Vertebrate Fossil Collection Information Sheet 6 (Cases 83-111)

Total Page:16

File Type:pdf, Size:1020Kb

Vertebrate Fossil Collection Information Sheet 6 (Cases 83-111) ENGLISH VERTEBRATE FOSSIL COLLECTION INFORMATION SHEET 6 (CASES 83-111) Vertebrates are animals with a spinal cord protected by a bony or cartilaginous vertebral column. The first known vertebrate fossils are from the Ordovician (488-443 million years ago), although they probably date back to the Early Cambrian (530 million years ago). This information sheet describes some of the most outstanding vertebrate fossils exhibited on the first floor of the museum. CASE 86 CASE 88 CASE 89 CASE. 89 CASE 90 LATE MIOCENE LATE TRIASSIC EARLY CRETACEOUS EARLY CRETACEOUS EARLY OLIGOCENE This is an extinct species of frog This bipedal carnivore measuring Iiberomesornis romerali is a primitive Concornis lacustris is a fossil bird This is a small crocodile (larger described in line with fossils found in approximately one metre long bird that was found in the locality of that was found in the locality of Las individuals reached approximately an old lignite and sulphur mine in the presents heterodont dentition (more Las Hoyas (Cuenca). The size of the Hoyas (Cuenca), of which only one 1.5 m in length) found solely in the locality of Libros (Teruel). The fossils than one type of tooth morphology). only known specimen to date is specimen is known. It was almost northeast of the Iberian Peninsula. are associated with rocks formed in Thus, some of the teeth have approximately 10 cm long, and it twice the size ofIberomesornis , and It was covered by thick armoured what was a fairly deep lake some 6 curved, serrated crowns typical of would have weighed between 15 and as with this latter, the skull has not skin and inhabited freshwater or million years ago. The anoxic (no the theropods (carnivorous 20 grams.Iberomesornis presents a been preserved. This bird belongs to slightly salt water lakes and lagoons oxygen) conditions of the deep water dinosaurs), whereas others are leaf- combination of ancestral and derived the Enantiornithes, an extinct group in what is now the Ebro River Basin. prevented complete decomposition shaped with a basal constriction characters. For example, its caudal of Cretaceous birds with the capacity A recent review of this species of the organisms that fell to the similar to that of primitive sauropo- vertebrae are fused, forming a to fly and primitive skulls with or proposed it be assigned to the bottom, thus facilitating their domorphs. Although Eoraptor is structure called the pygostyle, which without teeth. The specimen of genus Diplocynodon. Modern exceptional state of preservation. structurally close to the common is present in modern birds. In Concornis from Las Hoyas presents crocodiles are large (up to 5 m long) Some of the frog fossils and those of ancestor of all dinosaurs, some of its contrast, other characters are long primary flight feathers with aquatic predators covered by scales other amphibians are outlined by a derived characters, such as having a ancestral, such as the absence of asymmetric vanes as in modern and bony plates (osteoderms), thin film of carbon. Their state of three-fingered hand with the the tibiotarsus and tarsometatarsus, birds, suggesting that it had which live in tropical and subtropical preservation is such that structures capacity to grip, situate it as the bones that are typically found in developed the capacity to fly. In climates. However, the fossil record as delicate as larval eyes, stomach most primitive theropod known. modern birds and which are formed Europe, only two species from the tells a very different story: these contents and even muscle tissue and However, the recent discovery of a by the fusion of several bones in the group of Enantiornithes are known, animals once presented a wide bone marrow can be distinguished in new theropod (Eodromaeus) hind limbs. Although the skull has not both from Las Hoyas. A third diversity of forms, some of which were very different to modern some of the amphibian fossils from situates Eoraptor as a basal been preserved, Iberomesornis specimen was found in the province crocodiles. For example, the this locality. sauropodomorph. probably had teeth, as was the case of LeridaCambiado, but it has not with the vast majority of primitive been possible to assign it to any atoposaurs were very small Pelophylax pueyoi. Eoraptor lunensis (replica). crocodylomorphs (30-70 cm in Late Miocene (6 million years ago). birds known. particular species because it was a Late Triassic (230 million years ago). juvenile individual. length) which probably lived on land. Libros (Teruel, Spain). Ischigualasto (Argentina). Iberomesornis romerali (replica). Maximum dimension: 24 cm. Maximum dimension: 13 cm. Early Cretaceous (120 million years Concornis lacustris (replica). Diplocynodon muelleri. ago). Early Cretaceous (120 million years Early Oligocene (31 million