Junior Aquanaut 8-11 Sharks!

Total Page:16

File Type:pdf, Size:1020Kb

Junior Aquanaut 8-11 Sharks! Family Field Trip Days: Instructions Step 1: Watch “Shark Diet and Dentition” and “Shark’s Sixth Sense” Deep Sea Learn- ing Videos with Georgia Aquarium (Found on the ‘At Home Learning’ tab of our web- site). Step 2: Review “Shark Diet and Dentition” and “Shark’s Sixth Sense” Fact Sheets. Step 3: Visit Georgia Aquarium to com- plete the questions and activity sheets in this packet! Step 4: Learn more about the sharks at home through the Georgia Aquarium Web- site. Gallery Scavenger Hunt: Sharks Instructions: Explore Georgia Aquarium galleries and exhibits to find the answers to the questions below! Sharks have a symbiotic relationship called commen- Sharks live in practically every type of water, in Australia salism with remoras. The remoras get a free ride and there’s even a few river sharks, like the speartooth shark. easy access to food, while the sharks aren’t affected. A fish in River Scout can be found in the same waters Another type of symbiotic relationship is mutualism. and regions as the speartooth shark! This fish has black What two animals in Tropical Diver, have a mutualistic bands and can shoot water at prey to catch it. Which fish relationship? is it? _____________________________________________ _______________________________________________ In Cold Water Quest, this shark when threatened This shark in Ocean Voyager is heteromorphic, looks bends its body into a U-shape, grasps its caudal fin physically different at different life stages. Its name in its mouth and swallows a large quantity of sea comes from its stripes it has as a pup. Which shark is water, which makes it swell to twice its normal it? _____________________________________________ size. Which shark is it? ______________________ Researchers attached satellite tags to whale sharks and were able to discover what four important facts about the shark and water it lives in? ____________________________________________________________________ ______________________________________________________________________________________ Shark Anatomy Dorsal Fins Gills Pelvic Fin Caudal Fin Pectoral Fin Mouth Types of Sharks Find all twelve types of sharks that live at Georgia Aquarium! F B G Y U M N D R G R E A T H A M M E R H E A D R T L W E E R V G O P K J E R S W S A N D B A R M B L A F T T E B R A E L L N P O W R T E Q Z X H W P O C P P E G S T Y O I L I R H B R G L L V S C K S P K A U T I F L E Z N D E A R C X B Z E B O T H I Word Bank M T O L L T A O B B E G G N G W R O E L L S A N L • Whale • Silky O I L I V D A C A R I B E N M C K G A Q U R I A V • Zebra • Tiger M P G R O N G A I T E G R G I E M E T A T B A I E • Sandbar • Wobbegong E P Y C L A E T A S H A R A K H U B M P H A E A R • Epaulette • Sand Tiger W E R A E S T A T R I G R A E D E B C R A O L F T • Swell • Silvertipped L D I X S M I N T H I A N D I P P O E R C L C K I W R A T E P A U L E T T E E R V O W D K A O C E P • Blacktipped • Great Hammer- Reef head N E K L P E F O R S T R E E S A G A S R S E L S P U E A R Y M A G N R O V S E S I L K Y L A L G I E D F A M S E L F S H I L N O G N S O S E E R G A D T H E S R H W H A L E E R R K S H S I W P P E D A C C K O O I E C T T U R E G R N E E S L N D A S H Types of Sharks KEY Find all twelve types of sharks that live at Georgia Aquarium! F B G Y U M N D R G R E A T H A M M E R H E A D R T L W E E R V G O P K J E R S W S A N D B A R M B L A F T T E B R A E L L N P O W R T E Q Z X H W P O C P P E G S T Y O I L I R H B R G L L V S C K S P K A U T I F L E Z N D E A R C X B Z E B O T H I Word Bank M T O L L T A O B B E G G N G W R O E L L S A N L • Whale Word Bank• Silky O I L I V D A C A R I B E N M C K G A Q U R I A V • Zebra • Tiger M P G R O N G A I T E G R G I E M E T A T B A I E • Sandbar • Wobbegong E P Y C L A E T A S H A R A K H U B M P H