Emphysema Aminopeptidase in the Pathogenesis of Hydrolase 4 Role

Total Page:16

File Type:pdf, Size:1020Kb

Emphysema Aminopeptidase in the Pathogenesis of Hydrolase 4 Role The Journal of Immunology Role of Leukotriene A4 Hydrolase Aminopeptidase in the Pathogenesis of Emphysema Mikell Paige,* Kan Wang,† Marie Burdick,‡ Sunhye Park,‡ Josiah Cha,‡ Erin Jeffery,x Nicholas Sherman,x and Y. Michael Shim‡ The leukotriene A4 hydrolase (LTA4H) is a bifunctional enzyme with epoxy hydrolase and aminopeptidase activities. We hypoth- esize that the LTA4H aminopeptidase activity alleviates neutrophilic inflammation, which contributes to cigarette smoke (CS)– induced emphysema by clearing proline-glycine-proline (PGP), a triamino acid chemokine known to induce chemotaxis of neutrophils. To investigate the biological contributions made by the LTA4H aminopeptidase activity in CS-induced emphysema, we exposed wild-type mice to CS over 5 mo while treating them with a vehicle or a pharmaceutical agent (4MDM) that selectively augments the LTA4H aminopeptidase without affecting the bioproduction of leukotriene B4. Emphysematous phenotypes were assessed by premortem lung physiology with a small animal ventilator and by postmortem histologic morphometry. CS exposure acidified the airspaces and induced localization of the LTA4H protein into the nuclei of the epithelial cells. This resulted in accumulation of PGP in the airspaces by suppressing the LTA4H aminopeptidase activity. When the LTA4H aminopeptidase activity was selectively augmented by 4MDM, the levels of PGP in the bronchoalveolar lavage fluid and infiltration of neutrophils into the lungs were significantly reduced without affecting the levels of leukotriene B4. This protected murine lungs from CS- induced emphysematous alveolar remodeling. In conclusion, CS exposure promotes the development of CS-induced emphysema by suppressing the enzymatic activities of the LTA4H aminopeptidase in lung tissues and accumulating PGP and neutrophils in the airspaces. However, restoring the leukotriene A4 aminopeptidase activity with a pharmaceutical agent protected murine lungs from developing CS-induced emphysema. The Journal of Immunology, 2014, 192: 5059–5068. eukotriene A4 hydrolase (LTA4H) has been known as PGP, thus mitigating the influx of neutrophils into murine lungs a bifunctional enzyme. Although two enzymatic activities postinfluenza infection (20). L share an overlapping substrate site, their biological func- Pulmonary emphysema is a major manifestation of chronic tions are distinctive (1, 2). The LTA4H epoxy hydrolase (EH) obstructive pulmonary disease. It is characterized by alveolar de- converts leukotriene A4 (LTA4) to leukotriene B4 (LTB4), which is struction in patients due to infiltration of neutrophils, lymphocytes, a potent inducer of neutrophil, macrophage, and T lymphocyte and macrophages into cigarette smoke (CS)–exposed lungs (3, 8, 14, chemotaxis in human diseases (3–10). The LTA4H aminopepti- 21–23). Although a number of mechanisms were proposed to ex- dase degrades the N terminus of peptides. Several studies dem- plain the pathogenesis of emphysema, its molecular pathogenesis is onstrated that a chemotactic triamino acid peptide, proline- not yet clearly understood. Neutrophil-rich inflammation in em- glycine-proline (PGP), is produced due to breakdown of collagen physematous lungs of smokers led us to hypothesize that the LTA4H by prolyl-endopeptidase, and PGP has been shown to induce che- aminopeptidase activity and bioproduction/clearance of PGP motaxis of neutrophils by binding to CXCR2 (11–19). Recently, may play an important role during the development of CS-induced LTA4H aminopeptidase has been reported to break down and clear neutrophilic inflammation and emphysema. Our laboratory has previously reported that the LTA4H enzy- matic activities make important contribution to the development of emphysematous tissue alterations (3, 24, 25). LTA4H activity *Department of Chemistry and Biochemistry, George Mason University, Manassas, was found to influence severity of emphysematous alveolar remod- † VA 22030; Center for Drug Discovery, Georgetown University Medical Center, elinginmurinelungsexposedtotransgenicallyoverexpressedIL-13 Washington, DC 20057; ‡Division of Pulmonary and Critical Care Medicine, Depart- x ment of Medicine, University of Virginia, Charlottesville, VA 22908; and Depart- (3, 24). LTA4H EH activity was found to contribute to emphyse- ment of Microbiology, Immunology, and Cancer Biology, University of Virginia, matous alveolar remodeling and neutrophilic infiltration into lungs Charlottesville, VA 22908 postexposure of intranasal elastase (3, 24). Whereas a number of Received for publication February 18, 2014. Accepted for publication March 30, studies have characterized the importance of the LTA H EH, no 2014. 