years La Cierva (Cuenca, Spain). ago). ago). Geominero Maximum dimension: 16 cm. La Cierva (Cuenca, Spain). Tárrega (Lérida, Spain). eo Maximum dimension: 16 cm. Maximum dimension: 24cm. Instituto Geológico y Minero de España ENGLISH VERTEBRATE FOSSIL COLLECTION INFORMATION SHEET 6 (CASES 83-111) CASE 93 CASE 96 CASE 107 CASE 108 PRIMERA PLANTA LATE MIOCENE LATE PLIOCENE LATE PLIOCENE EARLY PLEISTOCENE LATE CRETACEOUS Hipparion, a genus of equidae, was This extinct bovid species was Australopithecus is an extinct genus Homo habilis is the first representative Tyrannosaurus rex was one of the widely distributed throughout endemic to the Balearic Islands, of hominid primates that lived in of the genus Homo, and lived in East largest terrestrial carnivores of all Eurasia during the Late Miocene, which it inhabited for more than 5 Africa between 4 and 2 million years Africa, in what is now Tanzania. H. time.Tyrannosaurs belong to the although its ancestors were from million years. It presents a series of ago. It is thought thatA. africanus or habilis is thought to have manufactu- coelurosaurs, a group of dinosaurs North America. The first European exclusive derived characters such as A. afarensis might be the ancestors red and used stone tools (hence the that also includes birds. Most of the examples of Hipparion were robust, having frontally directed eyes rather of the genusHomo . The “Taung namehabilis : “handy man”); however, feathered dinosaurs that have been but the species inhabiting Spain at than laterally as in other bovids, Child” was the first primitive human we cannot be absolutely certain of this found are coelurosaurs. the end of the Miocene were being small (12-15 kg) and having a fossil found in Africa. The skull because the area where tools have Consequently, it has been suggested smaller and more slightly built. single, continuously growing incisor. belongstoachildagedaboutthree been found was also inhabited at the thatT. rex might also have had Hipparion mediterraneum reached A recent histological study has shown years old that it is thought was time by several other species of the feathers. However, the discovery of a weight of approximately 200 kg thatM. balearicus presented a type attacked and killed by an eagle due genus Homo. On average, H. habilis adult tyrannosaur skin impressions compared to the almost 400 kg that of bone tissue that was previously to the marks that appear on some of stood 1-1.35 m tall and weighed 32 shows that it was covered with small modern horses weigh. This only known in reptiles. This tissue the skull bones. This specimen kg. It had smaller teeth than those of scales. It remains possible that T. rex species was not widespread in the indicates that it had a slower and provided the first evidence that Australopithecus, but the enamel had feathers or protofeathers on Iberian Peninsula, having only been more uneven growth rate than primitive humans were bipedal, due remained thick and the jaws strong, some parts of the body, but there is found in Catalonia and Valencia. expected, with periodic pauses that to the position of the foramen indicating that these were adapted for no evidence for this at the moment. T. would also have delayed sexual magnum, a hole located at the base chewing hard food. While it used to be rex is a well-known dinosaur because Hipparion mediterraneum. maturity. It is probable that selection of the skull through which the spinal thought thatH. habilis was the several almost complete specimens Late Miocene (6 million years ago). pressure due to insularity was cord passes to connect to the brain. predecessor ofH. erectus , recent have been found. In one of them, it Piera (Barcelona Spain). responsible for reversing some of the The position of the foramen discoveries of fossils of both species in has been possible to isolate and the same area cast doubt on the idea Maximum dimension: 24 cm. physiological and developmental indicates that the head was study the remains of tissues that one evolved after the other. It is characters of these mammals. positioned at the top of the spinal preserved inside the femur; however, more likely that both species coexisted Consequently, their growth would be column, a trait associated with some palaeontologists have over a long period of time. more similar to that of the reptiles. bipedal locomotion. questioned whether these really are Homo habilis. Early Pleistocene (2.4- 1.4 million years ago). Africa. tissue remains. Myotragus balearicus. Australopithecus africanus (replica Late Pliocene-Quaternary (2.5 of the “Taung Child”). Homo habilis (replica). Tyrannosaurus rex. years ago - 4,000 years ago). Late Pliocene (2.5 million years ago) Early Pleistocene (2.4-1.4 million Late Cretaceous (65 million years Mallorca (Spain). Africa. years ago). ago). Maximum dimension: 15 cm. Maximum dimension: 14 cm. Olduvai (Tanzania). South Dakota (USA). Maximum dimension: 17 cm. Maximum dimension: 140 cm..