A E A R • Epaulette • Sand Tiger W E R A E S T A T R I G R A E D E B C R A O L F T • Swell • Silvertipped L D I X S M I N T H I A N D I P P O E R C L C K I W R A T E P A U L E T T E E R V O W D K A O C E P • Blacktipped • Great Hammer- Reef head N E K L P E F O R S T R E E S A G A S R S E L S P U E A R Y M A G N R O V S E S I L K Y L A L G I E D F A M S E L F S H I L N O G N S O S E E R G A D T H E S R H W H A L E E R R K S H S I W P P E D A C C K O O I E C T T U R E G R N E E S L N D A S H Gallery Scavenger Hunt: Sharks KEY Instructions: Explore Georgia Aquarium galleries and exhibits to find the answers to the questions below! Sharks have a symbiotic relationship called commen- Sharks live in practically every type of water, in Australia salism with remoras. The remoras get a free ride and there’s even a few river sharks, like the speartooth easy access to food, while the sharks aren’t affected. shark. A fish in River Scout can be found in the same Another type of symbiotic relationship is mutualism. waters and regions as the speartooth shark! This fish What two animals in Tropical Diver, have a mutualistic has black bands and can shoot water at prey to catch it. relationship? clownfish and bubble sea anemo- Which fish is it? banded archerfish ne In Cold Water Quest, this shark when threatened This shark in Ocean Voyager is heteromorphic, looks bends its body into a U-shape, grasps its caudal fin physically different at different life stages. Its name in its mouth and swallows a large quantity of sea comes from its stripes it has as a pup. Which shark is water, which makes it swell to twice its normal it? zebra shark size. Which shark is it? swell shark Researchers attached satellite tags to whale sharks and were able to discover what four important facts about the shark and water it lives in? Global location, swim patterns, depth travelled and water tem- perature .
Recommended publications
  • Intracratonic Asthenosphere Upwelling and Lithosphere Rejuvenation
    Earth and Planetary Science Letters 260 (2007) 482–494 www.elsevier.com/locate/epsl Intracratonic asthenosphere upwelling and lithosphere rejuvenation beneath the Hoggar swell (Algeria): Evidence from HIMU metasomatised lherzolite mantle xenoliths ⁎ L. Beccaluva a, , A. Azzouni-Sekkal b, A. Benhallou c, G. Bianchini a, R.M. Ellam d, M. Marzola a, F. Siena a, F.M. Stuart d a Dipartimento di Scienze della Terra, Università di Ferrara, Italy b Faculté des Sciences de la Terre, Géographie et Aménagement du Territoire, Université des Sciences et Technologie Houari Boumédienne, Alger, Algeria c CRAAG (Centre de Recherche en Astronomie, Astrophysique et Géophysique), Alger, Algeria d Isotope Geoscience Unit, Scottish Universities Environmental Research Centre, East Kilbride, UK Received 7 March 2007; received in revised form 23 May 2007; accepted 24 May 2007 Available online 2 June 2007 Editor: R.W. Carlson Abstract The mantle xenoliths included in Quaternary alkaline volcanics from the Manzaz-district (Central Hoggar) are proto-granular, anhydrous spinel lherzolites. Major and trace element analyses on bulk rocks and constituent mineral phases show that the primary compositions are widely overprinted by metasomatic processes. Trace element modelling of the metasomatised clinopyroxenes allows the inference that the metasomatic agents that enriched the lithospheric mantle were highly alkaline carbonate-rich melts such as nephelinites/melilitites (or as extreme silico-carbonatites). These metasomatic agents were characterized by a clear HIMU Sr–Nd–Pb isotopic signature, whereas there is no evidence of EM1 components recorded by the Hoggar Oligocene tholeiitic basalts. This can be interpreted as being due to replacement of the older cratonic lithospheric mantle, from which tholeiites generated, by asthenospheric upwelling dominated by the presence of an HIMU signature.