4 studies have investigated the biological contributions made by This work was supported by the Flight Attendant Medical Research Institute (to Y.M.S.), National Institutes of Health Grant K08HL91127 (to Y.M.S.), and an Ivy Foundation the LTA4H aminopeptidase during the development of emphy- Biomedical Research Grant (to Y.M.S.). sema. Therefore, we first investigated the CS-induced alterations Address correspondence and reprint requests to Dr. Y. Michael Shim, Division of in the localization and enzymatic activity of the LTA4H protein. Pulmonary and Critical Care Medicine, Department of Medicine, University of Virginia, These studies demonstrated that CS significantly increased the P.O. Box 800546, Charlottesville, VA 22908-0546. E-mail address: [email protected] amount of LTA4H protein in murine lungs and led to specific Abbreviations used in this article: AA, ambient air; BALF, bronchoalveolar lavage fluid; CDX, 2-hydroxypropyl-b-cyclodextrin; CS, cigarette smoke; EH, epoxy patterns of LTA4H protein localization in lung tissues. Chronic hydrolase; KO, knockout; Lm, mean cordlength; LTA4,leukotrieneA4; LTA4H, exposure to CS also caused acidification of the bronchoalveolar LTA4 hydrolase; LTB4, leukotriene B4; MMP, metalloproteinase; PGP, proline-glycine- lavage fluid (BALF) in mice, which suppressed the enzymatic proline; WT, wild-type. activity of the LTA4H aminopeptidase in the BALF. All of these Copyright Ó 2014 by The American Association of Immunologists, Inc. 0022-1767/14/$16.00 events promoted exaggerated bioproduction of PGP and LTB4. www.jimmunol.org/cgi/doi/10.4049/jimmunol.1400452 5060 ROLE OF LEUKOTRIENE A4 HYDROLASE AMINOPEPTIDASE IN EMPHYSEMA When the activity of the LTA4H aminopeptidase was restored by (Promega) in PBS. The trachea was tied to keep the lungs inflated and then selectively augmenting it without changing the EH activity, murine fixed in 10 ml paraformaldehyde for 18 h. The fixed lungs were stained lungs were protected from CS-induced emphysematous damage due with H&E. Alveolar size was determined by mean cordlength (Lm), as previously described (3, 24, 25, 29, 30). Sequential digital pictures (at least to reduction in the levels of PGP and neutrophilic infiltration into 10 per animal) of the entire lungs were captured by an Axiostar micro- the lungs without changes in the levels of LTB4. These studies scope (Carl Zeiss Microimaging) and then processed by NIH Image 1.63 demonstrate that the LTA4H aminopeptidase pathway is an impor- on a Macintosh computer with a macro downloaded from the National tant contributor for the CS-induced neutrophilic inflammation, PGP Institutes of Health server user-macro directory (http://rsb.info.nih.gov/ nih-image/download/contrib/ChordLength.SurfaceArea). clearance, and emphysematous alveolar remodeling independent of the LTA4HEHpathway. Measurement of PGP in BALF Quantitative analysis of PGP in the BALF by HPLC-mass spectroscopy Materials and Methods proved to be highly unreliable presumably due to the matrix effects of the Formulation of 4MDM to improve water solubility and aromatic carbons generated from exposure to cigarette combustion. These characterization of 4MDM bioavailability aromatic carbons saturated the chromatography columns and made the columns unusable even after the first run of chromatography. Therefore, The solubility of 4MDM was enhanced by formulation with 2-hydroxy- a two-step preparation of the BALF was performed, as follows. First, the propyl-b-cyclodextrin (CDX) and dextrose. The vehicle was prepared as BALF was purified by normal flow HPLC. The retention time of a standard an aqueous solution of CDX and dextrose without 4MDM. Maximum solution of PGP was determined to guide fractionation of PGP in the tolerated dose was first determined with WT mice (n = 10), and then the BALF samples. Second, the levels of PGP were quantified using a Thermo CDX-4MDM dose equal to 25% of the maximum tolerated dose was used Electron TSQ Quantum Access MAX mass spectrometer system with a in all subsequent in vivo