Internet of Things Network Study

Total Page:16

File Type:pdf, Size:1020Kb

Internet of Things Network Study Internet of Things Network Study By Masters in Embedded and Cyber-Physical Systems Research Advisor Dan Cregg Team members Ta-Yu Chiu Neha Sadhvi Yidi Fan Ricky Yang Contents 1.Thesis Statement 3 2. Introduction 3 3. Objectives 3 4. Equipment and Devices 3 5. Network Protocols in Study 4 6. Testing Environment 6 7. Number of devices under Test 6 8. Network Layer Frequency 6 9. Physical Layer Frequency 6 10. Test Setup 7 11. Results 8 12. Constraints 13 13. Conclusion 14 14. References 14 15. Acknowledgements 15 16. Contacts 15 1.Thesis Statement As the use of smart embedded devices grows in our daily life, current networking technologies are expected to be strained beyond their original intent. Consumers face unacceptable performance as nodes are increased and network bandwidth is consumed in physically constraining environments. Various network types and use cases, thus, are explored to determine current failure points in common IoT home smart devices. 2. Introduction At the time of this report, there has been an unprecedented uptake in the use of ‘smart’ devices in the home. The introduction of voice recognition platforms such as Google Home and Amazon Alexa has fueled the use of small, inexpensive, connected sensing and control devices. Controls for Heating and Air Conditioning have been popular, as well as various sensors for doors, windows, etc.. Perhaps the most pervasive has been the acceptance of these types of systems for lighting control. Due to the sheer number of nodes available in a home, lighting nodes to be controlled is very large. This research will focus on various types of network technologies with the goal of physically simulating small to large sets of devices to determine acceptable response time. 3. Objectives In order to determine acceptable consumer performance levels and evaluate selected IoT network protocol, we severely tested the 4 well-known wireless network protocols under various real environmental conditions. We also tested these protocols for its scalability by connecting at least 40 devices to the same network to study its performance. To best simulate a typical use case, it is expected that the devices would not all be expected to be at the exact same state (light level for example) and therefore, direct or individual commands were used as required. 4. Equipment and Devices ❏ ESP-32 WiFi / Bluetooth module ❏ Insteon 2457D Plug-in Dimmer Module ❏ Insteon Hub ❏ Insteon Powerline Filter ❏ Philips Dimmable LED bulb ❏ 120VAC-5VDC USB power supplies ❏ STE3000 RF Test Shielded Enclosure ❏ Philips Hue connect LED bulb ❏ Philips Hue Bridge Equipment used for Network Protocol Testing 5. Network Protocols in Study ● Bluetooth : Bluetooth is a wireless technology for wirelessly exchanging data over short distances using ultra-high-frequency radio waves. Technically, Bluetooth operates in the 2400-2483.5 MHz range within the ISM 2.4GHz frequency band [1]. This technology was designed to eradicate the use of chords, cables etc. when the devices are in close proximity to each other. However, Bluetooth was originally designed for continuous, streaming data applications; in other words, it is better to apply this technology in the audio, or video transmitting. Thus, the applications of Bluetooth technology in IoT mostly tend to be like a wireless speaker, files transfer between devices, or wireless headsets. On the other side, BLE (also known as Bluetooth Low Energy) is more widely used in the domain of IoT. Thus, we adopt BLE for our testing. For BLE, it also operates the same frequency band as Bluetooth. The reason why we use BLE is that in most cases, smart home devices are mostly dealing with the very simple messages like just turn on/off of appliances, or discrete messages. All of these operations are very simple for not only users but also devices. For instance, if a user wants to operate his/her air conditioner, he/she just needs to issue a message, like “ON” signal to the device, from his phone, and the device just needed to make sure it can receive the message and turn itself to ON status. Furthermore, BLE remains in sleep mode constantly except for when a connection is initiated [2], which can largely decrease the power consumption if we are compared with classic Bluetooth. ● Insteon : With the advent of the IoT industry, lots of wireless protocols are being used in this field and each one is trying their best to make themselves more attractive in this large and competitive market. Insteon, which is also a very popular wireless protocol for IoT, is started in 2005. With years and years of efforts on improvements and adjustment, Insteon protocol is becoming a very powerful and effective wireless protocol. For its technology, Insteon adopts a dual-band technology in which it uses both powerlines as well as wireless technology which allows the signal to travel further without interruption, resulting in a lower effective