Efficient Ray Casting of Volumetric Images Using Distance Maps For

Total Page:16

File Type:pdf, Size:1020Kb

Efficient Ray Casting of Volumetric Images Using Distance Maps For Computational Visual Media https://doi.org/10.1007/s41095-019-0155-y Vol. 6, No. 1, March 2020, 53–63 Research Article Efficient ray casting of volumetric images using distance maps for empty space skipping Lachlan J. Deakin1 ( ), Mark A. Knackstedt1 c The Author(s) 2019. Abstract Volume and isosurface rendering are methods 1 Introduction of projecting volumetric images to two dimensions for Volumetric images (volumes) are three-dimensional visualisation. These methods are common in medical scalar fields of voxels (volume + pixels). Volumes imaging and scientific visualisation. Head-mounted optical see-through displays have can be acquired with imaging technologies such recently become an affordable technology and are a as Computed Tomography (CT) and Magnetic promising platform for volumetric image visualisation. Resonance Imaging (MRI) which make it possible Images displayed on a head-mounted display must be to see inside opaque physical objects or people. presented at a high frame rate and with low latency Computer graphics hardware and pipelines have to compensate for head motion. High latency can be generally been optimised for rendering surface jarring and may cause cybersickness which has similar representations of scenes. Volumes are not surfaces and symptoms to motion sickness. must be rendered with specialised volume rendering Volumetric images can be very computationally techniques. Volume ray casting is a common volume expensive to render as they often have hundreds of rendering method well suited to acceleration on a millions of scalar values. Fortunately, certain materials Graphical Processing Unit (GPU) [1–3]. Rays are in images such as air surrounding an object boundary projected from each pixel of a display which pass are often made transparent and need not be sampled, through volumes and composite the colours and which improves rendering efficiency. opacities of the voxels they pass through. In our previous work we introduced a novel Voxels can be assigned a colour and opacity ray traversal technique for rendering large sparse based on their scalar value (and often their gradient volumetric images at high frame rates. The method magnitude) according to a transfer function. Transfer relied on the computation of an occupancy and distance functions can be manipulated by a user to control map to speed up ray traversal through empty regions. the appearance and visibility of different materials. In this work we achieve higher frame rates than our Lighting effects such as shadowing, specularity, and previous work with an improved method of resuming empty space skipping and the use of anisotropic scattering can be applied but are not widely used in Chebyshev distance maps. An optimised algorithm for medical image analysis. computing Chebyshev distance maps on a graphical Isosurfaces are surfaces representing constant scalar processing unit is introduced supporting real-time values within a volume [4]. An isosurface can be transfer function editing. extracted as a mesh and rendered using conventional surface rendering techniques. Isosurfaces can also Keywords ray casting; volume rendering; isosurface be rendered using ray casting directly on an image rendering; distance maps without a mesh extraction [5]. Modern augmented reality Head-Mounted Displays (HMDs) which are optically see-through enable new 1 Australian National University, Canberra, 2601, Australia. E-mail: L. J. Deakin, [email protected] ( ); volumetric image visualisation applications. These M. A. Knackstedt, [email protected]. devices are able to resolve their position as a user Manuscript received: 2019-12-14; accepted: 2019-12-21 moves his/her head and eyes. This makes it possible 53 54 L. J. Deakin, M. A. Knackstedt for a virtual object to be displayed in a user’s field of • an algorithm for efficiently generating isotropic view which may appear fixed in space or potentially and anisotropic Chebyshev distance maps on a aligned to a physical object. For example, a surgeon GPU for accelerated ray casting, and could visualise a CT or MRI image overlaid on • an extended performance analysis of the approach a patient without referring to an external display. with 2D transfer functions and various occupancy This application would provide depth perception of map region sizes. internal structures within the body and a surgeon would not need to look away from their hands. 2 Related work Images must be displayed on a HMD at high frame rates and with low latency to sufficiently compensate Empty space can be skipped when ray casting for head and eye motion. Otherwise, the wearer by only sampling between geometry which tightly of a HMD may experience cybersickness. Virtual bounds the occupied space within a volume [5]. The reality HMDs fully replace a user’s view of the world bounding geometry may be defined by coarse bricks and current generation devices require frames to be or a meshed isosurface. These approaches typically rendered at 90 Hz. Recent augmented reality HMDs only skip external empty space and may have a high overhead from rasterisation of the bounding with see-through displays require lower frame rates geometry. Generating the bounding geometry can of around 60 Hz. also be computationally expensive. Volume rendering can be very computationally Kruger and Westermann [1] created an occupancy expensive, particularly for high resolution images. map indicating which 83 regions of a volume are Rays passing through a volume may require a large empty. A ray caster can use the occupancy map to number of samples of the volumetric image texture skip sampling points in empty regions and reduce the before an output colour is determined or an isosurface