Elsacker Mycelium Matters Phd
Total Page:16
File Type:pdf, Size:1020Kb
Vrije Universiteit Brussel MYCELIUM MATTERS Vanden Elsacker, Elise Publication date: 2021 Document Version: Final published version Link to publication Citation for published version (APA): Vanden Elsacker, E. (2021). MYCELIUM MATTERS: An interdisciplinary exploration of the fabrication and properties of mycelium-based materials. VUBPRESS. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 11. Oct. 2021 is research sets out to improve the sustainability of building materials. erefore, it turns towards biology as a source of MYCELIUM MATTERS inspiration for the next generation of biomaterials. e Mycelium Matters kingdom of the fungi represents a fascinating and evolutionary ancient biological group of eukaryotic microorganisms. Filamentous fungi are ubiquitous in An interdisciplinary exploration of the fabrication soil habitats, in which they grow as long laments, and properties of mycelium-based materials called hyphae, forming a complex network of mycelium by degrading any type of organic plant-based material. e white-rot fungi even Elise Vanden Elsacker developed the ability to degrade harsh lignin polymers in wood structures and therefore have great promise for the fabrication of biomaterials. In recent years, the exciting characteristics of lamentous fungi did not go unnoticed in the context of biodegradable materials, providing a low-cost and environmentally sustainable solution compared to the production and life cycle of petroleum-based materials. ese composite materials are realised by growing the fungi into lignocellulosic bres, thereby valorising organic waste streams and generating dense materials with a construction material application. is interdisciplinary study explores the principal factors aecting mycelium materials’ biological and material properties and enlarges the potential of new fabrication technologies for Elise Vanden Elsacker architectural applications with fungal organisms. Supervisors: prof. dr. ir. arch. Lars De Laet prof. dr. ir. Eveline Peeters Faculty of Engineering Department of Architectural Engineering esis submitted in fullment of the requirements for the award of the degree of Doctor in Engineering Sciences. © Image by Lennert Van Rompaey Thesis submitted in fulfilment of the requirements for the award of the degree of Doctor in Engineering Sciences (Doctor in de ingenieurswetenschappen) MYCELIUM MATTERS An interdisciplinary exploration of the fabrication and properties of mycelium-based materials Elise VANDEN ELSACKER April 2021 Supervisors: prof. dr. ir. arch. Lars De Laet prof. dr. ir. Eveline Peeters Faculty of Engineering Department of Architectural Engineering (ARCH) i This doctoral research was funded by the Research Foundation Flanders (FWO) ii Members of the jury Prof. dr. ir. arch. Lars De Laet (advisor) Vrije Universiteit Brussel Department of Architectural Engineering Prof. dr. ir. Eveline Peeters (advisor) Vrije Universiteit Brussel Department of Bio-engineering Sciences Prof. dr. ir. Tine Tysmans (chairwoman) Vrije Universiteit Brussel Department Mechanics of Materials and Constructions Prof. dr. ir. Rik Pintelon (vice-chairman) Vrije Universiteit Brussel Department of Fundamental Electricity and Instrumentation dr. Joost Brancart (secretary) Vrije Universiteit Brussel Department of Materials and Chemistry Prof. dr. Joske Ruytinx Vrije Universiteit Brussel Department of Bio-engineering Sciences Prof. dr. H.A.B (Han) Wösten Universiteit Utrecht, Nederland Department of Biology, Microbiology group Prof. dr. Phil Ayres Royal Danish Academy, Denmark Institute of Architecture and Technology iii iv Abstract Environmental pollution and scarcity of natural resources have led to an increased interest in developing more sustainable materials. The traditional construction industry, which is mostly based on the extraction of fossil fuels and raw materials, has therefore been called into question. Biological materials that are created by growing mycelium-forming fungal microorganisms on natural fibres can form a solution. In this process, organic waste streams – such as agricultural waste – are valorised, while biodegradable material is created at the end of its life cycle; a process fitting with the spirit of a circular economy. Despite this promise, these materials’ characteristics have remained mostly unexplored. More scientific insights into growing and fabrication