studies. The solutions were administered as Protana nanospray ion source interfaced to a custom-packed 8 cm 3 m m drinking water for mice in cages. The levels of 4MDM in BALF were 75- m (internal diameter) Phenomenex Jupiter 10 mC18 reverse-phase m quantified first by enriching 4MDM using C18 Sep-Pak (Waters) and then capillary column. A 0.5- L aliquot of each fractionated extract was measuring the levels by using HPLC equipped with a UV detector (HPLC- injected, and the samples were eluted from the column using a reverse- UV). The HPLC setup consisted of the following: Shimadzu CBM con- phase gradient from 0 to 100% acetonitrile at a flow rate of 0.5 mL/min troller, Shimadzu LC20AD pump, Shimadzu SPD20A UV detector, Shi- over 0.5 h. The nanospray ion source was operated at +3 kV. The multiple 2 madzu CTO20A column oven, Waters C18 Symmetry HPLC column, and reaction
Recommended publications
  • Functional Properties and Molecular Architecture of Leukotriene A4 Hydrolase, a Pivotal Catalyst of Chemotactic Leukotriene Formation
    Review Article TheScientificWorldJOURNAL (2002) 2, 1734–1749 ISSN 1537-744X; DOI 10.1100/tsw.2002.810 Functional Properties and Molecular Architecture of Leukotriene A4 Hydrolase, a Pivotal Catalyst of Chemotactic Leukotriene Formation Jesper Z. Haeggström1,*, Pär Nordlund2, and Marjolein M.G.M. Thunnissen2 1Department of Medical Biochemistry and Biophysics, Division of Chemistry 2, Karolinska Institutet, S-171 77 Stockholm, Sweden; 2Department of Biochemistry, University of Stockholm, Arrhenius Laboratories A4, S-106 91 Stockholm, Sweden E-mail: [email protected]; [email protected]; [email protected] Received March 25, 2002; Accepted April 26, 2002; Published June 26, 2002 The leukotrienes are a family of lipid mediators involved in inflammation and allergy. Leukotriene B4 is a classical chemoattractant, which triggers adherence and aggregation of leukocytes to the endothelium at only nM concentrations. In addition, leukotriene B4 modulates immune responses, participates in the host defense against infections, and is a key mediator of PAF-induced lethal shock. Because of these powerful biological effects, leukotriene B4 is implicated in a variety of acute and chronic inflammatory diseases, e.g., nephritis, arthritis, dermatitis, and chronic obstructive pulmonary disease. The final step in the biosynthesis of leukotriene B4 is catalyzed by leukotriene A4 hydrolase, a unique bifunctional zinc metalloenzyme with an anion-dependent aminopeptidase activity. Here we describe the most recent developments regarding our understanding
    [Show full text]
  • Role of Epoxide Hydrolases in Lipid Metabolism
    Biochimie 95 (2013) 91e95 Contents lists available at SciVerse ScienceDirect Biochimie journal homepage: www.elsevier.com/locate/biochi Mini-review Role of epoxide hydrolases in lipid metabolism Christophe Morisseau* Department of Entomology and U.C.D. Comprehensive Cancer Center, One Shields Avenue, University of California, Davis, CA 95616, USA article info abstract Article history: Epoxide hydrolases (EH), enzymes present in all living organisms, transform epoxide-containing lipids to Received 29 March 2012 1,2-diols by the addition of a molecule of water. Many of these oxygenated lipid substrates have potent Accepted 8 June 2012 biological activities: host defense, control of development, regulation of blood pressure, inflammation, Available online 18 June 2012 and pain. In general, the bioactivity of these natural epoxides is significantly reduced upon metabolism to diols. Thus, through the regulation of the titer of lipid epoxides, EHs have important and diverse bio- Keywords: logical roles with profound effects on the physiological state of the host organism. This review will Epoxide hydrolase discuss the biological activity of key lipid epoxides in mammals. In addition, the use of EH specific Epoxy-fatty acids Cholesterol epoxide inhibitors will be highlighted as possible therapeutic disease interventions. Ó Juvenile hormone 2012 Elsevier Masson SAS. All rights reserved. 1. Introduction hydrolyzed by a water molecule [8]. Based on this mechanism, transition-state inhibitors of EHs have been designed (Fig. 1B). Epoxides are three atom cyclic ethers formed by the oxidation of These ureas and amides are tight-binding competitive inhibitors olefins. Because of their highly polarized oxygen-carbon bonds and with low nanomolar dissociation constants (KI) [9] [10].
