Introduction to Analysis in Several Variables (Advanced Calculus)

Total Page:16

File Type:pdf, Size:1020Kb

Introduction to Analysis in Several Variables (Advanced Calculus) Introduction to Analysis in Several Variables (Advanced Calculus) Michael Taylor Math. Dept., UNC E-mail address: [email protected] 2010 Mathematics Subject Classification. 26B05, 26B10, 26B12, 26B15, 26B20 Key words and phrases. real numbers, complex numbers, Euclidean space, metric spaces, compact spaces, Cauchy sequences, continuous function, power series, derivative, mean value theorem, Riemann integral, fundamental theorem of calculus, arclength, exponential function, logarithm, trigonometric functions, Euler's formula, multiple integrals, surfaces, surface area, differential forms, Stokes theorem, degree, Riemannian manifold, metric tensor, geodesics, curvature, Gauss-Bonnet theorem, Fourier analysis Contents Preface ix Some basic notation xv Chapter 1. Background 1 x1.1. One variable calculus 2 x1.2. Euclidean spaces 19 x1.3. Vector spaces and linear transformations 25 x1.4. Determinants 35 Chapter 2. Multivariable differential calculus 45 x2.1. The derivative 46 x2.2. Inverse function and implicit function theorem 66 x2.3. Systems of differential equations and vector fields 80 Chapter 3. Multivariable integral calculus and calculus on surfaces 101 x3.1. The Riemann integral in n variables 102 x3.2. Surfaces and surface integrals 135 x3.3. Partitions of unity 167 x3.4. Sard's theorem 168 x3.5. Morse functions 169 x3.6. The tangent space to a manifold 171 Chapter 4. Differential forms and the Gauss-Green-Stokes formula 177 x4.1. Differential forms 179 x4.2. Products and exterior derivatives of forms 186 vii viii Contents x4.3. The general Stokes formula 190 x4.4. The classical Gauss, Green, and Stokes formulas 196 x4.5. Differential forms and the change of variable formula 207 Chapter 5. Applications of the Gauss-Green-Stokes formula 213 x5.1. Holomorphic functions and harmonic functions 215 x5.2. Differential forms, homotopy, and the Lie derivative 230 x5.3. Differential forms and degree theory 236 Chapter 6. Differential geometry of surfaces 255 x6.1. Geometry of surfaces I: geodesics 260 x6.2. Geometry of surfaces II: curvature 274 x6.3. Geometry of surfaces III: the Gauss-Bonnet theorem 291 x6.4. Smooth matrix groups 306 x6.5. The derivative of the exponential map 327 x6.6. A spectral mapping theorem 332 Chapter 7. Fourier analysis 335 x7.1. Fourier series 339 x7.2. The Fourier transform 356 x7.3. Poisson summation formulas 380 x7.4. Spherical harmonics 383 x7.5. Fourier series on compact matrix groups 428 x7.6. Isoperimetric inequality 436 Appendix A. Complementary material 439 xA.1. Metric spaces, convergence, and compactness 440 xA.2. Inner product spaces 453 xA.3. Eigenvalues and eigenvectors 459 xA.4. Complements on power series 465 xA.5. The Weierstrass theorem and the Stone-Weierstrass theorem 471 xA.6. Further results on harmonic functions 475 Bibliography 481 Index 485 Preface This text was produced for the second part of a two-part sequence on ad- vanced calculus, whose aim is to provide a firm logical foundation for analy- sis, for students who have had 3 semesters of calculus and a course in linear algebra. The first part treats analysis in one variable, and the text [44] was written to cover that material. The text at hand treats analysis in several variables. These two texts can be used as companions, but they are written so that they can be used independently, if desired. Chapter 1 treats background needed for multivariable analysis. The first section gives a brief treatment of one-variable calculus, including the Rie- mann integral and the fundamental theorem of calculus. This section distills material developed in more detail in the companion text [44]. We have in- cluded it here to facilitate the independent use of this text. Subsequent sections in Chapter 1 present basic linear algebra background of use for the rest of the text. They include material on n-dimensional Euclidean spaces and other vector spaces, on linear transformations on such spaces, and on determinants of such linear transformations. Chapter 2 develops multi-dimensional differential calculus on domains in n-dimensional Euclidean space Rn. The first section defines the derivative of a differentiable map F : O! Rm, at a point x 2 O, for O open in Rn, as a linear map from Rn to Rm, and establishes basic properties, such as the chain rule. The next section deals with the Inverse Function Theorem, giving a condition for such a map to have a differentiable inverse, when n = m. The third section treats n × n systems of differential equations, bringing in the concepts of vector fields and flows on an open set O 2 Rn. While the emphasis here is on differential calculus, we do make use of integral calculus in one variable, as exposed in Chapter 1. ix x Preface Chapter 3 treats multi-dimensional