data loss [3]. Moreover, the use of a simulcast mesh network allows better scalability to adapt to a future of automated homes. To be more concise, every device can repeat messages across the network, eliminating the bottlenecks that occur when a single device fails in a routed network [3]. Also, because of dual-band technology, the mesh network extends over both wireless and wired Insteon devices, which can dramatically lower the data miss rate. ● Wi-Fi : Wi-Fi is a popular wireless networking technology which could provide high-speed internet and network connections using radio waves. It’s frequently used for the wireless local area networking (WLAN) of devices which is based on the IEEE 802.11 family of standards. [4]Wi- Fi technologies have a broad implementations on devices including desktops, laptops, smartphones and smart home devices. Compatible devices can connect to each other over Wi-Fi through a wireless access point as well as to connected Ethernet devices and may use it to access the Internet. Such an access point has a range of about 20 meters (66 feet) indoors and a greater range outdoors. [5]For instance, the coverage of Wi-Fi can be as small as a single room with walls that block radio waves, or as large as many square kilometres achieved by using multiple overlapping access points. Nevertheless, Wi-Fi is potentially more vulnerable to attack than wired networks because anyone within range of a network with a wireless network interface controller can attempt access. To overcome the problem, Wi-Fi Protected Access (WPA) is established to protect information moving across Wi-Fi networks and includes solutions for personal and enterprise networks. Security features of WPA have included stronger protections and new security practices as the security landscape has changed over time. ● ZigBee : Zigbee is an IEEE 802.15.4-based specification for a suite of high-level communication protocols used to create personal area networks with small, low-power digital radios, such as for home automation, medical device data collection, and other low-power low-bandwidth needs, designed for small scale projects which need wireless connection. Hence, Zigbee is a low-power, low data rate, and close proximity wireless ad hoc network. The technology defined by the Zigbee specification is intended to be simpler and less expensive than other wireless personal area networks (WPANs), such as Bluetooth or more general wireless networking such as Wi-Fi. Applications include wireless light switches, home energy monitors, traffic management systems, and other consumer and industrial equipment that requires short- range low-rate wireless data transfer. 6. Testing Environment ● Open Area Scenario: No obstacle in between the devices; in other words, all devices are placed in the same room along with the controller. ● Common Residential Scenario: To simulate a common house with a wooden wall, we kept all the 40 devices in the same closed room and kept the controller in the different room to test the penetration capacity of the protocols through the walls of the room. ● Concrete Material Scenario: To simulate a scenario where the signal penetrates through the concrete material and measure each protocol’s performance. We kept all of the 40 devices on the second floor and used the controller from the first floor to test the performance of each protocol via the concrete floor material. ● Metal Material Scenario: Server devices at placed inside a metal box to test each protocol under the most extreme conditions. This scenario is not likely to happen in real life, but it is a good measurement to measure each protocol in the worst possible conditions. ● Real Home Environment Scenario: Controller and all the 40 devices are scattered around different places inside the real home to test each protocol’s performance in the presence of all of the above-mentioned materials i.e. wood, concrete, metal and many other materials generally available in the house. 7. Number of devices under Test ● Bluetooth: 40 ● Insteon: 40 ● Wi-Fi: 40 ● Zigbee: 40 8. Network Layer Frequency ● Bluetooth: 2.4 GHz ● Insteon: 915 MHz ● Wifi: 2.4 GHz ● Zigbee: 2.4 GHz 9. Physical Layer Frequency ● Bluetooth: None ● Insteon: 132KHz Powerline ● Wifi: None ● Zigbee: None 10. Test Setup ● Bluetooth: For the Bluetooth devices, there can be various different topology set up that could be used, like point-to-point, broadcast and mesh network topology. For our testing, we selected the point-to-point network topology to best simulate a home use-case. We used 40 ESP32 microcontrollers having a BLE module as clients to receive the data of turning on the onboard LED from the server(controller) which is again an ESP32 module. The server sends the data to turn on the light one by one to each of the 40 devices. For this, in our project, we used C++ programming language for the development work and used Arduino as our Integrated Development Environment (IDE) to write and embed code into each of our 40 devices and one server.