Recommended publications
  • The Phylogenetic Position of Ambiortus: Comparison with Other Mesozoic Birds from Asia1 J
    ISSN 00310301, Paleontological Journal, 2013, Vol. 47, No. 11, pp. 1270–1281. © Pleiades Publishing, Ltd., 2013. The Phylogenetic Position of Ambiortus: Comparison with Other Mesozoic Birds from Asia1 J. K. O’Connora and N. V. Zelenkovb aKey Laboratory of Evolution and Systematics, Institute of Vertebrate Paleontology and Paleoanthropology, 142 Xizhimenwai Dajie, Beijing China 10044 bBorissiak Paleontological Institute, Russian Academy of Sciences, Profsoyuznaya ul. 123, Moscow, 117997 Russia email: [email protected], [email protected] Received August 6, 2012 Abstract—Since the last description of the ornithurine bird Ambiortus dementjevi from Mongolia, a wealth of Early Cretaceous birds have been discovered in China. Here we provide a detailed comparison of the anatomy of Ambiortus relative to other known Early Cretaceous ornithuromorphs from the Chinese Jehol Group and Xiagou Formation. We include new information on Ambiortus from a previously undescribed slab preserving part of the sternum. Ambiortus is superficially similar to Gansus yumenensis from the Aptian Xiagou Forma tion but shares more morphological features with Yixianornis grabaui (Ornithuromorpha: Songlingorni thidae) from the Jiufotang Formation of the Jehol Group. In general, the mosaic pattern of character distri bution among early ornithuromorph taxa does not reveal obvious relationships between taxa. Ambiortus was placed in a large phylogenetic analysis of Mesozoic birds, which confirms morphological observations and places Ambiortus in a polytomy with Yixianornis and Gansus. Keywords: Ornithuromorpha, Ambiortus, osteology, phylogeny, Early Cretaceous, Mongolia DOI: 10.1134/S0031030113110063 1 INTRODUCTION and articulated partial skeleton, preserving several cervi cal and thoracic vertebrae, and parts of the left thoracic Ambiortus dementjevi Kurochkin, 1982 was one of girdle and wing (specimen PIN, nos.