    [Show full text]
  • Quantum Chemical Studies of Epoxide- Transforming Enzymes
    Quantum Chemical Studies of Epoxide- Transforming Enzymes Kathrin H. Hopmann Department of Theoretical Chemistry Royal Institute of Technology Stockholm, Sweden, 2007 ii © Kathrin H. Hopmann, 2007 ISBN 978-91-7178-640-1 ISSN 1654-2312 TRITA-BIO-Report 2007:3 Printed by Universitetsservice US-AB, Stockholm, Sweden. iii Abstract Density functional theory is employed to study the reaction mechanisms of different epoxide-transforming enzymes. Calculations are based on quantum chemical active site models, which are build from X-ray crystal structures. The models are used to study conversion of various epoxides into their corresponding diols or substituted alcohols. Epoxide-transforming enzymes from three different families are studied. The human soluble epoxide hydrolase (sEH) belongs to the α/β-hydrolase fold family. sEH employs a covalent mechanism to hydrolyze various epoxides into vicinal diols. The Rhodococcus erythrobacter limonene epoxide hydrolase (LEH) constitutes a novel epoxide hydrolase, which is considered the founding member of a new family of enzymes. LEH mediates transformation of limone-1,2-epoxide into the corresponding vicinal diol by employing a general acid/general base-mediated mechanism. The Agrobacterium radiobacter AD1 haloalcohol dehalogenase HheC is related to the short-chain dehydrogenase/reductases. HheC is able to convert epoxides using various nucleophiles such as azide, cyanide, and nitrite. Reaction mechanisms of these three enzymes are analyzed in depth and the role of different active site residues is studied through in silico mutations. Steric and electronic factors influencing the regioselectivity of epoxide opening are identified. The computed energetics help to explain preferred reaction pathways and experimentally observed regioselectivities. Our results confirm the usefulness of the employed computational methodology for investigating enzymatic reactions.
    [Show full text]
  • Download (2MB)
    Enzyme and Microbial Technology 139 (2020) 109592 Contents lists available at ScienceDirect Enzyme and Microbial Technology journal homepage: www.elsevier.com/locate/enzmictec Identification and catalytic properties of new epoxide hydrolases fromthe T genomic data of soil bacteria Gorjan Stojanovskia, Dragana Dobrijevica, Helen C. Hailesb, John M. Warda,* a Department of Biochemical Engineering, University College London, Bernard Katz, London WC1E 6BT, UK b Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK ARTICLE INFO ABSTRACT Keywords: Epoxide hydrolases (EHs) catalyse the conversion of epoxides into vicinal diols. These enzymes have extensive Epoxide hydrolase value in biocatalysis as they can generate enantiopure epoxides and diols which are important and versatile Limonene epoxide hydrolase synthetic intermediates for the fine chemical and pharmaceutical industries. Despite these benefits, theyhave Genome mining seen limited use in the bioindustry and novel EHs continue to be reported in the literature. Biotransformation We identified twenty-nine putative EHs within the genomes of soil bacteria. Eight of these EHs wereexplored in terms of their activity. Two limonene epoxide hydrolases (LEHs) and one ⍺/β EH were active on a model compound styrene oxide and its ring-substituted derivatives, with low to good percentage conversions of 18–86%. Further exploration of the substrate scope with enantiopure (R)-styrene oxide and (S)-styrene oxide, showed different epoxide ring opening regioselectivities. Two enzymes, expressed from plasmids pQR1984and pQR1990 de-symmetrised the meso-epoxide cyclohexene oxide, forming the (R,R)-diol with high enantioselec- tivity. Two LEHs, from plasmids pQR1980 and pQR1982 catalysed the hydrolysis of (+) and (−) limonene oxide, with diastereomeric preference for the (1S,2S,4R)- and (1R,2R,4S)-diol products, respectively.