    [Show full text]
  • Global Ship Accidents and Ocean Swell-Related Sea States
    Nat. Hazards Earth Syst. Sci. Discuss., doi:10.5194/nhess-2017-142, 2017 Manuscript under review for journal Nat. Hazards Earth Syst. Sci. Discussion started: 26 April 2017 c Author(s) 2017. CC-BY 3.0 License. Global ship accidents and ocean swell-related sea states Zhiwei Zhang1, 2, Xiao-Ming Li2, 3 1 College of Geography and Environment, Shandong Normal University, Jinan, China 2 Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, 5 Beijing, China 3 Hainan Key Laboratory of Earth Observation, Sanya, China Correspondence to: X.-M. Li (E-mail: [email protected]) Abstract. With the increased frequency of shipping activities, navigation safety has become a major concern, especially when economic losses, human casualties and environmental issues are considered. As a contributing factor, sea state conditions play 10 a significant role in shipping safety. However, the types of dangerous sea states that trigger serious shipping accidents are not well understood. To address this issue, we analyzed the sea state characteristics during ship accidents that occurred in poor weather or heavy seas based on a ten-year ship accident dataset. The sea state parameters, including the significant wave height, the mean wave period and the mean wave direction, obtained from numerical wave model data were analyzed for selected ship accidents. The results indicated that complex sea states with the co-occurrence of wind sea and swell conditions represent 15 threats to sailing vessels, especially when these conditions include close wave periods and oblique wave directions. 1 Introduction The shipping industry delivers 90% of all world trade (IMO, 2011).
    [Show full text]
  • First Baby Zebra Sharks Born from Artificial Insemination Debut at the Aquarium of the Pacific on Tuesday, January 27
    Contacts: Marilyn Padilla / Claire Atkinson / Adrian Samora Aquarium of the Pacific (562) 951-1684 / (562) 951-1678 / (562) 951-3197 [email protected] / [email protected] / [email protected] First Baby Zebra Sharks Born From Artificial Insemination Debut at the Aquarium of the Pacific on Tuesday, January 27 The Aquarium breeds a large shark species through artificial insemination January 26, 2015, Long Beach, CA—The Aquarium of the Pacific is announcing that it is the first to be able to successfully reproduce zebra sharks through artificial insemination. More than 100 million sharks in the wild are killed annually due to human impact. Being able to artificially inseminate large shark species like the zebra shark can further research in helping dwindling shark populations in the wild. The 10-month-old sharks are slated to go on exhibit in the Aquarium’s Shark Lagoon on Tuesday, January 27. Fern, approximately 20 years old, is the mother of the two female sharks. Fern arrived to the Aquarium in 1997. She was inseminated in September 2013, and both babies hatched from their eggs in late March of 2014. The Aquarium’s experts have been caring for the youngsters in their behind-the-scenes shark nursery. The zebra shark pups are now about 2-and-a-half to 3 feet long and are now ready to be introduced in the shallow pools in Shark Lagoon. The public will be able to see these special sharks when the aquarium opens at 9:00 a.m. on Tuesday. The 140-pound and 7-and-a-half-foot long mother zebra shark can be seen swimming in the Aquarium’s Shark Lagoon exhibit with other large sharks.