    [Show full text]
  • New Tyrannosaur from the Mid-Cretaceous of Uzbekistan Clarifies Evolution of Giant Body Sizes and Advanced Senses in Tyrant Dinosaurs
    Edinburgh Research Explorer New tyrannosaur from the mid-Cretaceous of Uzbekistan clarifies evolution of giant body sizes and advanced senses in tyrant dinosaurs Citation for published version: Brusatte, SL, Averianov, A, Sues, H, Muir, A & Butler, IB 2016, 'New tyrannosaur from the mid-Cretaceous of Uzbekistan clarifies evolution of giant body sizes and advanced senses in tyrant dinosaurs', Proceedings of the National Academy of Sciences, pp. 201600140. https://doi.org/10.1073/pnas.1600140113 Digital Object Identifier (DOI): 10.1073/pnas.1600140113 Link: Link to publication record in Edinburgh Research Explorer Document Version: Peer reviewed version Published In: Proceedings of the National Academy of Sciences General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 04. Oct. 2021 Classification: Physical Sciences: Earth, Atmospheric, and Planetary Sciences; Biological Sciences: Evolution New tyrannosaur from the mid-Cretaceous of Uzbekistan clarifies evolution of giant body sizes and advanced senses in tyrant dinosaurs Stephen L. Brusattea,1, Alexander Averianovb,c, Hans-Dieter Suesd, Amy Muir1, Ian B. Butler1 aSchool of GeoSciences, University of Edinburgh, Edinburgh EH9 3FE, UK bZoological Institute, Russian Academy of Sciences, St.
    [Show full text]
  • The Oldest Record of Ornithuromorpha from the Early Cretaceous of China
    ARTICLE Received 6 Jan 2015 | Accepted 20 Mar 2015 | Published 5 May 2015 DOI: 10.1038/ncomms7987 OPEN The oldest record of ornithuromorpha from the early cretaceous of China Min Wang1, Xiaoting Zheng2,3, Jingmai K. O’Connor1, Graeme T. Lloyd4, Xiaoli Wang2,3, Yan Wang2,3, Xiaomei Zhang2,3 & Zhonghe Zhou1 Ornithuromorpha is the most inclusive clade containing extant birds but not the Mesozoic Enantiornithes. The early evolutionary history of this avian clade has been advanced with recent discoveries from Cretaceous deposits, indicating that Ornithuromorpha and Enantiornithes are the two major avian groups in Mesozoic. Here we report on a new ornithuromorph bird, Archaeornithura meemannae gen. et sp. nov., from the second oldest avian-bearing deposits (130.7 Ma) in the world. The new taxon is referable to the Hongshanornithidae and constitutes the oldest record of the Ornithuromorpha. However, A. meemannae shows few primitive features relative to younger hongshanornithids and is deeply nested within the Hongshanornithidae, suggesting that this clade is already well established. The new discovery extends the record of Ornithuromorpha by five to six million years, which in turn pushes back the divergence times of early avian lingeages into the Early Cretaceous. 1 Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China. 2 Institue of Geology and Paleontology, Linyi University, Linyi, Shandong 276000, China. 3 Tianyu Natural History Museum of Shandong, Pingyi, Shandong 273300, China. 4 Department of Biological Sciences, Faculty of Science, Macquarie University, Sydney, New South Wales 2019, Australia.
    [Show full text]
  • Anatomy of the Early Cretaceous Enantiornithine Bird Rapaxavis Pani
    Anatomy of the Early Cretaceous enantiornithine bird Rapaxavis pani JINGMAI K. O’CONNOR, LUIS M. CHIAPPE, CHUNLING GAO, and BO ZHAO O’Connor, J.K., Chiappe, L.M., Gao, C., and Zhao, B. 2011. Anatomy of the Early Cretaceous enantiornithine bird Rapaxavis pani. Acta Palaeontologica Polonica 56 (3): 463–475. The exquisitely preserved longipterygid enantiornithine Rapaxavis pani is redescribed here after more extensive prepara− tion. A complete review of its morphology is presented based on information gathered before and after preparation. Among other features, Rapaxavis pani is characterized by having an elongate rostrum (close to 60% of the skull length), rostrally restricted dentition, and schizorhinal external nares. Yet, the most puzzling feature of this bird is the presence of a pair of pectoral bones (here termed paracoracoidal ossifications) that, with the exception of the enantiornithine Concornis lacustris, are unknown within Aves. Particularly notable is the presence of a distal tarsal cap, formed by the fu− sion of distal tarsal elements, a feature that is controversial in non−ornithuromorph birds. The holotype and only known specimen of Rapaxavis pani thus reveals important information for better understanding the anatomy and phylogenetic relationships of longipterygids, in particular, as well as basal birds as a whole. Key words: Aves, Enantiornithes, Longipterygidae, Rapaxavis, Jiufotang Formation, Early Cretaceous, China. Jingmai K. O’Connor [[email protected]], Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology and Paleoanthropology, 142 Xizhimenwaidajie, Beijing, China, 100044; The Dinosaur Institute, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA 90007 USA; Luis M. Chiappe [[email protected]], The Dinosaur Institute, Natural History Museum of Los Angeles County, 900 Ex− position Boulevard, Los Angeles, CA 90007 USA; Chunling Gao [[email protected]] and Bo Zhao [[email protected]], Dalian Natural History Museum, No.