integral calculus. We define the Rie- mann integral for a class of functions on Rn, and establish basic proper- ties, including a change of variable formula. We then study smooth m- dimensional surfaces in Rn, and extend the Riemann integral to a class of functions on such surfaces. Going further, we abstract the notion of surface to that of a manifold, and study a class of manifolds known as Riemannian manifolds. These possess an object known as a \metric tensor." We also define the Riemann integral for a class of functions on such manifolds. The change of variable formula is instrumental in this extension of the integral. In Chapter 4 we introduce a further class of objects that can be de- fined on surfaces, differential forms. A k-form can be integrated over a k-dimensional surface, endowed with an extra structure, an \orientation." Again the change of variable formula plays a role in establishing this. Im- portant operations on differential forms include products and the exterior derivative. A key result of Chapter 4 is a general Stokes formula, an impor- tant integral identity that can be seen as a multi-dimensional version of the fundamental theorem of calculus. In x4.4 we specialize this general Stokes formula to classical cases, known as theorems of Gauss, Green, and Stokes. A concluding section of Chapter 4 makes use of material on differential forms to give another proof of the change of variable formula for the integral, much different from the proof given in Chapter 3. Chapter 5 is devoted to several applications of the material on the Gauss- Green-Stokes theorems from Chapter 4. In x5.1 we use Green's Theorem to derive fundamental properties of holomorphic functions of a complex vari- able. Sprinkled throughout earlier sections are some allusions to functions of complex variables, particularly in some of the exercises in xx2.1{2.2. Read- ers with no previous exposure to complex variables might wish to return to these exercises after getting through x5.1. In this section, we also discuss some results on the closely related study of harmonic functions. One result is Liouville's Theorem, stating that a bounded harmonic function on all of Rn must be constant. When specialized to holomorphic functions on C = R2; this yields a proof of the Fundamental Theorem of Algebra. In x5.2 we define the notion of smoothly homotopic maps and consider the behavior of closed differential forms under pull back by smoothly homo- topic maps. This material is then applied in x5.3, which introduces degree theory and derives some interesting consequences. Key results include the Brouwer fixed point theorem, the existence of critical points of smooth vec- tor fields tangent to an even-dimensional sphere, and the Jordan-Brouwer separation theorem (in the smooth case). We also show how degree theory yields another proof of the fundamental theorem of algebra. Preface xi Chapter 6 applies results of Chapters 2{5 to the study of the geometry of surfaces (and more generally of Riemannian manifolds). Section 6.1 studies geodesics, which are locally length-minimizing curves. Section 6.2 studies curvature. Several varieties of curvature arise, including Gauss curvature and Riemann curvature, and it is of great interest to understand the relations between them. Section 6.3 ties the curvature study of x6.2 to material on degree theory from x5.3, in a result known as the Gauss-Bonnet theorem. Section 6.4 studies smooth matrix groups, which are smooth surfaces in M(n; F) that are also groups. These carry left and right invariant metric tensors, with important consequences for the application of such groups to other aspects of analysis, including results presented in x7.4. Chapter 7 is devoted to an introduction to multi-dimensional Fourier analysis. Section 7.1 treats Fourier series on the n-dimensional torus Tn, and x7.2 treats the Fourier transform for functions on Rn. Section 7.3 intro- duces a topic that ties the first two together, known as Poisson's summation formula. We apply this formula to establish a classical result of Riemann, his functional equation for the Riemann zeta function. The material in xx7.1{7.3 bears on topics rather different from the geo- metrical material emphasized in the latter part of Chapter 3 and in Chapters 4{6. In fact, this part of Chapter 7 could be tackled right after one gets through x3.1. On the other hand, the last three sections of Chapter 7 make strong contact with this geometrical material. Section 7.4 treats Fourier analysis on the sphere Sn−1, which involves expanding a function on Sn−1 in terms of eigenfunctions of the Laplace operator ∆S, arising from the Rie- mannian metric on Sn−1. This study of course includes integrating functions over Sn−1. It also brings in the matrix group SO(n), introduced in Chapter 3, which acts on each eigenspace Vk of ∆S, and its subgroup SO(n − 1), and makes use of integrals over SO(n − 1).