    [Show full text]
  • Waves and Weather
    Waves and Weather 1. Where do waves come from? 2. What storms produce good surfing waves? 3. Where do these storms frequently form? 4. Where are the good areas for receiving swells? Where do waves come from? ==> Wind! Any two fluids (with different density) moving at different speeds can produce waves. In our case, air is one fluid and the water is the other. • Start with perfectly glassy conditions (no waves) and no wind. • As wind starts, will first get very small capillary waves (ripples). • Once ripples form, now wind can push against the surface and waves can grow faster. Within Wave Source Region: - all wavelengths and heights mixed together - looks like washing machine ("Victory at Sea") But this is what we want our surfing waves to look like: How do we get from this To this ???? DISPERSION !! In deep water, wave speed (celerity) c= gT/2π Long period waves travel faster. Short period waves travel slower Waves begin to separate as they move away from generation area ===> This is Dispersion How Big Will the Waves Get? Height and Period of waves depends primarily on: - Wind speed - Duration (how long the wind blows over the waves) - Fetch (distance that wind blows over the waves) "SMB" Tables How Big Will the Waves Get? Assume Duration = 24 hours Fetch Length = 500 miles Significant Significant Wind Speed Wave Height Wave Period 10 mph 2 ft 3.5 sec 20 mph 6 ft 5.5 sec 30 mph 12 ft 7.5 sec 40 mph 19 ft 10.0 sec 50 mph 27 ft 11.5 sec 60 mph 35 ft 13.0 sec Wave height will decay as waves move away from source region!!! Map of Mean Wind
    [Show full text]
  • Sustainability of Threatened Species Displayed in Public Aquaria, with a Case Study of Australian 1 Sharks and Rays 2 3 Kathryn
    https://link.springer.com/article/10.1007/s11160-017-9501-2 1 PREPRINT 1 Sustainability of threatened species displayed in public aquaria, with a case study of Australian 2 sharks and rays 3 4 Kathryn A. Buckley • David A. Crook • Richard D. Pillans • Liam Smith • Peter M. Kyne 5 6 7 K.A. Buckley • D.A. Crook • P.M. Kyne 8 Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT 0909, 9 Australia 10 R.D. Pillans 11 CSIRO Oceans and Atmosphere, 41 Boggo Road, Dutton Park, QLD 4102, Australia 12 L. Smith 13 BehaviourWorks Australia, Monash Sustainable Development Institute, Building 74, Monash University, 14 Wellington Road, Clayton, VIC 3168, Australia 15 Corresponding author: K.A. Buckley, Research Institute for the Environment and Livelihoods, Charles Darwin 16 University, Darwin, NT 0909, Australia; Telephone: +61 4 2917 4554; Fax: +61 8 8946 7720; e-mail: 17 [email protected] 18 https://www.nespmarine.edu.au/document/sustainability-threatened-species-displayed-public-aquaria-case-study-australian-sharks-and https://link.springer.com/article/10.1007/s11160-017-9501-2 2 PREPRINT 19 Abstract Zoos and public aquaria exhibit numerous threatened species globally, and in the modern context of 20 these institutions as conservation hubs, it is crucial that displays are ecologically sustainable. Elasmobranchs 21 (sharks and rays) are of particular conservation concern and a higher proportion of threatened species are 22 exhibited than any other assessed vertebrate group. Many of these lack sustainable captive populations, so 23 comprehensive assessments of sustainability may be needed to support the management of future harvests and 24 safeguard wild populations.