    [Show full text]
  • NST110: Advanced Toxicology Lecture 4: Phase I Metabolism
    Absorption, Distribution, Metabolism and Excretion (ADME): NST110: Advanced Toxicology Lecture 4: Phase I Metabolism NST110, Toxicology Department of Nutritional Sciences and Toxicology University of California, Berkeley Biotransformation The elimination of xenobiotics often depends on their conversion to water-soluble chemicals through biotransformation, catalyzed by multiple enzymes primarily in the liver with contributions from other tissues. Biotransformation changes the properties of a xenobiotic usually from a lipophilic form (that favors absorption) to a hydrophilic form (favoring excretion in the urine or bile). The main evolutionary goal of biotransformation is to increase the rate of excretion of xenobiotics or drugs. Biotransformation can detoxify or bioactivate xenobiotics to more toxic forms that can cause tumorigenicity or other toxicity. Phase I and Phase II Biotransformation Reactions catalyzed by xenobiotic biotransforming enzymes are generally divided into two groups: Phase I and phase II. 1. Phase I reactions involve hydrolysis, reduction and oxidation, exposing or introducing a functional group (-OH, -NH2, -SH or –COOH) to increase reactivity and slightly increase hydrophilicity. O R1 - O S O sulfation O R2 OH Phase II Phase I R1 R2 R1 R2 - hydroxylation COO R1 O O glucuronidation OH R2 HO excretion OH O COO- HN H -NH2 R R1 R1 S N 1 Phase I Phase II COO O O oxidation glutathione R2 OH R2 R2 conjugation 2. Phase II reactions include glucuronidation, sulfation, acetylation, methylation, conjugation with glutathione, and conjugation with amino acids (glycine, taurine and glutamic acid) that strongly increase hydrophilicity. Phase I and II Biotransformation • With the exception of lipid storage sites and the MDR transporter system, organisms have little anatomical defense against lipid soluble toxins.
    [Show full text]
  • Regioselectivity Engineering of Epoxide Hydrolase: Near-Perfect Enantioconvergence Through a Single Site Mutation
    Letter Cite This: ACS Catal. 2018, 8, 8314−8317 pubs.acs.org/acscatalysis Regioselectivity Engineering of Epoxide Hydrolase: Near-Perfect Enantioconvergence through a Single Site Mutation † # † ‡ # † † § † Fu-Long Li, , Xu-Dong Kong, , , Qi Chen, Yu-Cong Zheng, Qin Xu, Fei-Fei Chen, † ‡ ‡ † † Li-Qiang Fan, Guo-Qiang Lin, Jiahai Zhou,*, Hui-Lei Yu,*, and Jian-He Xu*, † State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai 200237, China ‡ Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China § State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China *S Supporting Information ABSTRACT: An epoxide hydrolase from Vigna radiata (VrEH2) affords partial enantioconvergence (84% ee)intheenzymatic hydrolysis of racemic p-nitrostyrene oxide (pNSO), mainly due to ffi α β insu cient regioselectivity for the (S)-enantiomer (rS = S/ S = 7.3). To improve the (S)-pNSO regioselectivity, a small but smart library of VrEH2 mutants was constructed by substituting each of four key residues lining the substrate binding site with a simplified amino acid alphabet of Val, Asn, Phe, and Trp. Among the mutants, M263N attacked almost exclusively at Cα in the (S)-epoxide ring with satisfactory regioselectivity (rS = 99.0), without compromising the original high regioselectivity for the (R)-epoxide (rR = 99.0), resulting in near-perfect enantioconvergence (>99% analytical yield, 98% ee). Structural and conformational analysis showed that the introduced Asn263 formed additional hydrogen bonds with the nitro group in substrate, causing a shift in the substrate binding pose.
