins. thin fibrous wall and a thin elastic lamina adjacent to These veins form short trunks passing directly from the endothelial layer. The conclusions of these two the brain to the dura mater, almost at right angles to authors, have gained wide acceptance, although guest. Protected by copyright. both. Between these two points, bridging veins take there was little evidence concerning the fragility of a straight course with no tortuosity to allow for the the vein walls. possible displacement of brain.' Trotter2 speculated The purpose of the present communication is to that subdural haematomas are invariably due to provide electron microscopic data on tissue fixed in trauma tearing large veins, an interpretation situ, which might throw some light on to the lacera- elaborated by Krauland.3 According to Leary,4 the tion mechanism of bridging veins and its relationship common sources of subdural haematomas are rup- to the development of subdural haematoma. -
Gross Anatomy
www.BookOfLinks.com THE BIG PICTURE GROSS ANATOMY www.BookOfLinks.com Notice Medicine is an ever-changing science. As new research and clinical experience broaden our knowledge, changes in treatment and drug therapy are required. The authors and the publisher of this work have checked with sources believed to be reliable in their efforts to provide information that is complete and generally in accord with the standards accepted at the time of publication. However, in view of the possibility of human error or changes in medical sciences, neither the authors nor the publisher nor any other party who has been involved in the preparation or publication of this work warrants that the information contained herein is in every respect accurate or complete, and they disclaim all responsibility for any errors or omissions or for the results obtained from use of the information contained in this work. Readers are encouraged to confirm the infor- mation contained herein with other sources. For example and in particular, readers are advised to check the product information sheet included in the package of each drug they plan to administer to be certain that the information contained in this work is accurate and that changes have not been made in the recommended dose or in the contraindications for administration. This recommendation is of particular importance in connection with new or infrequently used drugs. www.BookOfLinks.com THE BIG PICTURE GROSS ANATOMY David A. Morton, PhD Associate Professor Anatomy Director Department of Neurobiology and Anatomy University of Utah School of Medicine Salt Lake City, Utah K. Bo Foreman, PhD, PT Assistant Professor Anatomy Director University of Utah College of Health Salt Lake City, Utah Kurt H. -
Dynamic Assessment of Venous Anatomy and Function in Neurosurgery with Real-Time Intraoperative Multimodal Ultrasound: Technical Note
NEUROSURGICAL FOCUS Neurosurg Focus 45 (1):E6, 2018 Dynamic assessment of venous anatomy and function in neurosurgery with real-time intraoperative multimodal ultrasound: technical note Francesco Prada, MD,1,2 Massimiliano Del Bene, MD,1,3 Giovanni Mauri, MD,4 Massimo Lamperti, MD,5 Davide Vailati, MD,6 Carla Richetta, MD,7 Marco Saini, MD,1 Davide Santuari, MD,8 M. Yashar S. Kalani, MD, PhD,2 and Francesco DiMeco, MD1,9 1Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy; 2Department of Neurological Surgery, University of Virginia Health Science Center, Charlottesville, Virginia; Departments of 3Experimental Oncology and 4Radiology, European Institute of Oncology, Milan, Italy; 5Anesthesiology Unit, Cleveland Clinic, Abu Dhabi, United Arab Emirates; 6Anesthesiology Unit, Ospedale di Circolo di Melegnano, Presidio di Vizzolo Predabissi, Milan, Italy; 7Department of Neurosurgery, Sourasky Medical Center, Tel Aviv, Israel; 8Department of Vascular Surgery, Ospedale S. Carlo, Milan, Italy; and 9Department of Neurological Surgery, Johns Hopkins Medical School, Baltimore, Maryland The relevance of the cerebral venous system is often underestimated during neurosurgical procedures. Damage to this draining system can have catastrophic implications for the patient. Surgical decision-making and planning must consider each component of the venous compartment, from the medullary draining vein to the dural sinuses and extracranial veins. Intraoperative ultrasound (ioUS) permits the real-time study of venous compartments using different modalities, thus allowing complete characterization of their anatomical and functional features. The B-mode (brightness mode) offers a high-resolution anatomical representation of veins and their relationships with lesions. Doppler modalities (color, power, spectral) allow the study of blood flow and identification of vessels to distinguish their functional characteristics. -