Recommended publications
  • Lecture 11 Line Integrals of Vector-Valued Functions (Cont'd)
    Lecture 11 Line integrals of vector-valued functions (cont’d) In the previous lecture, we considered the following physical situation: A force, F(x), which is not necessarily constant in space, is acting on a mass m, as the mass moves along a curve C from point P to point Q as shown in the diagram below. z Q P m F(x(t)) x(t) C y x The goal is to compute the total amount of work W done by the force. Clearly the constant force/straight line displacement formula, W = F · d , (1) where F is force and d is the displacement vector, does not apply here. But the fundamental idea, in the “Spirit of Calculus,” is to break up the motion into tiny pieces over which we can use Eq. (1 as an approximation over small pieces of the curve. We then “sum up,” i.e., integrate, over all contributions to obtain W . The total work is the line integral of the vector field F over the curve C: W = F · dx . (2) ZC Here, we summarize the main steps involved in the computation of this line integral: 1. Step 1: Parametrize the curve C We assume that the curve C can be parametrized, i.e., x(t)= g(t) = (x(t),y(t), z(t)), t ∈ [a, b], (3) so that g(a) is point P and g(b) is point Q. From this parametrization we can compute the velocity vector, ′ ′ ′ ′ v(t)= g (t) = (x (t),y (t), z (t)) . (4) 1 2. Step 2: Compute field vector F(g(t)) over curve C F(g(t)) = F(x(t),y(t), z(t)) (5) = (F1(x(t),y(t), z(t), F2(x(t),y(t), z(t), F3(x(t),y(t), z(t))) , t ∈ [a, b] .
    [Show full text]
  • Cloaking Via Change of Variables for Second Order Quasi-Linear Elliptic Differential Equations Maher Belgacem, Abderrahman Boukricha
    Cloaking via change of variables for second order quasi-linear elliptic differential equations Maher Belgacem, Abderrahman Boukricha To cite this version: Maher Belgacem, Abderrahman Boukricha. Cloaking via change of variables for second order quasi- linear elliptic differential equations. 2017. hal-01444772 HAL Id: hal-01444772 https://hal.archives-ouvertes.fr/hal-01444772 Preprint submitted on 24 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Cloaking via change of variables for second order quasi-linear elliptic differential equations Maher Belgacem, Abderrahman Boukricha University of Tunis El Manar, Faculty of Sciences of Tunis 2092 Tunis, Tunisia. Abstract The present paper introduces and treats the cloaking via change of variables in the framework of quasi-linear elliptic partial differential operators belonging to the class of Leray-Lions (cf. [14]). We show how a regular near-cloak can be obtained using an admissible (nonsingular) change of variables and we prove that the singular change- of variable-based scheme achieve perfect cloaking in any dimension d ≥ 2. We thus generalize previous results (cf. [7], [11]) obtained in the context of electric impedance tomography formulated by a linear differential operator in divergence form.