Recommended publications
  • Required Submission Information for Each Award
    I. Market Overview The network system protocols market closely follows the trends in home and building automation markets. Home and building controls can effectively be performed through wireless and powerline platforms. In addition, several manufacturers produce systems based on proprietary protocols. Any changes in the home or building automations markets have a direct impact on the market demand for these platforms. The residential segment forms a major portion of the application for these platforms, driven by a growing awareness about the benefits rendered through home automation. In 2005, revenues for the North American home automation market were estimated at $1,268.9 million and the market is expected to witness steady growth in the future. As a result of this, the protocols market is also experiencing healthy growth. Another crucial trend in this industry is the developing shift from proprietary platforms to open ones, which offers interoperability and more flexibility to end- users. The industry is also witnessed an increasing interest in wireless solutions, which in turn has driven the markets for radio frequency (RF) platforms. Although wireless solutions have been able to make some headway in the home automation market, some critics remain unconvinced of their effectiveness in terms of reliability. On the other hand, powerline communication offers more reliability and an extended reach. Hence, there is a need for simple and affordable protocol that can offer the benefits of both RF and powerline platforms. Moreover, the use of this open platform is likely to enable end-users to choose from a range of products, which is not feasible when using native or proprietary platforms.
    [Show full text]
  • Zigbee, Bluetooth LE, Enocean, Wavenis, Insteon and UWB *Ms
    Proc. of the Intl. Conf. on Recent Trends In Computing and Communication Engineering -- RTCCE 2013 Copyright © Institute of Research Engineers and Doctors. All rights reserved. ISBN: 978-981-07-6184-4 doi:10.3850/ 978-981-07-6184-4_60 A Comparative Study of Wireless Technologies: Zigbee, Bluetooth LE, Enocean, Wavenis, Insteon and UWB *Ms. Harneet kaur, #Ms. Sukesha Sharma Abstract-The major design challenge of home automation is to powered and battery less with low power radio frequency choose best standard for controlling devices in existing home (RF). Radio frequency having a biggest advantage over environments without any changes in infrastructure. In recent infrared (IR) that new devices can easily be added or removed years Zigbee was the promising technology for home from the network. Individual devices forming a network and automation. But, nowadays there are some other standards all are working together in harmony. After forming a network which give their best for controlling home devices. This paper presents an overview of different wireless communication there are certain events that takes place like manual events, standards by comparing their main features in terms of various timed events and triggered events. All devices are connected metrics such as range, frequency band, maximum node count, to common network and controlled by a central regulation security, and cost. and control unit. There are three types of controls systems such as: -Individually control system: Only one appliance or function Keywords: Wireless technologies, Bluetooth LE, Zigbee, is controlled in these systems. For example a remote control Enocean, Insteon, Wavenis, UWB. unit. -Distributed control systems: Controller elements are not in Introduction central location in these systems, they are distributed In today’s life because of huge amount of standards available throughout the network and controlled by one or more in the market choosing the best one is the biggest challenge.