Anatomical Variants of the Emissary Veins: Unilateral Aplasia of Both the Sigmoid Sinus and the Internal Jugular Vein and Development of the Petrosquamosal Sinus
Folia Morphol. Vol. 70, No. 4, pp. 305–308 Copyright © 2011 Via Medica C A S E R E P O R T ISSN 0015–5659 www.fm.viamedica.pl Anatomical variants of the emissary veins: unilateral aplasia of both the sigmoid sinus and the internal jugular vein and development of the petrosquamosal sinus. A rare case report O. Kiritsi1, G. Noussios2, K. Tsitas3, P. Chouridis4, D. Lappas5, K. Natsis6 1“Hippokrates” Diagnostic Centre of Kozani, Greece 2Laboratory of Anatomy in Department of Physical Education and Sports Medicine at Serres, “Aristotle” University of Thessaloniki, Greece 3Orthopaedic Department of General Hospital of Kozani, Greece 4Department of Otorhinolaryngology of “Hippokration” General Hospital of Thessaloniki, Greece 5Department of Anatomy of Medical School of “National and Kapodistrian” University of Athens, Greece 6Department of Anatomy of the Medical School of “Aristotle” University of Thessaloniki, Greece [Received 9 August 2011; Accepted 25 September 2011] We report a case of hypoplasia of the right transverse sinus and aplasia of the ipsilateral sigmoid sinus and the internal jugular vein. In addition, development of the petrosquamosal sinus and the presence of a large middle meningeal sinus and sinus communicans were observed. A 53-year-old Caucasian woman was referred for magnetic resonance imaging (MRI) investigation due to chronic head- ache. On the MRI scan a solitary meningioma was observed. Finally MR 2D veno- graphy revealed this extremely rare variant. (Folia Morphol 2011; 70, 4: 305–308) Key words: hypoplasia, right transverse sinus, aplasia, ipsilateral sigmoid sinus, petrosquamosal sinus, internal jugular vein INTRODUCTION CASE REPORT Emissary veins participate in the extracranial A 53-year-old Caucasian woman was referred for venous drainage of the dural sinuses of the poste- magnetic resonance imaging (MRI) investigation due to rior fossa, complementary to the internal jugular chronic frontal headache complaints. -
Dural Venous Channels: Hidden in Plain Sight–Reassessment of an Under-Recognized Entity
Published July 16, 2020 as 10.3174/ajnr.A6647 ORIGINAL RESEARCH INTERVENTIONAL Dural Venous Channels: Hidden in Plain Sight–Reassessment of an Under-Recognized Entity M. Shapiro, K. Srivatanakul, E. Raz, M. Litao, E. Nossek, and P.K. Nelson ABSTRACT BACKGROUND AND PURPOSE: Tentorial sinus venous channels within the tentorium cerebelli connecting various cerebellar and su- pratentorial veins, as well as the basal vein, to adjacent venous sinuses are a well-recognized entity. Also well-known are “dural lakes” at the vertex. However, the presence of similar channels in the supratentorial dura, serving as recipients of the Labbe, super- ficial temporal, and lateral and medial parieto-occipital veins, among others, appears to be underappreciated. Also under-recog- nized is the possible role of these channels in the angioarchitecture of certain high-grade dural fistulas. MATERIALS AND METHODS: A retrospective review of 100 consecutive angiographic studies was performed following identification of index cases to gather data on the angiographic and cross-sectional appearance, location, length, and other features. A review of 100 consecutive dural fistulas was also performed to identify those not directly involving a venous sinus. RESULTS: Supratentorial dural venous channels were found in 26% of angiograms. They have the same appearance as those in the tentorium cerebelli, a flattened, ovalized morphology owing to their course between 2 layers of the dura, in contradistinction to a rounded cross-section of cortical and bridging veins. They are best appreciated on angiography and volumetric postcontrast T1- weighted images. Ten dural fistulas not directly involving a venous sinus were identified, 6 tentorium cerebelli and 4 supratentorial. -
Normal Flow Signal of the Pterygoid Plexus on 3T MRA in Patients Without DAVF of the Cavernous Sinus
ORIGINAL RESEARCH EXTRACRANIAL VASCULAR Normal Flow Signal of the Pterygoid Plexus on 3T MRA in Patients without DAVF of the Cavernous Sinus K. Watanabe, S. Kakeda, R. Watanabe, N. Ohnari, and Y. Korogi ABSTRACT BACKGROUND AND PURPOSE: Cavernous sinuses and draining dural sinuses or veins are often visualized on 3D TOF MRA images in patients with dural arteriovenous fistulas involving the CS. Flow signals may be seen in the jugular vein and dural sinuses at the skull base on MRA images in healthy participants, however, because of reverse flow. Our purpose was to investigate the prevalence of flow signals in the pterygoid plexus and CS on 3T MRA images in a cohort of participants without DAVFs. MATERIALS AND METHODS: Two radiologists evaluated the flow signals of the PP and CS on 3T MRA images obtained from 406 consecutive participants by using a 5-point