total number of texture samples. Their occupancy is located. Ray casting must be accelerated to higher map has a low memory overhead as it has a low frame rates for visualisation on HMDs. resolution compared to the volume. Most volumetric images have some portion of Distance maps encoding the Chebyshev distance empty space which does not contribute to the output metric to the nearest occupied voxel have proven image. For volume rendering, empty space refers to be effective for ray casting acceleration [7, 8]. A to voxels which have zero opacity as defined by the ray is able to skip many voxels with a single sample transfer function. For example, the air surrounding of the distance map if far away from an occupied an object and some object materials may be made voxel. These approaches can substantially improve entirely transparent. Voxels which are not adjacent to frame rates for sparse images but the time needed surface interfaces are considered empty for isosurface to generate distance maps can inhibit interactive rendering. Empty space can be skipped to reduce the transfer function editing. number of texture samples and improve frame rates. Massive volumetric images which may not fit entirely We recently introduced an efficient empty space within GPU memory are becoming increasingly skipping approach for ray casting [6]. A reduced common from simulations and high-resolution imaging resolution occupancy map is generated describing technology. They can be rendered by only allocating which regions of a volume are occupied. A distance occupied bricks (regions) on the GPU [3, 9, 10]. Bricks map is then generated which encodes the Chebyshev can be referenced in hierarchical structures (such as distance to the nearest occupied region. The distance an octree) and empty bricks are simply skipped as the map is used to efficiently leap rays past empty regions structure is traversed. during voxel traversal and reduce the number of SparseLeap [10] rasterises occupied hierarchically unnecessary texture samples. referenced bricks into per-pixel linked lists. Only the This paper is an extended version of our previous occupied segments of rays go through the ray casting short format paper [6] which provides more details pipeline. Their method outperformed octree-based of the method and introduces: empty space skipping and could be used to render • an optimisation of the ray traversal approach terabyte sized sparse volumes. Bricks are not loaded to more effectively skip empty space within and onto the GPU if they are outside of the field of view behind objects, or occluded. Efficient ray casting of volumetric images using distance maps for empty space skipping 55 Our previous paper described an efficient method gradient magnitude of a voxel can be computed of empty space skipping utilising distance maps [6]. efficiently using the tetrahedron method [11] shown in Interactive transfer function editing was supported Algorithm 1 which is written in the OpenGL Shading by updating reduced resolution distance maps on the Language (GLSL). This method requires only 4 voxel GPU and massive volumes could be rendered by only neighbour samples unlike the conventional central allocating occupied bricks. Our method outperformed differences approach which requires 6. SparseLeap, octree-based, and bounding geometry (isosurface) acceleration on a set of images. Algorithm 1 Tetrahedron technique for voxel gradient magnitude calculation (GLSL) 3 Our approach layout (...) uniform sampler3D image; // global float gradient_tetrahedron_method(ivec3 pos) { ivec2 k=ivec2(1,-1); 3.1 Ray traversal vec3 gradient_dir = 0.25f * vec4( k.xyy * imageLoad(image, pos + k.xyy).x + A volumetric image is stored on a GPU as a 3D k.yyx * imageLoad(image, pos + k.yyx).x + d k.yxy * imageLoad(image, pos + k.yxy).x + texture with dimensions =[width, height, depth]. k.xxx * imageLoad(image,
Recommended publications
  • Rendering of Feature-Rich Dynamically Changing Volumetric Datasets on GPU
    Procedia Computer Science Volume 29, 2014, Pages 648–658 ICCS 2014. 14th International Conference on Computational Science Rendering of Feature-Rich Dynamically Changing Volumetric Datasets on GPU Martin Schreiber, Atanas Atanasov, Philipp Neumann, and Hans-Joachim Bungartz Technische Universit¨at M¨unchen, Munich, Germany [email protected],[email protected],[email protected],[email protected] Abstract Interactive photo-realistic representation of dynamic liquid volumes is a challenging task for today’s GPUs and state-of-the-art visualization algorithms. Methods of the last two decades consider either static volumetric datasets applying several optimizations for volume casting, or dynamic volumetric datasets with rough approximations to realistic rendering. Nevertheless, accurate real-time visualization of dynamic datasets is crucial in areas of scientific visualization as well as areas demanding for accurate rendering of feature-rich datasets. An accurate and thus realistic visualization of such datasets leads to new challenges: due to restrictions given by computational performance, the datasets may be relatively small compared to the screen resolution, and thus each voxel has to be rendered highly oversampled. With our volumetric datasets based on a real-time lattice Boltzmann fluid simulation creating dynamic cavities and small droplets, existing real-time implementations are not applicable for a realistic surface extraction. This work presents a volume tracing algorithm capable of producing multiple refractions which is also robust to small droplets and cavities. Furthermore we show advantages of our volume tracing algorithm compared to other implementations. Keywords: 1 Introduction The photo-realistic real-time rendering of dynamic liquids, represented by free surface flows and volumetric datasets, has been studied in numerous works [13, 9, 10, 14, 18].