    [Show full text]
  • Home Control Assistant Version 12 Appendixes
    Home Control Assistant Version 12 Appendixes WWW.HCATech.com The information contained in this document is subject to change without notice. Advanced Quonset Technology, Inc. provides this information “as is” without warranty of any kind, either expressed or implied, but not limited to the implied warranty of mechantability and fitness for a particular purpose. Advanced Quonset Technology, Inc. may improve or change the product at any time without further notice; this document does not represent a commitment on the part of Advanced Quonset Technology, Inc. The software described in this document is furnished under a license agreement or nondisclosure agreement. The software may be used or copied only in accordance with the terms of the licensing agreement. Windows is a registered trademark, and Windows NT is a trademark of Microsoft Corporation. All other product names and services identified in this document are trademarks or registered trademarks of their respective companies and are used throughout this document in editorial fashion only and for the benefit of such companies. No such uses, or the use of any trade name, is intended to convey an endorsement or other affiliation with Advanced Quonset Technology, Inc. © 2001-2013 Advanced Quonset Technology, Inc. All rights reserved. Printed in the U.S.A. November 15, 2013 Appendix 1 HCA versions and Interface Support..........................................................................................................1 Appendix 2 CM11 / CM15 ............................................................................................................................................3
    [Show full text]
  • Spec Sheet Universal Devices ISY994
    ISY994 Series Gateways Energy Management and Building Automation System Main Features • Autonomous & self contained - no connection to cloud services necessary • Securely accessible from any mobile or desktop browser using TLS, with full support for x509 certificates. • Certified OpenADR 2.0a & 2.0b VEN • Meets applicable requirements of Dept. of Homeland Security: SCADA 1.8 • Available with ZigBee, Z-Wave, and INSTEON wireless protocols • Uses off-the-shelf sensors and devices • Extensible with software modules for weather, network resources, security interfaces, and more. • Fully upgradeable without site visits • Open and robust application programming interface (API) Description Available in a variety of low cost configurations, the ISY994 Series energy management and automation controller provide power and flexibility perfect for middle market, small, and medium business needs. Using open standards, the ISY994 provides building owners, contractors, and project leads the flexibility to automate a variety of every day tasks. Capable of communicating with a wide variety of off-the- shelf devices such as thermostats, lighting, IoT devices, and loads using ZigBee, Z-Wave, or Insteon, in addition to IP and direct contacts. The ISY994 series can read energy consumption from individual devices using Z-Wave, ZigBee, and AMI smart meters and report the data using OpenADR by simply dragging and dropping devices into the reporting group. Unlike other solutions that use “the cloud” to process and store events, the ISY994 allows users to keep their information private by processing events, states, and triggers with the ISY and behind the firewall, and yet accessible from a variety of devices. Ordering Information Not relying solely on cloud services means your building is fully under your control during ISY|994|i|Zw|IR|PRO service outages, and shields you from the perils of stranded assets if cloud providers can no longer Module: PRO – Professional Series support customers in the future.
    [Show full text]
  • User Manual Or Android APP User Manual
    UUsseerr MMaannuuaall Outdoor HD IP Camera Model: 2864-232 V1.4 User M a n u a l Table of Contents Table of Contents ............................................................................................................................................................... 1 1 Overviews......................................................................................................................................................................... 1 1.1 Key Features ........................................................................................................................................................ 1 1.3 Read Before Use ................................................................................................................................................. 2 1.4 Packing Contents ................................................................................................................................................. 2 1.5 Physical Description ............................................................................................................................................ 2 1.5.1 Front Panel ................................................................................................................................................ 2 1.5.2 Interface ..................................................................................................................................................... 3 1.5.3 Bottom View .............................................................................................................................................
    [Show full text]
  • Serialinc 2410S
    SeriaLinc ® INSTEON to 2-Way RS-232 Serial Converter Model : 2410S SeriaLinc Owner’s Manual TABLE OF CONTENTS ABOUT SERIALINC ..................................................................................................................................... 3 Key SeriaLinc Features ............................................................................................................................. 3 What is Included with SeriaLinc ................................................................................................................ 3 System Requirements ............................................................................................................................... 3 WHAT IS INSTEON? .................................................................................................................................... 4 INSTALLATION ............................................................................................................................................ 4 Preparing to Install SeriaLinc..................................................................................................................... 4 Creating a CSV File ................................................................................................................................... 5 Installing SeriaLinc .................................................................................................................................... 6 ADVANCED FEATURES ............................................................................................................................