    [Show full text]
  • Proceedings: Twentieth Annual Gulf of Mexico Information Transfer Meeting
    OCS Study MMS 2001-082 Proceedings: Twentieth Annual Gulf of Mexico Information Transfer Meeting December 2000 U.S. Department of the Interior Minerals Management Service Gulf of Mexico OCS Region OCS Study MMS 2001-082 Proceedings: Twentieth Annual Gulf of Mexico Information Transfer Meeting December 2000 Editors Melanie McKay Copy Editor Judith Nides Production Editor Debra Vigil Editor Prepared under MMS Contract 1435-00-01-CA-31060 by University of New Orleans Office of Conference Services New Orleans, Louisiana 70814 Published by New Orleans U.S. Department of the Interior Minerals Management Service October 2001 Gulf of Mexico OCS Region iii DISCLAIMER This report was prepared under contract between the Minerals Management Service (MMS) and the University of New Orleans, Office of Conference Services. This report has been technically reviewed by the MMS and approved for publication. Approval does not signify that contents necessarily reflect the views and policies of the Service, nor does mention of trade names or commercial products constitute endorsement or recommendation for use. It is, however, exempt from review and compliance with MMS editorial standards. REPORT AVAILABILITY Extra copies of this report may be obtained from the Public Information Office (Mail Stop 5034) at the following address: U.S. Department of the Interior Minerals Management Service Gulf of Mexico OCS Region Public Information Office (MS 5034) 1201 Elmwood Park Boulevard New Orleans, Louisiana 70123-2394 Telephone Numbers: (504) 736-2519 1-800-200-GULF CITATION This study should be cited as: McKay, M., J. Nides, and D. Vigil, eds. 2001. Proceedings: Twentieth annual Gulf of Mexico information transfer meeting, December 2000.
    [Show full text]
  • I. Wind-Driven Coastal Dynamics II. Estuarine Processes
    I. Wind-driven Coastal Dynamics Emily Shroyer, Oregon State University II. Estuarine Processes Andrew Lucas, Scripps Institution of Oceanography Variability in the Ocean Sea Surface Temperature from NASA’s Aqua Satellite (AMSR-E) 10000 km 100 km 1000 km 100 km www.visibleearth.nasa.Gov Variability in the Ocean Sea Surface Temperature (MODIS) <10 km 50 km 500 km Variability in the Ocean Sea Surface Temperature (Field Infrared Imagery) 150 m 150 m ~30 m Relevant spatial scales range many orders of magnitude from ~10000 km to submeter and smaller Plant DischarGe, Ocean ImaginG LanGmuir and Internal Waves, NRL > 1000 yrs ©Dudley Chelton < 1 sec < 1 mm > 10000 km What does a physical oceanographer want to know in order to understand ocean processes? From Merriam-Webster Fluid (noun) : a substance (as a liquid or gas) tending to flow or conform to the outline of its container need to describe both the mass and volume when dealing with fluids Enterà density (ρ) = mass per unit volume = M/V Salinity, Temperature, & Pressure Surface Salinity: Precipitation & Evaporation JPL/NASA Where precipitation exceeds evaporation and river input is low, salinity is increased and vice versa. Note: coastal variations are not evident on this coarse scale map. Surface Temperature- Net warming at low latitudes and cooling at high latitudes. à Need Transport Sea Surface Temperature from NASA’s Aqua Satellite (AMSR-E) www.visibleearth.nasa.Gov Perpetual Ocean hWp://svs.Gsfc.nasa.Gov/cGi-bin/details.cGi?aid=3827 Es_manG the Circulaon and Climate of the Ocean- Dimitris Menemenlis What happens when the wind blows on Coastal Circulaon the surface of the ocean??? 1.