    [Show full text]
  • Ray Casting Architectures for Volume Visualization
    Ray Casting Architectures for Volume Visualization The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Ray, Harvey, Hanspeter Pfister, Deborah Silver, and Todd A. Cook. 1999. Ray casting architectures for volume visualization. IEEE Transactions on Visualization and Computer Graphics 5(3): 210-223. Published Version doi:10.1109/2945.795213 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:4138553 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Ray Casting Architectures for Volume Visualization Harvey Ray, Hansp eter P ster , Deb orah Silver , Todd A. Co ok Abstract | Real-time visualization of large volume datasets demands high p erformance computation, pushing the stor- age, pro cessing, and data communication requirements to the limits of current technology. General purp ose paral- lel pro cessors have b een used to visualize mo derate size datasets at interactive frame rates; however, the cost and size of these sup ercomputers inhibits the widespread use for real-time visualization. This pap er surveys several sp e- cial purp ose architectures that seek to render volumes at interactive rates. These sp ecialized visualization accelera- tors have cost, p erformance, and size advantages over par- allel pro cessors. All architectures implement ray casting using parallel and pip elined hardware. Weintro duce a new metric that normalizes p erformance to compare these ar- Fig.
    [Show full text]
  • Ray Tracing Height Fields
    Ray Tracing Height Fields £ £ £ Huamin Qu£ Feng Qiu Nan Zhang Arie Kaufman Ming Wan † £ Center for Visual Computing (CVC) and Department of Computer Science State University of New York at Stony Brook, Stony Brook, NY 11794-4400 †The Boeing Company, P.O. Box 3707, M/C 7L-40, Seattle, WA 98124-2207 Abstract bility, make the ray tracing approach a promising alterna- tive for rasterization approach when the size of the terrain We present a novel surface reconstruction algorithm is very large [13]. More importantly, ray tracing provides which can directly reconstruct surfaces with different levels more flexibility than hardware rendering. For example, ray of smoothness in one framework from height fields using 3D tracing allows us to operate directly on the image/Z-buffer discrete grid ray tracing. Our algorithm exploits the 2.5D to render special effects such as terrain with underground nature of the elevation data and the regularity of the rect- bunkers, terrain with shadows, and flythrough with a fish- angular grid from which the height field surface is sampled. eye view. In addition, it is easy to incorporate clouds, haze, Based on this reconstruction method, we also develop a hy- flames, and other amorphous phenomena into the scene by brid rendering method which has the features of both ras- ray tracing. Ray tracing can also be used to fill in holes in terization and ray tracing. This hybrid method is designed image-based rendering. to take advantage of GPUs newly available flexibility and processing power. Most ray tracing height field papers [2, 4, 8, 10] focused on fast ray traversal algorithms and antialiasing methods.