    [Show full text]
  • Redalyc.Unenlagiinae Revisited: Dromaeosaurid Theropods From
    Anais da Academia Brasileira de Ciências ISSN: 0001-3765 [email protected] Academia Brasileira de Ciências Brasil GIANECHINI, FEDERICO A.; APESTEGUÍA, SEBASTIÁN Unenlagiinae revisited: dromaeosaurid theropods from South America Anais da Academia Brasileira de Ciências, vol. 83, núm. 1, marzo, 2011, pp. 163-195 Academia Brasileira de Ciências Rio de Janeiro, Brasil Available in: http://www.redalyc.org/articulo.oa?id=32717681008 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative “main” — 2011/2/10 — 14:11 — page 163 — #1 Anais da Academia Brasileira de Ciências (2011) 83(1): 163-195 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 www.scielo.br/aabc Unenlagiinae revisited: dromaeosaurid theropods from South America FEDERICO A. GIANECHINI and SEBASTIÁN APESTEGUÍA CONICET – Área de Paleontología, Fundación de Historia Natural ‘Félix de Azara’ Departamento de Ciencias Naturales y Antropología CEBBAD, Universidad Maimónides, Hidalgo 775 (1405BDB), Ciudad Autónoma de Buenos Aires, Argentina Manuscript received on October 30, 2009; accepted for publication on June 21, 2010 ABSTRACT Over the past two decades, the record of South American unenlagiine dromaeosaurids was substantially increased both in quantity as well as in quality of specimens. Here is presented a summary review of the South American record for these theropods. Unenlagia comahuensis, Unenlagia paynemili, and Neuquenraptor argentinus come from the Portezuelo Formation, the former genus being the most complete and with putative avian features.
    [Show full text]
  • New Bohaiornis-Like Bird from the Early Cretaceous of China: Enantiornithine Interrelationships and flight Performance
    New Bohaiornis-like bird from the Early Cretaceous of China: enantiornithine interrelationships and flight performance Luis M. Chiappe1, Meng Qingjin2, Francisco Serrano1,3, Trond Sigurdsen1,4, Wang Min5, Alyssa Bell1 and Liu Di2 1 Dinosaur Institute, Natural History Museum of Los Angeles County, Los Angeles, CA, USA 2 Beijing Museum of Natural History, Beijing, China 3 Spanish Royal Academy of Sciences, Madrid, Spain 4 Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA 5 Institute of Vertebrate Paleontology and Paleoanthropology, Beijing, China ABSTRACT During the last decade, several Bohaiornis-like enantiornithine species—and numerous specimens—have been recognized from the celebrated Jehol Biota of northwestern China. In this paper, we describe the anatomy of another “bohaiornithid” species from the 125 million-year-old Yixian Formation of Liaoning Province, China. The new taxon differs from previously recognized “bohaiornithids” on a number of characters from the forelimb and shoulder girdle. We also provide a new phylogenetic framework for enantiornithine birds, which questions the monophyly of the previously recognized bohaiornithid clade and highlights ongoing challenges for resolving enantiornithine interrelationships. Additionally, we offer the first assessment of the flight properties of Bohaiornis-like enantiornithines. Our results indicate that while “bohaiornithids” were morphologically suited for flying through continuous flapping, they would have been unable to sustain prolonged flights. Such findings expand the flight strategies previously known for enantiornithines and other early birds. Submitted 8 March 2019 8 September 2019 Accepted Subjects Evolutionary Studies, Paleontology, Taxonomy Published 25 October 2019 Keywords Evolution of flight, Jehol Biota, Birds, Enantiornithes, Cretaceous Corresponding authors Luis M.