    [Show full text]
  • Capturing LTA4 Hydrolase in Action: Insights to the Chemistry and Dynamics of Chemotactic LTB4 Synthesis Alena Stsiapanavaa, Bengt Samuelssona,1, and Jesper Z
    Capturing LTA4 hydrolase in action: Insights to the chemistry and dynamics of chemotactic LTB4 synthesis Alena Stsiapanavaa, Bengt Samuelssona,1, and Jesper Z. Haeggströma,1 aDivision of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden Contributed by Bengt Samuelsson, July 29, 2017 (sent for review June 19, 2017; reviewed by Marcia E. Newcomer and Takao Shimizu) Human leukotriene (LT) A4 hydrolase/aminopeptidase (LTA4H) is a present report, we describe successful trapping and structure bifunctional enzyme that converts the highly unstable epoxide determination of LTA4H-LTA4 complexes providing insights to intermediate LTA4 into LTB4, a potent leukocyte activating agent, the EH mechanism. Moreover, we show that LTA4H undergoes while the aminopeptidase activity cleaves and inactivates the che- domain movements, with structural alterations indicating gated motactic tripeptide Pro-Gly-Pro. Here, we describe high-resolution substrate entrance into the active site followed by induced fit to crystal structures of LTA4H complexed with LTA4, providing the achieve optimal alignment and catalysis. structural underpinnings of the enzyme’s unique epoxide hydro- + lase (EH) activity, involving Zn2 , Y383, E271, D375, and two cata- Results and Discussion lytic waters. The structures reveal that a single catalytic water is In this study, we describe six different structures of LTA4H from involved in both catalytic activities of LTA4H, alternating between five distinct crystal forms. These visualize two conformational epoxide ring opening and peptide bond hydrolysis, assisted by states of the enzyme (Tables S1 and S2). The mutants we in- E271 and E296, respectively. Moreover, we have found two con- vestigated include variants E271A (12), D375N (13), and R563A formations of LTA4H, uncovering significant domain movements.
    [Show full text]
  • Ω-3 Polyunsaturated Fatty Acids on Colonic Inflammation and Colon Cancer: Roles of Lipid- Metabolizing Enzymes Involved
    Review ω-3 Polyunsaturated Fatty Acids on Colonic Inflammation and Colon Cancer: Roles of Lipid- Metabolizing Enzymes Involved Maolin Tu 1,2, Weicang Wang 3, Guodong Zhang 1,4 and Bruce D. Hammock 3,* 1 Department of Food Science, University of Massachusetts, Amherst, MA 01002, USA; [email protected] (M.T.); [email protected] (G.Z.) 2 Department of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China 3 Department of Entomology and Comprehensive Cancer Center, University of California, Davis, CA 95616, USA; [email protected] 4 Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA 01002, USA * Correspondence: [email protected]; Tel.: +1-530-752-7519 Received: 23 September 2020; Accepted: 24 October 2020; Published: 28 October 2020 Abstract: Substantial human and animal studies support the beneficial effects of ω-3 polyunsaturated fatty acids (PUFAs) on colonic inflammation and colorectal cancer (CRC). However, there are inconsistent results, which have shown that ω-3 PUFAs have no effect or even detrimental effects, making it difficult to effectively implement ω-3 PUFAs for disease prevention. A better understanding of the molecular mechanisms for the anti-inflammatory and anticancer effects of ω-3 PUFAs will help to clarify their potential health-promoting effects, provide a scientific base for cautions for their use, and establish dietary recommendations. In this review, we summarize recent studies of ω-3 PUFAs on colonic inflammation and CRC and discuss the potential roles of ω-3 PUFA-metabolizing enzymes, notably the cytochrome P450 monooxygenases, in mediating the actions of ω-3 PUFAs.