    [Show full text]
  • Ray Casting and Rendering
    MIT EECS 6.837 Computer Graphics Part 2 – Rendering Today: Intro to Rendering, Ray Casting © NVIDIA Inc. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. NVIDIA MIT EECS 6.837 – Matusik 1 Cool Artifacts from Assignment 1 © source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. 2 Cool Artifacts from Assignment 1 © source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. 3 The Story So Far • Modeling – splines, hierarchies, transformations, meshes, etc. • Animation – skinning, ODEs, masses and springs • Now we’ll to see how to generate an image given a scene description! 4 The Remainder of the Term • Ray Casting and Ray Tracing • Intro to Global Illumination – Monte Carlo techniques, photon mapping, etc. • Shading, texture mapping – What makes materials look like they do? • Image-based Rendering • Sampling and antialiasing • Rasterization, z-buffering • Shadow techniques • Graphics Hardware © ACM. All rights reserved. This content is excluded from our Creative Commons [Lehtinen et al. 2008] license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. 5 Today • What does rendering mean? • Basics of ray casting 6 © source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. © Oscar Meruvia-Pastor, Daniel Rypl. All rights reserved.
    [Show full text]
  • A Survey on Bounding Volume Hierarchies for Ray Tracing
    DOI: 10.1111/cgf.142662 EUROGRAPHICS 2021 Volume 40 (2021), Number 2 H. Rushmeier and K. Bühler STAR – State of The Art Report (Guest Editors) A Survey on Bounding Volume Hierarchies for Ray Tracing yDaniel Meister1z yShinji Ogaki2 Carsten Benthin3 Michael J. Doyle3 Michael Guthe4 Jiríˇ Bittner5 1The University of Tokyo 2ZOZO Research 3Intel Corporation 4University of Bayreuth 5Czech Technical University in Prague Figure 1: Bounding volume hierarchies (BVHs) are the ray tracing acceleration data structure of choice in many state of the art rendering applications. The figure shows a ray-traced scene, with a visualization of the otherwise hidden structure of the BVH (left), and a visualization of the success of the BVH in reducing ray intersection operations (right). Abstract Ray tracing is an inherent part of photorealistic image synthesis algorithms. The problem of ray tracing is to find the nearest intersection with a given ray and scene. Although this geometric operation is relatively simple, in practice, we have to evaluate billions of such operations as the scene consists of millions of primitives, and the image synthesis algorithms require a high number of samples to provide a plausible result. Thus, scene primitives are commonly arranged in spatial data structures to accelerate the search. In the last two decades, the bounding volume hierarchy (BVH) has become the de facto standard acceleration data structure for ray tracing-based rendering algorithms in offline and recently also in real-time applications. In this report, we review the basic principles of bounding volume hierarchies as well as advanced state of the art methods with a focus on the construction and traversal.
    [Show full text]
  • Ray Casting Architectures for Volume Visualization
    MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com Ray Casting Architectures for Volume Visualization Harvey Ray, Hanspeter Pfister, Deborah Silver, Todd A. Cook TR99-17 April 1999 Abstract Real-time visualization of large volume datasets demands high performance computation, push- ing the storage, processing, and data communication requirements to the limits of current tech- nology. General purpose parallel processors have been used to visualize moderate size datasets at interactive frame rates; however, the cost and size of these supercomputers inhibits the widespread use for real-time visualization. This paper surveys several special purpose architectures that seek to render volumes at interactive rates. These specialized visualization accelerators have cost, per- formance, and size advantages over parallel processors. All architectures implement ray casting using parallel and pipelined hardware. We introduce a new metric that normalizes performance to compare these architectures. The architectures included in this survey are VOGUE, VIRIM, Array Based Ray Casting, EM-Cube, and VIZARD II. We also discuss future applications of special purpose accelerators. IEEE Transactions on Visualization and Computer Graphics This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc.
    [Show full text]
  • Ray Casting Architectures for Volume Visualization
    Ray Casting Architectures for Volume Visualization Harvey Ray, Hansp eter P ster , Deb orah Silver , Todd A. Co ok Abstract | Real-time visualization of large volume datasets demands high p erformance computation, pushing the stor- age, pro cessing, and data communication requirements to the limits of current technology. General purp ose paral- lel pro cessors have b een used to visualize mo derate size datasets at interactive frame rates; however, the cost and size of these sup ercomputers inhibits the widespread use for real-time visualization. This pap er surveys several sp e- cial purp ose architectures that seek to render volumes at interactive rates. These sp ecialized visualization accelera- tors have cost, p erformance, and size advantages over par- allel pro cessors. All architectures implement ray casting using parallel and pip elined hardware. Weintro duce a new metric that normalizes p erformance to compare these ar- Fig. 1. Volume dataset. chitectures. The architectures included in this survey are VOGUE, VIRIM, Array Based Ray Casting, EM-Cub e, and VIZARD II. We also discuss future applications of sp ecial ume rendering architectures that seek to achieveinteractive purp ose accelerators. volume rendering for rectilinear datasets. A survey of other metho ds used to achieve real time volume rendering is pre- I. Introduction sented in [47]. The motivation for custom volume renderers OLUME visualization is an imp ortant to ol to view is discussed in the next section. Several other custom ar- and analyze large amounts of data from various sci- V chitectures exist [1], [8], [10], [16], [17], [19], [36], [38] but enti c disciplines.