scale. In addition, the findings on 3T MRA images were compared with those on digital subtraction angiography images in an additional 171 participants who underwent both examinations. RESULTS: The radiologists identified 110 participants (27.1%; 108 left, 10 right, 8 bilateral) with evidence of flow signals in the PP alone (n ϭ 67) or in both the PP and CS (n ϭ 43). Flow signals were significantly more common in the left PP than in the right PP. In 171 patients who underwent both MRA and DSA, the MRA images showed flow signals in the PP with or without CS in 60 patients; no DAVFs were identified on DSA in any of these patients. CONCLUSIONS: Flow signals are frequently seen in the left PP on 3T MRA images in healthy participants. -
Surgical Ligation of a Large Mastoid Emissary Vein in a Patient Complaining of Pulsatile Tinnitus
J Int Adv Otol 2021; 17(1): 84-6 • DOI: 10.5152/iao.2020.8086 Case Report Surgical ligation of A Large Mastoid Emissary Vein in A Patient Complaining of Pulsatile Tinnitus Su Geun Kim , Ji Hoon Koh , Byeong Jin Kim , Eun Jung Lee Department of Otorhinolaryngology-Head and Neck Surgery, Jeonbuk National University School of Medicine, Jeon-ju, Korea (SGK, JHK, BJK, EJL) Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeon-ju, Korea (SGK, JHK, BJK, EJL) Cite this article as: Kim SG, Koh JH, Kim BJ, Lee EJ. Surgical ligation of A Large Mastoid Emissary Vein in A Patient Complaining of Pulsatile Tinnitus. J Int Adv Otol 2021; 17(1): 84-6. Pulsatile tinnitus is an uncommon symptom characterized by a perceived sound pulsing like a heartbeat. Here, we report an unusual case of a patient with unilateral pulsatile tinnitus caused by a large, prominent mastoid emissary vein (MEV). A 45-year-old woman presented at our hos- pital with pulsatile tinnitus. She had persistent tinnitus for 20 years, and her symptoms had worsened in the previous 2 years. She said that she perceived a sound pulsing like a heartbeat. She had some hearing impairment in both the ears for a long time owing to long-term otitis media. The temporal bone computed tomography scan showed a large right jugular bulb, and there was a large MEV canal draining into the right sigmoid sinus. Therefore, we decided to perform a large MEV ligation with the planned right tympanoplasty. -
The Condylar Canal and Emissary Vein—A Comprehensive and Pictorial Review of Its Anatomy and Variation
Child's Nervous System (2019) 35:747–751 https://doi.org/10.1007/s00381-019-04120-4 REVIEW ARTICLE The condylar canal and emissary vein—a comprehensive and pictorial review of its anatomy and variation Stefan Lachkar1 & Shogo Kikuta1 & Joe Iwanaga1,2 & R. Shane Tubbs1,3 Received: 6 March 2019 /Accepted: 8 March 2019 /Published online: 21 March 2019 # Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract The condylar canal and its associated emissary vein serve as vital landmarks during surgical interventions involving skull base surgery. The condylar canal serves to function as a bridge of communication from the intracranial to extracranial space. Variations of the condylar canal are extremely prevalent and can present as either bilateral, unilateral, or completely absent. Anatomical variations of the condylar canal pose as a potential risk to surgeons and radiologist during diagnosis as it could be misinterpreted for a glomus jugular tumor and require surgical intervention when one is not needed. Few literature reviews have articulated the condylar canal and its associated emissary vein through extensive imaging. This present paper aims to further the knowledge of anatomical variations and surgical anatomy involving the condylar canal through high-quality computed tomography (CT) images with cadaveric and dry bone specimens that have been injected with latex to highlight emissary veins arising from the condylar canal. Keywords Posterior condylar canal . Anatomical variation . Anatomy . Cadaver . Skull . Emissary vein Introduction the posterior cranial fossa near or in the jugular fossa (Figs. 3 and 4)[2, 7, 9]. Its contents include the condylar emissary The condylar canal serves as a vital passageway for venous vein, which connects the sigmoid sinus or superior jugular circulation (condylar emissary vein) (Fig. -
Anatomic Comparison of Veins of Labbé Between Autopsy, Digital Subtraction Angiography and Computed Tomographic Venography