    [Show full text]
  • Inverse Vs Implicit Function Theorems - MATH 402/502 - Spring 2015 April 24, 2015 Instructor: C
    Inverse vs Implicit function theorems - MATH 402/502 - Spring 2015 April 24, 2015 Instructor: C. Pereyra Prof. Blair stated and proved the Inverse Function Theorem for you on Tuesday April 21st. On Thursday April 23rd, my task was to state the Implicit Function Theorem and deduce it from the Inverse Function Theorem. I left my notes at home precisely when I needed them most. This note will complement my lecture. As it turns out these two theorems are equivalent in the sense that one could have chosen to prove the Implicit Function Theorem and deduce the Inverse Function Theorem from it. I showed you how to do that and I gave you some ideas how to do it the other way around. Inverse Funtion Theorem The inverse function theorem gives conditions on a differentiable function so that locally near a base point we can guarantee the existence of an inverse function that is differentiable at the image of the base point, furthermore we have a formula for this derivative: the derivative of the function at the image of the base point is the reciprocal of the derivative of the function at the base point. (See Tao's Section 6.7.) Theorem 0.1 (Inverse Funtion Theorem). Let E be an open subset of Rn, and let n f : E ! R be a continuously differentiable function on E. Assume x0 2 E (the 0 n n base point) and f (x0): R ! R is invertible. Then there exists an open set U ⊂ E n containing x0, and an open set V ⊂ R containing f(x0) (the image of the base point), such that f is a bijection from U to V .
    [Show full text]
  • Laplacians in Geometric Analysis
    LAPLACIANS IN GEOMETRIC ANALYSIS Syafiq Johar syafi[email protected] Contents 1 Trace Laplacian 1 1.1 Connections on Vector Bundles . .1 1.2 Local and Explicit Expressions . .2 1.3 Second Covariant Derivative . .3 1.4 Curvatures on Vector Bundles . .4 1.5 Trace Laplacian . .5 2 Harmonic Functions 6 2.1 Gradient and Divergence Operators . .7 2.2 Laplace-Beltrami Operator . .7 2.3 Harmonic Functions . .8 2.4 Harmonic Maps . .8 3 Hodge Laplacian 9 3.1 Exterior Derivatives . .9 3.2 Hodge Duals . 10 3.3 Hodge Laplacian . 12 4 Hodge Decomposition 13 4.1 De Rham Cohomology . 13 4.2 Hodge Decomposition Theorem . 14 5 Weitzenb¨ock and B¨ochner Formulas 15 5.1 Weitzenb¨ock Formula . 15 5.1.1 0-forms . 15 5.1.2 k-forms . 15 5.2 B¨ochner Formula . 17 1 Trace Laplacian In this section, we are going to present a notion of Laplacian that is regularly used in differential geometry, namely the trace Laplacian (also called the rough Laplacian or connection Laplacian). We recall the definition of connection on vector bundles which allows us to take the directional derivative of vector bundles. 1.1 Connections on Vector Bundles Definition 1.1 (Connection). Let M be a differentiable manifold and E a vector bundle over M. A connection or covariant derivative at a point p 2 M is a map D : Γ(E) ! Γ(T ∗M ⊗ E) 1 with the properties for any V; W 2 TpM; σ; τ 2 Γ(E) and f 2 C (M), we have that DV σ 2 Ep with the following properties: 1.
    [Show full text]
  • Analysis of Functions of a Single Variable a Detailed Development
    ANALYSIS OF FUNCTIONS OF A SINGLE VARIABLE A DETAILED DEVELOPMENT LAWRENCE W. BAGGETT University of Colorado OCTOBER 29, 2006 2 For Christy My Light i PREFACE I have written this book primarily for serious and talented mathematics scholars , seniors or first-year graduate students, who by the time they finish their schooling should have had the opportunity to study in some detail the great discoveries of our subject. What did we know and how and when did we know it? I hope this book is useful toward that goal, especially when it comes to the great achievements of that part of mathematics known as analysis. I have tried to write a complete and thorough account of the elementary theories of functions of a single real variable and functions of a single complex variable. Separating these two subjects does not at all jive with their development historically, and to me it seems unnecessary and potentially confusing to do so. On the other hand, functions of several variables seems to me to be a very different kettle of fish, so I have decided to limit this book by concentrating on one variable at a time. Everyone is taught (told) in school that the area of a circle is given by the formula A = πr2: We are also told that the product of two negatives is a positive, that you cant trisect an angle, and that the square root of 2 is irrational. Students of natural sciences learn that eiπ = 1 and that sin2 + cos2 = 1: More sophisticated students are taught the Fundamental− Theorem of calculus and the Fundamental Theorem of Algebra.