    [Show full text]
  • Proposed Mobile System for Bone Visualization Using Gpu Raycasting
    12 International Journal "Information Technologies & Knowledge" Volume 10, Number 1, © 2016 PROPOSED MOBILE SYSTEM FOR BONE VISUALIZATION USING GPU RAYCASTING VOLUME RENDERING TECHNIQUE Yassmin Abdallah, Abdel-Badeeh M.Salem Abstract: Despite the rapid development of mobile phones, the existence of medical visualization applications on stores is rare. This paper represents iOS mobile application that helps medical students and doctors to show bones processed over in an orthopedic surgery. The mobile application implements GPU ray casting algorithm. Experimental results obtained visually by comparing the result to the result obtained from ImageVis3D which use slice based volume rendering technique. ImageVis3D's development was initiated in 2007 by the NIH/NCRR Center for Integrative Biomedical Computing and additionally supported by the DOE Visualization and Analytics Center for Enabling Technologies at the SCI Institute. The result shows that proposed application based on GPU ray- casting technique present better visualized result than ImageVis3D. The dataset used in the experiment is CT images obtained from Osirix datasets for surgical repair of facial deformity. Keywords: mHealth, volume visualization, mobile-based biomedical computing , CT images , GPU ray casting ACM Classification Keywords: D.2: SOFTWARE ENGINEERING , I.3: COMPUTER GRAPHICS , J.3: LIFE AND MEDICAL SCIENCES Introduction During common orthopedic surgery training, students must learn how to perform numerous surgical procedures like fixing fractures which requires training on artificial bones with the usage of surgical tools and implants. These artificial bones have a high cost that depends on the bone's type and quality. Thus the idea of using a computer based simulators for orthopedic surgery training appeared. Simulators will decrease the cost and help students to practice various procedures on a large number of available simulated surgeries in a safe and controlled environment.
    [Show full text]
  • Ray Casting of Multiple Volumetric Datasets with Polyhedral Boundaries on Manycore Gpus
    Ray Casting of Multiple Volumetric Datasets with Polyhedral Boundaries on Manycore GPUs Bernhard Kainz ∗ Markus Grabner ∗ Alexander Bornik y Stefan Hauswiesner ∗ Judith Muehl ∗ Dieter Schmalstieg ∗ z Figure 1: Examples of our new approach to efficiently combine direct volume rendering with polyhedral geometry. Our renderer is able to render many volumes together with complex geometry. Images from left to right: Rendering a 20k polygons dragon with a 2563 brain volume and nine 643 smoke clouds; three 10k segmented vessels, tumor and liver surface in a ribcage 5123 volume; a segmented brain in an open skull, each a 2563 volume; 35 translucent rods each with 76 polygons placed in an apple with 5123 voxels. Abstract 1 Introduction Ray casting has prevailed as the most versatile approach for direct We present a new GPU-based rendering system for ray casting of volume rendering because of its flexibility in producing high qual- multiple volumes. Our approach supports a large number of vol- ity images of medical datasets, industrial scans and environmental umes, complex translucent and concave polyhedral objects as well effects [Engel et al. 2006]. The large amount of homogeneous data as CSG intersections of volumes and geometry in any combination. contained in a volumetric model lends itself very well to paralleliza- The system (including the rasterization stage) is implemented en- tion. Today even a commodity graphics processing unit (GPU) is tirely in CUDA, which allows full control of the memory hierarchy, capable of ray casting a single high resolution volumetric dataset at in particular access to high bandwidth and low latency shared mem- a high frame rate using hardware-accelerated shaders.