processes are required before incorporating these biomaterials into our daily lives. Therefore, this dissertation’s main goal is to explore the principal factors affecting the biological and material properties of mycelium materials and to broaden the potential of new fabrication technologies for architectural applications using fungal organisms. Ultimately, the research provides novel insights and a comprehensive overview of several crucial aspects that come into play during the production of fungi-based lignocellulosic composites. A method for selecting fungal species that incorporates biological, chemical and mechanical performance criteria has been developed. The interaction between fungi and their feedstock and the material properties of different types of feedstocks are investigated. Then, the optimisation of mechanical properties with different types of additives is studied. A novel fabrication process to produce large-scale architectural formwork is developed. Finally, various digital additive fabrications and design strategies that improve the colonisation of the fungi in a given geometry are explored. This hybrid investigation across disciplines is guided by the motivation to explore the growth and fabrication possibilities of mycelium materials from a bioengineering, material engineering, computational fabrication and architectural perspective. v Samenvatting Milieuvervuiling en schaarste aan natuurlijke grondstoffen hebben de afgelopen jaren geleid tot een grotere belangstelling voor de ontwikkeling van duurzamere materialen. De traditionele bouwsector, die veelal gebaseerd is op de winning van fossiele brandstoffen en grondstoffen, wordt daarom tegenwoordig in twijfel getrokken. Biologische materialen, daarentegen, die ontstaan door het groeien van myceliumvormende micro- organismen op natuurlijke vezels kunnen een oplossing vormen. Hierbij worden organische afvalstromen - zoals landbouwafval - gevaloriseerd, terwijl een biologisch afbreekbaar materiaal ontstaat aan het einde van zijn levenscyclus; een proces dat past binnen de geest van een circulaire economie. Ondanks deze belofte zijn de eigenschappen van deze materialen grotendeels onontgonnen gebleven. Meer wetenschappelijke inzichten in groei- en fabricageprocessen zijn vereist voordat deze biomaterialen in ons dagelijks leven kunnen worden opgenomen. Daarom is het hoofddoel van dit proefschrift om de belangrijkste factoren te onderzoeken die de biologische en materiaaleigenschappen van myceliummaterialen beïnvloeden en om het potentieel te verbreden van nieuwe fabricagetechnologieën, zoals robotgestuurd draadsnijden en 3D printen, voor architectonische toepassingen. Uiteindelijk levert het onderzoek nieuwe inzichten en een uitgebreid overzicht op van verschillende cruciale aspecten die een rol spelen bij de productie van schimmels gebaseerde lignocellulose composieten. Er wordt een methode ontwikkeld voor het selecteren van schimmelsoorten op basis van biologische, chemische en mechanische prestatiecriteria. De interactie tussen schimmels en natuurlijke vezels, en de materiaaleigenschappen van verschillende soorten vezels worden onderzocht. Vervolgens wordt de optimalisatie van mechanische eigenschappen met verschillende soorten additieven bestudeerd. Er wordt een nieuw fabricageproces ontwikkeld om grootschalige architecturale schuim bekistingen te produceren. Ten slotte worden verschillende digitale additieve fabricages en ontwerpstrategieën onderzocht. Dit hybride vi onderzoek tussen disciplines wordt geleid door de motivatie om de groei- en fabricagemogelijkheden van myceliummaterialen te verkennen vanuit een bio-ingenieurs, materiaalkundig, computationele fabricage en architectonisch perspectief. vii viii Acknowledgements During my explorations, I learned to embrace complexity, the unknown, the mysterious behaviour of living organisms. A kind of craving to unravel interrelationships between engineering, material sciences and biology guided me through this work, although at first, I didn’t have a scientific background in each of these disciplines. To consider the opportunities and challenges of all those fields coming together, I learned to face the dynamic nature of this research, which wouldn’t have been possible without the guidance and support of the following people. First of all, I am thankful for receiving a fellowship strategic basic research and a long research stay from the Research Foundation