    [Show full text]
  • Variables in Mathematics Education
    Variables in Mathematics Education Susanna S. Epp DePaul University, Department of Mathematical Sciences, Chicago, IL 60614, USA http://www.springer.com/lncs Abstract. This paper suggests that consistently referring to variables as placeholders is an effective countermeasure for addressing a number of the difficulties students’ encounter in learning mathematics. The sug- gestion is supported by examples discussing ways in which variables are used to express unknown quantities, define functions and express other universal statements, and serve as generic elements in mathematical dis- course. In addition, making greater use of the term “dummy variable” and phrasing statements both with and without variables may help stu- dents avoid mistakes that result from misinterpreting the scope of a bound variable. Keywords: variable, bound variable, mathematics education, placeholder. 1 Introduction Variables are of critical importance in mathematics. For instance, Felix Klein wrote in 1908 that “one may well declare that real mathematics begins with operations with letters,”[3] and Alfred Tarski wrote in 1941 that “the invention of variables constitutes a turning point in the history of mathematics.”[5] In 1911, A. N. Whitehead expressly linked the concepts of variables and quantification to their expressions in informal English when he wrote: “The ideas of ‘any’ and ‘some’ are introduced to algebra by the use of letters. it was not till within the last few years that it has been realized how fundamental any and some are to the very nature of mathematics.”[6] There is a question, however, about how to describe the use of variables in mathematics instruction and even what word to use for them.
    [Show full text]
  • A Quick Algebra Review
    A Quick Algebra Review 1. Simplifying Expressions 2. Solving Equations 3. Problem Solving 4. Inequalities 5. Absolute Values 6. Linear Equations 7. Systems of Equations 8. Laws of Exponents 9. Quadratics 10. Rationals 11. Radicals Simplifying Expressions An expression is a mathematical “phrase.” Expressions contain numbers and variables, but not an equal sign. An equation has an “equal” sign. For example: Expression: Equation: 5 + 3 5 + 3 = 8 x + 3 x + 3 = 8 (x + 4)(x – 2) (x + 4)(x – 2) = 10 x² + 5x + 6 x² + 5x + 6 = 0 x – 8 x – 8 > 3 When we simplify an expression, we work until there are as few terms as possible. This process makes the expression easier to use, (that’s why it’s called “simplify”). The first thing we want to do when simplifying an expression is to combine like terms. For example: There are many terms to look at! Let’s start with x². There Simplify: are no other terms with x² in them, so we move on. 10x x² + 10x – 6 – 5x + 4 and 5x are like terms, so we add their coefficients = x² + 5x – 6 + 4 together. 10 + (-5) = 5, so we write 5x. -6 and 4 are also = x² + 5x – 2 like terms, so we can combine them to get -2. Isn’t the simplified expression much nicer? Now you try: x² + 5x + 3x² + x³ - 5 + 3 [You should get x³ + 4x² + 5x – 2] Order of Operations PEMDAS – Please Excuse My Dear Aunt Sally, remember that from Algebra class? It tells the order in which we can complete operations when solving an equation.