    [Show full text]
  • A Subadult Specimen of Pengornis and Character Evolution in Enantiornithes
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/271079655 A subadult specimen of Pengornis and character evolution in Enantiornithes Article · January 2014 CITATIONS READS 10 26 4 authors, including: Jingmai Kathleen O'Connor Vertebrata Palasiatica Chinese Academy of Sciences Chinese Academy of Sciences 87 PUBLICATIONS 856 CITATIONS 213 PUBLICATIONS 466 CITATIONS SEE PROFILE SEE PROFILE All in-text references underlined in blue are linked to publications on ResearchGate, Available from: Vertebrata Palasiatica letting you access and read them immediately. Retrieved on: 12 August 2016 -97 第52卷 第1期 古 脊 椎 动 物 学 报 pp. 77 2014年1月 VERTEBRATA PALASIATICA figs. 1-9 A subadult specimen of Pengornis and character evolution in Enantiornithes HU Han1,2 ZHOU Zhong-He1 Jingmai K. O’CONNOR1 (1 Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences Beijing 100044 [email protected]) (2 University of Chinese Academy of Sciences Beijing 100049) Abstract Previously known only from the holotype specimen, Pengornis houi is the largest known Early Cretaceous enantiornithine bird and important for understanding body size and character evolution in Ornithothoraces. We report on a new subadult specimen from the Lower Cretaceous Jiufotang Formation referred to Pengornis sp. The specimen preserves a nearly complete sternum, reminiscent of that in Protopteryx and the basal ornithuromorph Archaeorhynchus, confirming the basal position of Pengornis and shedding new light on the evolution of the sternum in ornithothoracines. Anatomical information suggests that despite its size, Pengornis was arboreal, like other enantiornithines.
    [Show full text]
  • Supplemental Figs S1-S6
    Bayesian tip dating reveals heterogeneous morphological clocks in Mesozoic birds Chi Zhang1,2,* and Min Wang1,2 1Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China 2Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China ∗Corresponding author: E-mail: [email protected] Supplementary Information Figures Dromaeosauridae Archaeopteryx Jeholornis Chongmingia Sapeornis Confuciusornis_sanctus Changchengornis Confuciusornis_dui Yangavis Eoconfuciusornis Pengornis Eopengornis Protopteryx 15.5 Boluochia Longipteryx Longirostravis Rapaxavis Shanweiniao Concornis Elsornis Gobipteryx Neuquenornis Eoalulavis Cathayornis Eocathayornis Eoenantiornis Linyiornis mean relative rate Fortunguavis Sulcavis Bohaiornis 0.3 Parabohaiornis Longusunguis Zhouornis Shenqiornis Vescornis Dunhuangia 1.0 Piscivorenantiornis Pterygornis Qiliania Cruralispennia Monoenantiornis Archaeorhynchus Jianchangornis Schizooura Bellulornis Vorona Patagopteryx Songlingornis Iteravis Yanornis clade probability Yixianornis Piscivoravis Longicrusavis 0.5 Hongshanornis Parahongshanornis Archaeornithura Tianyuornis Apsaravis Gansus Ichthyornis Vegavis Anas Hesperornis Gallus Parahesperornis Baptornis_varneri Baptornis_advenus Enaliornis -175 -150 -125 -100 - 7 5 - 5 0 - 2 5 0 Figure S1. Dated phylogeny (time tree) of the Mesozoic birds under the partitioned analysis. The color of the branch represents the mean relative
    [Show full text]
  • Unenlagiid Theropods: Are They Members of the Dromaeosauridae (Theropoda, Maniraptora)?