    [Show full text]
  • Wireless Home Automation Networks: a Survey of Architectures and Technologies
    Wireless Home Automation Networks: A Survey of Architectures and Technologies Carles Gomez and Josep Paradells Presented by Deepen Solanki and Aishwarya Rao Table of Contents 1. Introduction to WHANs 2. Solutions for WHANs a. ZIGBEE b. Z - WAVE c. WAVENIS d. INSTEON e. IP BASED 3. Discussion 4. Conclusion INTRODUCTION - WHANs WHAN Connectivity Monitoring Control Sensors Actuators ● Remote Control of Devices - Appliances ● Remote Care - wearables, fall detection ● Smart Energy Monitoring - HVAC, usage patterns ● Security Systems - burglar alarm, smoke detection INTRODUCTION - WHANs Characteristics ● High node density - (100s) ● Multipath environment - multiple reflective surfaces ● Interference - Bluetooth devices, microwave ovens ● Multihop communications - combating range ● Self-healing network - mobile devices ● Various traffic patterns - P2P, P2MP, MP2P ● Quick results - emergency situations ● Internet connectivity - Remote monitoring ● Highly constrained nodes - memory, processing power SOLUTIONS FOR WHANs ● ZigBee ● Z-Wave ● INSTEON ● Wavenis ● IP Based Solutions ZIGBEE (2004) ● Low Data Rate - 20, 40, 250kbps ● Short Range - 10 to 100m ● Bands - 868MHz / 915MHZ / 2.4GHz ● DSSS ● Device types Coordinator End device Router Beacon ● Channel access ● Profiles Beaconless ● Tree, Mesh ZigBee Home Automation Public Application Profile ZigBee Smart Energy Profile Z-WAVE (1999) ● Reliable transmission of short messages from a control unit to one or more nodes in the network ● 868.42 MHz in Europe, 908.42 MHz in US, 2.4GHz* ● Low data rate
    [Show full text]
  • Eadl 101 Part 2
    Mobile Device Based EADL • Cellphone / tablet is center of user interface • Typically require Wi-Fi / internet access • Apple, Google, and Microsoft Oh My! Mobile Device Based EADL • Not going to discuss mounting here, but it is an important piece of the puzzle. Mobile Device Based EADL • Pros – Cost efficient and aesthetically appealing – Natural language voice recognition – Modern home automation tech • Cons – Scanning is limited – Voice activation not always fully featured – No control over updates – Higher cognitive load Material Cost Comparison Traditional System Mobile Device System • Possum Primo!, $2900 • Client Owns Mobile Device • Switch, $125 • Switch, $125 • Sero! landline telephone, • iPad Switch Interface, $400 $1400 • SmartThings Hub, $150 • Three led bulbs, $90 • Harmony Hub, $100 • Insteon/IR Converter, $100 • Three led bulbs, $90 • Total Parts: $4615 • Total Parts: $865 IR Control – TV/Cable/DVD • Is you device IR? • Some cable systems not using IR • App or computer control IR Control • Some Android devices have IR blaster built in. IR Control Hubs • Logitech Harmony – Hub connects via WiFi – App and physical remote – Can integrate other home automation – Learning IR and Macros – Voice control via Echo – Add on extender for home automation features IR Control Hubs • Anymote – App Control – iOS and Android – Voice control built into app – Learning IR and Macros – Switch Control in iOS not great (Gliding Cursor) – Button Location Easily Customized – Recently discontinued hardware L – Can use third party IR Sender Content
    [Show full text]
  • M2M Protocols, Solutions and Platforms for Smart Home Environments Integrating C.STATUSTM and the Mediasense
    M2M Protocols, Solutions and Platforms for Smart Home Environments Integrating C.STATUSTM and the MediaSense 10/12/2012 MID SWEDEN UNIVERSITY The Department of Information Technology and Media (ITM) Author: Addisu Thomas Lodamo, [email protected] Tutors: Stefan Forsström, Miun,[email protected] Examiner: Prof. Tingting Zhang, [email protected] Medical Monitoring Services Home Security automation Services Services Energy Entertainment Consumption Services services e y t a a W G The Internet M.Sc. Thesis within Computer Engineering AV, 30 Credit Points M2M Protocols, Solutions and Platforms for Smart Home Environments Integrating C.STATUSTM and the MediaSense Addisu Lodamo M2M Protocols, Solutions and Platforms for Smart Home Environments Abstract Addisu Lodamo 2012-11-11 Abstract Digital technological breakthroughs have brought about a huge change in the way the society interacts, responds to the immediate environment and the way that people live. Furthermore, Ubiquitous Computing and dirt cheap sensors have created a new paradigm in digital technology where human beings could control their environment in a different approach. In a number of paradigms of digital technology, multiple proprietary solutions in industry results in a huge cost for the end users to use the technology and thus a very sluggish penetration of the tech- nology into the society. Moreover, such unorganized and vendor ori- ented standards create additional burdens on a person concerned in design and implementation. This thesis presents existing and emerging technologies in relation to smart home environment having an aim to manifest available open standards and platforms. Smart Home Envi- ronment Infrastructures have been presented and discussed.