    [Show full text]
  • 1.2 Topological Tensor Calculus
    PH211 Physical Mathematics Fall 2019 1.2 Topological tensor calculus 1.2.1 Tensor fields Finite displacements in Euclidean space can be represented by arrows and have a natural vector space structure, but finite displacements in more general curved spaces, such as on the surface of a sphere, do not. However, an infinitesimal neighborhood of a point in a smooth curved space1 looks like an infinitesimal neighborhood of Euclidean space, and infinitesimal displacements dx~ retain the vector space structure of displacements in Euclidean space. An infinitesimal neighborhood of a point can be infinitely rescaled to generate a finite vector space, called the tangent space, at the point. A vector lives in the tangent space of a point. Note that vectors do not stretch from one point to vector tangent space at p p space Figure 1.2.1: A vector in the tangent space of a point. another, and vectors at different points live in different tangent spaces and so cannot be added. For example, rescaling the infinitesimal displacement dx~ by dividing it by the in- finitesimal scalar dt gives the velocity dx~ ~v = (1.2.1) dt which is a vector. Similarly, we can picture the covector rφ as the infinitesimal contours of φ in a neighborhood of a point, infinitely rescaled to generate a finite covector in the point's cotangent space. More generally, infinitely rescaling the neighborhood of a point generates the tensor space and its algebra at the point. The tensor space contains the tangent and cotangent spaces as a vector subspaces. A tensor field is something that takes tensor values at every point in a space.
    [Show full text]
  • Discussion Notes for Aristotle's Politics
    Sean Hannan Classics of Social & Political Thought I Autumn 2014 Discussion Notes for Aristotle’s Politics BOOK I 1. Introducing Aristotle a. Aristotle was born around 384 BCE (in Stagira, far north of Athens but still a ‘Greek’ city) and died around 322 BCE, so he lived into his early sixties. b. That means he was born about fifteen years after the trial and execution of Socrates. He would have been approximately 45 years younger than Plato, under whom he was eventually sent to study at the Academy in Athens. c. Aristotle stayed at the Academy for twenty years, eventually becoming a teacher there himself. When Plato died in 347 BCE, though, the leadership of the school passed on not to Aristotle, but to Plato’s nephew Speusippus. (As in the Republic, the stubborn reality of Plato’s family connections loomed large.) d. After living in Asia Minor from 347-343 BCE, Aristotle was invited by King Philip of Macedon to serve as the tutor for Philip’s son Alexander (yes, the Great). Aristotle taught Alexander for eight years, then returned to Athens in 335 BCE. There he founded his own school, the Lyceum. i. Aside: We should remember that these schools had substantial afterlives, not simply as ideas in texts, but as living sites of intellectual energy and exchange. The Academy lasted from 387 BCE until 83 BCE, then was re-founded as a ‘Neo-Platonic’ school in 410 CE. It was finally closed by Justinian in 529 CE. (Platonic philosophy was still being taught at Athens from 83 BCE through 410 CE, though it was not disseminated through a formalized Academy.) The Lyceum lasted from 334 BCE until 86 BCE, when it was abandoned as the Romans sacked Athens.
    [Show full text]
  • Chapter 8 Change of Variables, Parametrizations, Surface Integrals
    Chapter 8 Change of Variables, Parametrizations, Surface Integrals x0. The transformation formula In evaluating any integral, if the integral depends on an auxiliary function of the variables involved, it is often a good idea to change variables and try to simplify the integral. The formula which allows one to pass from the original integral to the new one is called the transformation formula (or change of variables formula). It should be noted that certain conditions need to be met before one can achieve this, and we begin by reviewing the one variable situation. Let D be an open interval, say (a; b); in R , and let ' : D! R be a 1-1 , C1 mapping (function) such that '0 6= 0 on D: Put D¤ = '(D): By the hypothesis on '; it's either increasing or decreasing everywhere on D: In the former case D¤ = ('(a);'(b)); and in the latter case, D¤ = ('(b);'(a)): Now suppose we have to evaluate the integral Zb I = f('(u))'0(u) du; a for a nice function f: Now put x = '(u); so that dx = '0(u) du: This change of variable allows us to express the integral as Z'(b) Z I = f(x) dx = sgn('0) f(x) dx; '(a) D¤ where sgn('0) denotes the sign of '0 on D: We then get the transformation formula Z Z f('(u))j'0(u)j du = f(x) dx D D¤ This generalizes to higher dimensions as follows: Theorem Let D be a bounded open set in Rn;' : D! Rn a C1, 1-1 mapping whose Jacobian determinant det(D') is everywhere non-vanishing on D; D¤ = '(D); and f an integrable function on D¤: Then we have the transformation formula Z Z Z Z ¢ ¢ ¢ f('(u))j det D'(u)j du1::: dun = ¢ ¢ ¢ f(x) dx1::: dxn: D D¤ 1 Of course, when n = 1; det D'(u) is simply '0(u); and we recover the old formula.