Fang et al. BioMed Eng OnLine (2017) 16:84 DOI 10.1186/s12938-017-0374-3 BioMedical Engineering OnLine RESEARCH Open Access Anatomic comparison of veins of Labbé between autopsy, digital subtraction angiography and computed tomographic venography Qiong Fang1, Anhong Jiang2, Wei Tao3* and Lin Xin4 *Correspondence: [email protected] Abstract 3 Department of Anatomy, Objective: The drainage portion of the vein of Labbé varies, and it is difcult to pre- School of Medicine, Anhui University of Science & dict whether the operation is likely to damage this vein. The aim of this study was to Technology, 25 Dongshan correlate the microanatomy of the vein of Labbé with digital subtraction angiography Road, Huainan 232001, China (DSA) and computed tomographic venography (CTV), in order to provide a basis for Full list of author information is available at the end of the the preservation of the vein of Labbé during a supratentorial surgical approach. article Methods: A total of 30 human cadavers (60 sides) and 61 living patients (110 sides) were examined in this study. Each cadaver head was injected with blue latex via the superior sagittal sinus and the internal jugular veins. The venograms of each patient were obtained from the venous phases of DSA (60 sides for 36 patients) or CTV (50 sides for 25 patients). Results: The patients were divided into four subgroups based on the location where a vein entered the dural sinus: the transverse sinus group, the tentorial group, the petrosal group, and the upper-transverse sinus group. The veins of Labbé in transverse sinus group and petrosal group directly entered dural sinus. -
Blood Vessels and Circulation
19 Blood Vessels and Circulation Lecture Presentation by Lori Garrett © 2018 Pearson Education, Inc. Section 1: Functional Anatomy of Blood Vessels Learning Outcomes 19.1 Distinguish between the pulmonary and systemic circuits, and identify afferent and efferent blood vessels. 19.2 Distinguish among the types of blood vessels on the basis of their structure and function. 19.3 Describe the structures of capillaries and their functions in the exchange of dissolved materials between blood and interstitial fluid. 19.4 Describe the venous system, and indicate the distribution of blood within the cardiovascular system. © 2018 Pearson Education, Inc. Module 19.1: The heart pumps blood, in sequence, through the arteries, capillaries, and veins of the pulmonary and systemic circuits Blood vessels . Blood vessels conduct blood between the heart and peripheral tissues . Arteries (carry blood away from the heart) • Also called efferent vessels . Veins (carry blood to the heart) • Also called afferent vessels . Capillaries (exchange substances between blood and tissues) • Interconnect smallest arteries and smallest veins © 2018 Pearson Education, Inc. Module 19.1: Blood vessels and circuits Two circuits 1. Pulmonary circuit • To and from gas exchange surfaces in the lungs 2. Systemic circuit • To and from rest of body © 2018 Pearson Education, Inc. Module 19.1: Blood vessels and circuits Circulation pathway through circuits 1. Right atrium (entry chamber) • Collects blood from systemic circuit • To right ventricle to pulmonary circuit 2. Pulmonary circuit • Pulmonary arteries to pulmonary capillaries to pulmonary veins © 2018 Pearson Education, Inc. Module 19.1: Blood vessels and circuits Circulation pathway through circuits (continued) 3. Left atrium • Receives blood from pulmonary circuit • To left ventricle to systemic circuit 4. -
High-Yield Neuroanatomy, FOURTH EDITION
LWBK110-3895G-FM[i-xviii].qxd 8/14/08 5:57 AM Page i Aptara Inc. High-Yield TM Neuroanatomy FOURTH EDITION LWBK110-3895G-FM[i-xviii].qxd 8/14/08 5:57 AM Page ii Aptara Inc. LWBK110-3895G-FM[i-xviii].qxd 8/14/08 5:57 AM Page iii Aptara Inc. High-Yield TM Neuroanatomy FOURTH EDITION James D. Fix, PhD Professor Emeritus of Anatomy Marshall University School of Medicine Huntington, West Virginia With Contributions by Jennifer K. Brueckner, PhD Associate Professor Assistant Dean for Student Affairs Department of Anatomy and Neurobiology University of Kentucky College of Medicine Lexington, Kentucky LWBK110-3895G-FM[i-xviii].qxd 8/14/08 5:57 AM Page iv Aptara Inc. Acquisitions Editor: Crystal Taylor Managing Editor: Kelley Squazzo Marketing Manager: Emilie Moyer Designer: Terry Mallon Compositor: Aptara Fourth Edition Copyright © 2009, 2005, 2000, 1995 Lippincott Williams & Wilkins, a Wolters Kluwer business. 351 West Camden Street 530 Walnut Street Baltimore, MD 21201 Philadelphia, PA 19106 Printed in the United States of America. All rights reserved. This book is protected by copyright. No part of this book may be reproduced or transmitted in any form or by any means, including as photocopies or scanned-in or other electronic copies, or utilized by any information storage and retrieval system without written permission from the copyright owner, except for brief quotations embodied in critical articles and reviews. Materials appearing in this book prepared by individuals as part of their official duties as U.S. government employees are not covered by the above-mentioned copyright. To request permission, please contact Lippincott Williams & Wilkins at 530 Walnut Street, Philadelphia, PA 19106, via email at [email protected], or via website at http://www.lww.com (products and services).