    “main” — 2011/2/10 — 14:01 — page 117 — #1 Anais da Academia Brasileira de Ciências (2011) 83(1): 117-162 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 www.scielo.br/aabc Unenlagiid theropods: are they members of the Dromaeosauridae (Theropoda, Maniraptora)? , FEDERICO L. AGNOLIN1 2 and FERNANDO E. NOVAS1 1Laboratorio de Anatomía Comparada y Evolución de los Vertebrados Museo Argentino de Ciencias Naturales “Bernardino Rivadavia” Ángel Gallardo, 470 (1405BDB), Buenos Aires, Argentina 2Fundación de Historia Natural “Félix de Azara”, Departamento de Ciencias Naturales y Antropología CEBBAD, Universidad Maimónides, Valentín Virasoro 732 (1405BDB), Buenos Aires, Argentina Manuscript received on November 9, 2009; accepted for publication on June 21, 2010 ABSTRACT In the present paper we analyze the phylogenetic position of the derived Gondwanan theropod clade Unen- lagiidae. Although this group has been frequently considered as deeply nested within Deinonychosauria and Dromaeosauridae, most of the features supporting this interpretation are conflictive, at least. Modification of integrative databases, such as that recently published by Hu et al. (2009), produces significant changes in the topological distribution of taxa within Deinonychosauria, depicting unenlagiids outside this clade. Our analysis retrieves, in contrast, a monophyletic Avialae formed by Unenlagiidae plus Aves. Key words: Gondwana, Deinonychosauria, Dromaeosauridae, Unenlagiidae, Avialae. INTRODUCTION Until recently, the deinonychosaurian fossil record has been geographically restricted to the Northern Hemisphere (Norell and Makovicky 2004), but recent discoveries demonstrated that they were also present and highly diversified in the Southern landmasses, suggesting that an important adaptive radiation took place in Gondwana during the Cretaceous. Gondwanan dromaeosaurids have been documented from Turonian through Maastrichtian beds of Argentina (Makovicky et al.
    [Show full text]
  • The Remarkable Fossils from the Early Cretaceous Jehol Biota of China and How They Have Changed Our Knowledge of Mesozoic Life
    The remarkable fossils from the Early Cretaceous Jehol Biota of China and how they have changed our knowledge of Mesozoic life Presidential Address, delivered 2nd May 2008 Michael J. Benton1, Zhou Zhonghe2, Patrick J. Orr3, Zhang Fucheng2 & Stuart L. Kearns1 BENTON, M. J., ZHOU Z., ORR, P. J., ZHANG, F. & KEARNS, S. L. 2008. The remarkable fossils from the Early Cretaceous Jehol Biota of China and how they have changed our knowledge. Proceedings of the Geologists’ Association, 119, 209–228. Palaeontologists and others have been repeatedly amazed by reports of spectacularly well-preserved fossils from China, and one of the key sources has been the Jehol Biota of Liaoning, Hebei and Inner Mongolia in NE China. The Jehol Biota consists of three main horizons, the Dabeigou, Yixian and Jiufotang formations, spanning the late Hauterivian to early Aptian (131–120 Ma) of the Early Cretaceous and, collectively, these have produced thousands of essentially complete specimens of plants, insects, aquatic invertebrates, fishes, frogs, salamanders, turtles, lizards, choristoderes, pterosaurs, dinosaurs, birds and mammals. Most of the specimens show some aspect of exceptional preservation, ranging from clear impressions of the body outlines to traces of soft tissues (liver, teleost air sac, eye spots) and external body coverings (scales, feathers, hair). The claim was made that these discoveries have revolutionized our understanding of evolution through this critical part of the Cretaceous Terrestrial Revolution. Key insights have come from the numerous specimens of dinosaurs with feathers, but numerical study shows that only the finds of birds and mammals have substantially changed our views about global diversity and patterns of evolution through the Early Cretaceous.