    [Show full text]
  • Extinction Risk and Conservation of the World's Sharks and Rays
    Extinction risk and conservation of the world's sharks and rays Nicholas K. Dulvy1*, Sarah L. Fowler2, John A. Musick3, Rachel D. Cavanagh4, Peter M. Kyne5, Lucy R. Harrison1, John K. Carlson6, Lindsay N. K. Davidson1, Sonja V. Fordham7, Malcolm P. Francis8, Caroline M. Pollock9, Colin A. Simpfendorfer10, George H. Burgess11, Kent E. Carpenter12, Leonard J. V. Compagno13, David A. Ebert14, Claudine Gibson2, Michelle R. Heupel15, Suzanne R. Livingstone16, Jonnell C. Sanciangco12, John D. Stevens17, Sarah Valenti2, & William T. White17 1IUCN Species Survival Commission Shark Specialist Group and Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, Burnaby, British Colombia V5A 1S6, Canada; 2IUCN Species Survival Commission Shark Specialist Group, NatureBureau International, 36 Kingfisher Court, Hambridge Road, Newbury RG14 5SJ, UK; 3Virginia Institute of Marine Science, Greate Road, Gloucester Point, VA 23062, USA; 4British Antarctic Survey, Natural Environment Research Council, Madingley Road, Cambridge CB3 0ET, UK; 5Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, Northern Territory 0909, Australia; 6NOAA/National Marine Fisheries Service, Southeast Fisheries Science Center, 3500 Delwood Beach Road, Panama City, FL 32408, USA; 7Shark Advocates International, The Ocean Foundation, 1990 M Street, NW, Suite 250, Washington, DC 20036, USA; 8National Institute of Water and Atmospheric Research, Private Bag 14901, Wellington, New Zealand; 9Species Programme, IUCN,
    [Show full text]
  • The Contribution of Wind-Generated Waves to Coastal Sea-Level Changes
    1 Surveys in Geophysics Archimer November 2011, Volume 40, Issue 6, Pages 1563-1601 https://doi.org/10.1007/s10712-019-09557-5 https://archimer.ifremer.fr https://archimer.ifremer.fr/doc/00509/62046/ The Contribution of Wind-Generated Waves to Coastal Sea-Level Changes Dodet Guillaume 1, *, Melet Angélique 2, Ardhuin Fabrice 6, Bertin Xavier 3, Idier Déborah 4, Almar Rafael 5 1 UMR 6253 LOPSCNRS-Ifremer-IRD-Univiversity of Brest BrestPlouzané, France 2 Mercator OceanRamonville Saint Agne, France 3 UMR 7266 LIENSs, CNRS - La Rochelle UniversityLa Rochelle, France 4 BRGMOrléans Cédex, France 5 UMR 5566 LEGOSToulouse Cédex 9, France *Corresponding author : Guillaume Dodet, email address : [email protected] Abstract : Surface gravity waves generated by winds are ubiquitous on our oceans and play a primordial role in the dynamics of the ocean–land–atmosphere interfaces. In particular, wind-generated waves cause fluctuations of the sea level at the coast over timescales from a few seconds (individual wave runup) to a few hours (wave-induced setup). These wave-induced processes are of major importance for coastal management as they add up to tides and atmospheric surges during storm events and enhance coastal flooding and erosion. Changes in the atmospheric circulation associated with natural climate cycles or caused by increasing greenhouse gas emissions affect the wave conditions worldwide, which may drive significant changes in the wave-induced coastal hydrodynamics. Since sea-level rise represents a major challenge for sustainable coastal management, particularly in low-lying coastal areas and/or along densely urbanized coastlines, understanding the contribution of wind-generated waves to the long-term budget of coastal sea-level changes is therefore of major importance.
    [Show full text]
  • Where the Swell Begins Walter Munk with Cher Pendarvis
    Where the Swell Begins Walter Munk with Cher Pendarvis Swells to the horizon 2 Surfing is a gift, a total involvement that takes us away from other thoughts and the cares of the world . 3 The interaction with the wave is a creative dance with the moving water . its the joy of riding a wave . During our early surfing, some of us tried rough prediction from weather maps. we!d listen to the weather and then try to predict when to take off from school or work to catch the swell. For instance, when we had high pressure on the west coast and isobar lines up by Alaska, we knew we may get a winter swell. In college, we!d plan our school schedules around the tides, and also study ahead so that we had time to surf when the waves were good. Now we have forecasts and other services available from Surfline, Wetsand and others. You can also sign up to have surf reports sent to your email address. In this Surfline screen we can check out the direction and size of the current swells and the wind and weather conditions. This screen shows the direction and size of the current swells. A fun day at Windansea 9 A fun day at Ralphs, San Diego harbor 10 South Swell Shorebreak painting 11 We did not always have such great tools for forecasting the waves. Dr. Walter Munk was the first to discover how to forecast swells. Walter first came to Scripps Institution of Oceanography in 1939, and after completing his Bachelor!s and Master!s degrees at CalTech, he took a job at Scripps and worked alongside Dr.