    [Show full text]
  • A Survey on Smart Home Networking
    A Survey on Smart Home Networking Jin Cheng and Thomas Kunz Department of Systems and Computer Engineering Carleton University Ottawa, Ont., Canada Carleton University, Systems and Computer Engineering, Technical Report SCE-09-10, September 2009 TABLE OF CONTENTS I. Introduction ..................................................................................................................... 4 II. Home appliances control in smart homes ...................................................................... 6 2.1 Generation and storage of renewable energy sources............................................. 6 2.2 Categories of energy usage in residences ............................................................... 9 2.3 Redefinition of the operation mode in a smart home............................................ 10 2.4 Basic configuration and context control of a home control system...................... 13 2.5 Technology independent requirements of utilities in a smart home..................... 15 2.5.1 The framework of Home Area Network.............................................................. 15 2.5.2 The guiding principles targeted for Home Area Network ................................... 16 2.5.3 Functional requirements in Home Area Network................................................ 17 III. Networking patterns and technology for home energy control .................................. 20 3.1 Subdivision of network functionality...................................................................... 20 3.2 Considerations of
    [Show full text]
  • Lighting Control White Paper
    Lighting Control White Paper A Brief Technology Overview of the Lighting Control Marketplace X-10, Insteon, Z-Wave, ZigBee, RadioRA2, Universal Powerline Bus (UPB) Fuchsia Research Corporation August 2014 Introduction When considering lighting control and home automation, there are many options in the marketplace, to include selection of a supplier, technology, company’s breadth of product line, ease of use, ease of installation, and service and support. Doing a Google search for ‘home automation’ or ‘lighting control’ can many times lead to confusion, resulting in head scratching ‘chaos’, given the information provided blogs, trade publications, hobbyists, and DIYers, many times provides incomplete and sometimes incorrect information. If you have a multi-million dollar primary or vacation home, working with a high-end/cost architect, have a $50,000-$100,000+ budget for home automation and/or lighting control, this White Paper is probably not for you. This White Paper is for the rest of us, objective, to provide a general overview of the market, technologies, and assist in your selection of a home automation lighting control solution to best meet your needs – and budget. X-10 X-10 was developed in 1975 by Pico Electronics of Glenrothes, Scotland. It uses primarily power line wiring for signaling and control, the signals involve radio frequency bursts representing digital information. X-10 has led the way using powerline communication over the past 40 years and could easily be considered the father of home automation. Some thoughts considering X-10. Select X-10 if you have a very limited budget, no more than $10-$15 per device.
    [Show full text]
  • INSTEON Developer's Guide
    D e v e l o p e r ’ s G u i d e October 14, 2005 © 2005 Smarthome Technology Developer’s Guide Page i Contents at a Glance INTRODUCTION............................................................................................ 1 INSTEON BASICS ......................................................................................... 3 Getting Started Quickly ............................................................................. 4 About This Developer’s Guide.................................................................... 5 INSTEON Overview.................................................................................. 11 INSTEON Application Development Overview.......................................... 23 INSTEON REFERENCE ................................................................................. 30 INSTEON Messages ................................................................................. 31 INSTEON Signaling Details ...................................................................... 46 INSTEON Network Usage......................................................................... 59 INSTEON BIOS (IBIOS) ........................................................................... 90 SALad Language Documentation ........................................................... 132 Smarthome Device Manager Reference ................................................. 209 INSTEON Hardware Development Documentation................................. 229 CONCLUSION...........................................................................................
    [Show full text]