    [Show full text]
  • Cladistics and the Origin of Birds: a Review and Two New Analyses
    Cladistics and the Origin of Birds: A Review and Two New Analyses OM66_FM.indd 1 3/31/09 4:56:43 PM Ornithological Monographs Editor: John Faaborg 224 Tucker Hall Division of Biological Sciences University of Missouri Columbia, Missouri 65211 Managing Editor: Mark C. Penrose Copy Editor: Richard D. Earles Authors of this issue: Frances C. James and John A. Pourtless IV Translation of the abstract by Lisbeth O. Swain The Ornithological Monographs series, published by the American Ornithologists’ Union, has been established for major papers and presentations too long for inclusion in the Union’s journal, The Auk. Copying and permissions notice: Authorization to copy article content beyond fair use (as specified in Sections 107 and 108 of the U.S. Copyright Law) for internal or personal use, or the internal or personal use of specific clients, is granted by The Regents of the University of California on behalf of the American Ornithologists’ Union for libraries and other users, provided that they are registered with and pay the specified fee through the Copyright Clearance Center (CCC), www.copyright.com. To reach the CCC’s Customer Service Department, phone 978-750-8400 or write to info@copyright. com. For permission to distribute electronically, republish, resell, or repurpose material, and to purchase article offprints, use the CCC’s Rightslink service, available on Caliber at http://caliber. ucpress.net. Submit all other permissions and licensing inquiries through University of California Press’s Rights and Permissions website, www.ucpressjournals.com/reprintInfo.asp, or via e-mail: [email protected]. Back issues of Ornithological Monographs from earlier than 2007 are available from Buteo Books at http://www.buteobooks.com.
    [Show full text]
  • A New Diverse Enantiornithine Family (Bohaiornithidae Fam. Nov.) from the Lower Cretaceous of China with Information from Two New Species
    -76 第52卷 第1期 古 脊 椎 动 物 学 报 pp. 31 2014年1月 VERTEBRATA PALASIATICA figs. 1-11 A new diverse enantiornithine family (Bohaiornithidae fam. nov.) from the Lower Cretaceous of China with information from two new species WANG Min1,2 ZHOU Zhong-He1 Jingmai K. O’CONNOR1 Nikita V. ZELENKOV3 (1 Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences Beijing 100044 [email protected]) (2 University of Chinese Academy of Sciences Beijing 100049) (3 Borissiak Palaeontological Institute of the Russian Academy of Sciences Moscow 117997) Abstract Two new enantiornithine birds, Parabohaiornis martini gen. et sp. nov., and Longusunguis kurochkini gen. et sp. nov., are reported here based on three nearly complete skeletons from the Lower Cretaceous lacustrine deposits of the Jiufotang Formation in Liaoning, northeastern China. The two new species share several unique features with Bohaiornis, Shenqiornis, Sulcavis and Zhouornis, including a robust rostrum with robust, subconical teeth, furcula with blunt omal expansions, sternal trabeculae caudolaterally directed, short and stout tarsometatarsus with hypertrophied ungual on digit Ⅲ. A close relationship among the two new species and four previously described taxa is confirmed by a comprehensive phylogenetic analysis, leading us to erect Bohaiornithidae fam. nov. With six known taxa, Bohaiornithidae is the most diverse recognized enantiornithine family. The robust morphology of the rostrum and foot suggests bohaiornithids occupied a specialized ecological niche compared to other Early Cretaceous enantiornithines. Key words Early Cretaceous, Jehol Biota, Enantiornithes, Bohaiornis, Shenqiornis, Sulcavis, Zhouornis 1 Introduction The abundant and continuous discoveries of exquisitely preserved plant, invertebrate, and vertebrate fossils from the Lower Cretaceous of China have made the Jehol Biota one of the world’s most important Mesozoic terrestrial biomes (Chang et al., 2001; Zhou et al., 2003; Zhou, 2006).
    [Show full text]