    [Show full text]
  • A Brief Tour of Vector Calculus
    A BRIEF TOUR OF VECTOR CALCULUS A. HAVENS Contents 0 Prelude ii 1 Directional Derivatives, the Gradient and the Del Operator 1 1.1 Conceptual Review: Directional Derivatives and the Gradient........... 1 1.2 The Gradient as a Vector Field............................ 5 1.3 The Gradient Flow and Critical Points ....................... 10 1.4 The Del Operator and the Gradient in Other Coordinates*............ 17 1.5 Problems........................................ 21 2 Vector Fields in Low Dimensions 26 2 3 2.1 General Vector Fields in Domains of R and R . 26 2.2 Flows and Integral Curves .............................. 31 2.3 Conservative Vector Fields and Potentials...................... 32 2.4 Vector Fields from Frames*.............................. 37 2.5 Divergence, Curl, Jacobians, and the Laplacian................... 41 2.6 Parametrized Surfaces and Coordinate Vector Fields*............... 48 2.7 Tangent Vectors, Normal Vectors, and Orientations*................ 52 2.8 Problems........................................ 58 3 Line Integrals 66 3.1 Defining Scalar Line Integrals............................. 66 3.2 Line Integrals in Vector Fields ............................ 75 3.3 Work in a Force Field................................. 78 3.4 The Fundamental Theorem of Line Integrals .................... 79 3.5 Motion in Conservative Force Fields Conserves Energy .............. 81 3.6 Path Independence and Corollaries of the Fundamental Theorem......... 82 3.7 Green's Theorem.................................... 84 3.8 Problems........................................ 89 4 Surface Integrals, Flux, and Fundamental Theorems 93 4.1 Surface Integrals of Scalar Fields........................... 93 4.2 Flux........................................... 96 4.3 The Gradient, Divergence, and Curl Operators Via Limits* . 103 4.4 The Stokes-Kelvin Theorem..............................108 4.5 The Divergence Theorem ...............................112 4.6 Problems........................................114 List of Figures 117 i 11/14/19 Multivariate Calculus: Vector Calculus Havens 0.
    [Show full text]
  • Appendix a Short Course in Taylor Series
    Appendix A Short Course in Taylor Series The Taylor series is mainly used for approximating functions when one can identify a small parameter. Expansion techniques are useful for many applications in physics, sometimes in unexpected ways. A.1 Taylor Series Expansions and Approximations In mathematics, the Taylor series is a representation of a function as an infinite sum of terms calculated from the values of its derivatives at a single point. It is named after the English mathematician Brook Taylor. If the series is centered at zero, the series is also called a Maclaurin series, named after the Scottish mathematician Colin Maclaurin. It is common practice to use a finite number of terms of the series to approximate a function. The Taylor series may be regarded as the limit of the Taylor polynomials. A.2 Definition A Taylor series is a series expansion of a function about a point. A one-dimensional Taylor series is an expansion of a real function f(x) about a point x ¼ a is given by; f 00ðÞa f 3ðÞa fxðÞ¼faðÞþf 0ðÞa ðÞþx À a ðÞx À a 2 þ ðÞx À a 3 þÁÁÁ 2! 3! f ðÞn ðÞa þ ðÞx À a n þÁÁÁ ðA:1Þ n! © Springer International Publishing Switzerland 2016 415 B. Zohuri, Directed Energy Weapons, DOI 10.1007/978-3-319-31289-7 416 Appendix A: Short Course in Taylor Series If a ¼ 0, the expansion is known as a Maclaurin Series. Equation A.1 can be written in the more compact sigma notation as follows: X1 f ðÞn ðÞa ðÞx À a n ðA:2Þ n! n¼0 where n ! is mathematical notation for factorial n and f(n)(a) denotes the n th derivation of function f evaluated at the point a.
    [Show full text]