    [Show full text]
  • Elasmobranch Biodiversity, Conservation and Management Proceedings of the International Seminar and Workshop, Sabah, Malaysia, July 1997
    The IUCN Species Survival Commission Elasmobranch Biodiversity, Conservation and Management Proceedings of the International Seminar and Workshop, Sabah, Malaysia, July 1997 Edited by Sarah L. Fowler, Tim M. Reed and Frances A. Dipper Occasional Paper of the IUCN Species Survival Commission No. 25 IUCN The World Conservation Union Donors to the SSC Conservation Communications Programme and Elasmobranch Biodiversity, Conservation and Management: Proceedings of the International Seminar and Workshop, Sabah, Malaysia, July 1997 The IUCN/Species Survival Commission is committed to communicate important species conservation information to natural resource managers, decision-makers and others whose actions affect the conservation of biodiversity. The SSC's Action Plans, Occasional Papers, newsletter Species and other publications are supported by a wide variety of generous donors including: The Sultanate of Oman established the Peter Scott IUCN/SSC Action Plan Fund in 1990. The Fund supports Action Plan development and implementation. To date, more than 80 grants have been made from the Fund to SSC Specialist Groups. The SSC is grateful to the Sultanate of Oman for its confidence in and support for species conservation worldwide. The Council of Agriculture (COA), Taiwan has awarded major grants to the SSC's Wildlife Trade Programme and Conservation Communications Programme. This support has enabled SSC to continue its valuable technical advisory service to the Parties to CITES as well as to the larger global conservation community. Among other responsibilities, the COA is in charge of matters concerning the designation and management of nature reserves, conservation of wildlife and their habitats, conservation of natural landscapes, coordination of law enforcement efforts as well as promotion of conservation education, research and international cooperation.
    [Show full text]
  • Zebra Shark, Stegostoma Fasciatum
    Published Date: 1 March 2019 Zebra Shark, Stegostoma fasciatum Report Card Sustainable assessment IUCN Red List IUCN Red List Least Concern Endangered Australian Global Assessment Assessment Assessors Dudgeon, C.L., Simpfendorfer, C. & Pillans, R.D. In Australia, minimal impacts from fishing; elsewhere high fishing Report Card Remarks pressure and habitat loss Summary The Zebra Shark is a large bodied, distinctly patterned shark that is broadly distributed throughout Australia and parts of Southeast Asia. There are two distinct subpopulations: Indian Ocean- Southeast Asian and Eastern Indonesian- Oceania (which includes Australia). The latter subpopulation has regions where there is minimal exploitation (e.g. Australia) and regions of greater fishing pressure where it is taken as bycatch and Source: Ross D. Robertson/Shorefishes of the neotropics. Licence: CC By Attribution-NonCommercial. there are habitat threats. Extensive fishing occurs in Eastern Indonesian waters and trawl fisheries in the Arafura Sea pose a threat to the species. Therefore, the Eastern Indonesia-Oceania subpopulation is assessed as Near Threatened (IUCN). The greatest levels of exploitation and ongoing threats for this species occurs in Southeast Asia, particularly Thailand through to Indonesia and the Indian Ocean-Southeast Asian subpopulation, and the overall global population, are both considered Endangered (IUCN). In Australia, there are minimal impacts from fishing. Therefore, in Australia the species is considered Least Concern (IUCN) and Sustainable (SAFS). Distribution The Zebra Shark is distributed throughout insular and continental shelf waters of the western Pacific and Indian Oceans (Compagno 2001). In Australia, it is found throughout northern Australia, from Port Gregory (Western Australia) to Montague Island (New South Wales) (Last and Stevens 2009).
    [Show full text]