    [Show full text]
  • Fast Walkthroughs with Image Caches and Ray Casting
    Fast Walkthroughs with Image Caches and Ray Casting Michael Wimmer1 Markus Giegl2 Dieter Schmalstieg3 Abstract a large part of the screen is covered by a small set of We present an output-sensitive rendering algorithm for polygons that are very near to the observer (in the accelerating walkthroughs of large, densely occluded ‘Near Field’) virtual environments using a multi-stage Image Based another large part of the screen is covered by sky Rendering Pipeline. In the first stage, objects within a pixels that don’t fall into one of these two categories certain distance are rendered using the traditional are usually covered by very small polygons, or even graphics pipeline, whereas the remaining scene is by more than one polygon. rendered by a pixel based approach using an Image Cache, horizon estimation to avoid calculating sky The number of polygons that falls outside a certain pixels, and finally, ray casting. The time complexity of ‘Area of Interest’ is usually much larger than a this approach does not depend on the total number of polygonal renderer can handle - but they still primitives in the scene. We have measured speedups of contribute to the final image. up to one order of magnitude. The main contribution of this paper is a new algorithm CR Categories and Subject Descriptors: I.3.3 for accelerated rendering of such environments that [Computer Graphics]: Picture/Image Generation - exploits the observations listed above: the scene is Display Algorithms, Viewing algorithms; I.3.7 partitioned into a ‘Near Field’ and a ‘Far Field’. [Computer Graphics]: Three-Dimensional Graphics and Following the ideas of Occlusion Culling, the Near Field Realism - Virtual Reality.
    [Show full text]
  • Volume Ray Casting Techniques and Applications Using General Purpose Computations on Graphics Processing Units Michael Romero
    Rochester Institute of Technology RIT Scholar Works Theses Thesis/Dissertation Collections 6-1-2009 Volume ray casting techniques and applications using general purpose computations on graphics processing units Michael Romero Follow this and additional works at: http://scholarworks.rit.edu/theses Recommended Citation Romero, Michael, "Volume ray casting techniques and applications using general purpose computations on graphics processing units" (2009). Thesis. Rochester Institute of Technology. Accessed from This Thesis is brought to you for free and open access by the Thesis/Dissertation Collections at RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. Volume Ray Casting Techniques and Applications using General Purpose Computations on Graphics Processing Units by Michael Romero A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Computer Engineering Supervised by Professor Dr. Muhammad Shaaban Department of Computer Engineering Kate Gleason College of Engineering Rochester Institute of Technology Rochester, New York June 2009 Approved by: Dr. Muhammad Shaaban Thesis Advisor, Department of Computer Engineering Dr. Roy Melton Committee Member, Department of Computer Engineering Dr. Joe Geigel Committee Member, Department of Computer Science Dr. Reynold Bailey Committee Member, Department of Computer Science Thesis Release Permission Form Rochester Institute of Technology Kate Gleason College of Engineering Title: Volume Ray Casting Techniques and Applications using General Purpose Computations on Graphics Processing Units I, Michael Romero, hereby grant permission to the Wallace Memorial Library to reproduce my thesis in whole or part. Michael Romero Date iii Dedication For my family, for their love and support, and for sharing with me the best times of my life.
    [Show full text]
  • Augmenting Image Warping-Based Remote Volume Rendering with Ray Tracing
    Technical Report (2020) Augmenting Image Warping-Based Remote Volume Rendering with Ray Tracing Stefan Zellmanny Figure 1: Image warping-based remote rendering for volume data that reprojects 2.5D depth images from outdated frames to hide latency. Left: reference image. Middle: 2.5D image rendered as OpenGL point primitives. Right: the same reprojected 2.5D data, but rendered as an object-space point cloud using ray tracing. The ray tracing-based technique is less susceptible to reprojection artifacts as the footprint of the reprojected points depends on the distance to the viewer. Abstract We propose an image warping-based remote rendering technique for volumes that decouples the rendering and display phases. Our work builds on prior work that samples the volume on the client using ray casting and reconstructs a z-value based on some heuristic. The color and depth buffer are then sent to the client that reuses this depth image as a stand-in for subsequent frames by warping it according to the current camera position until new data was received from the server. We augment that method by implementing the client renderer using ray tracing. By representing the pixel contributions as spheres, this allows us to effectively vary their footprint based on the distance to the viewer, which we find to give better results than point-based rasterization when applied to volumetric data sets. arXiv:2006.14726v1 [cs.GR] 25 Jun 2020 1. Introduction classification, send-image implementations execute the full render- ing pipeline on the remote server or workstation, while the client is Remote rendering is an important technique to overcome the typ- responsible only for display.
    [Show full text]