    [Show full text]
  • The Rhodococcus Erythropolis DCL14 Limonene-1,2-Epoxide Hydrolase Gene Encodes an Enzyme Belonging to a Novel Class of Epoxide Hydrolases
    View metadata,FEBS 21078 citation and similar papers at core.ac.uk FEBS Letters 438 (1998)brought to293^296 you by CORE provided by Elsevier - Publisher Connector The Rhodococcus erythropolis DCL14 limonene-1,2-epoxide hydrolase gene encodes an enzyme belonging to a novel class of epoxide hydrolases Fabien Barbirato, Jan C. Verdoes, Jan A.M. de Bont, Marieët J. van der Werf* Division of Industrial Microbiology, Department of Food Technology and Nutritional Sciences, Wageningen University and Research Centre, P.O. Box 8129, 6700 EV Wageningen, The Netherlands Received 8 September 1998; received in revised form 7 October 1998 the three-dimensional structure has been solved [16]. Epoxide Abstract Recently, we reported the purification of the novel enzyme limonene-1,2-epoxide hydrolase involved in limonene hydrolases do not contain a prosthetic group. The K,L-hydro- degradation by Rhodococcus erythropolis DCL14. The N-term- lase fold epoxide hydrolases have a two-domain organization. inal amino acid sequence of the purified enzyme was used to Domain I consists of an K,L-sheet that forms a catalytic pock- design two degenerate primers at the beginning and the end of the et and domain II, which splits domain I, sits like a lid over the 50 amino acids long stretch. Subsequently, the complete catalytic cleft [14]. The catalytic activity of K,L-hydrolase fold limonene-1,2-epoxide hydrolase gene (limA) was isolated from epoxide hydrolases depends on a catalytic triad consisting of a genomic library of R. erythropolis DCL14 using a combination Asp, His, and Asp(Glu) residues [15,17].
    [Show full text]
  • Metabolism Pathways of Arachidonic Acids: Mechanisms and Potential Therapeutic Targets
    Signal Transduction and Targeted Therapy www.nature.com/sigtrans REVIEW ARTICLE OPEN Metabolism pathways of arachidonic acids: mechanisms and potential therapeutic targets Bei Wang1,2,3, Lujin Wu1,2, Jing Chen1,2, Lingli Dong3, Chen Chen 1,2, Zheng Wen1,2, Jiong Hu4, Ingrid Fleming4 and Dao Wen Wang1,2 The arachidonic acid (AA) pathway plays a key role in cardiovascular biology, carcinogenesis, and many inflammatory diseases, such as asthma, arthritis, etc. Esterified AA on the inner surface of the cell membrane is hydrolyzed to its free form by phospholipase A2 (PLA2), which is in turn further metabolized by cyclooxygenases (COXs) and lipoxygenases (LOXs) and cytochrome P450 (CYP) enzymes to a spectrum of bioactive mediators that includes prostanoids, leukotrienes (LTs), epoxyeicosatrienoic acids (EETs), dihydroxyeicosatetraenoic acid (diHETEs), eicosatetraenoic acids (ETEs), and lipoxins (LXs). Many of the latter mediators are considered to be novel preventive and therapeutic targets for cardiovascular diseases (CVD), cancers, and inflammatory diseases. This review sets out to summarize the physiological and pathophysiological importance of the AA metabolizing pathways and outline the molecular mechanisms underlying the actions of AA related to its three main metabolic pathways in CVD and cancer progression will provide valuable insight for developing new therapeutic drugs for CVD and anti-cancer agents such as inhibitors of EETs or 2J2. Thus, we herein present a synopsis of AA metabolism in human health, cardiovascular and cancer biology, and the signaling pathways involved in these processes. To explore the role of the AA metabolism and potential therapies, we also introduce the current newly clinical studies targeting AA metabolisms in the different disease conditions.
    [Show full text]
  • Mobilization of Iron Stored in Bacterioferritin Is Required for Metabolic Homeostasis in Pseudomonas Aeruginosa
    SUPPORTING INFORMATION Mobilization of Iron Stored in Bacterioferritin is Required for Metabolic Homeostasis in Pseudomonas aeruginosa Achala N. D. Punchi Hewage 1, Leo Fontenot 2, Jessie Guidry 3, Thomas Weldeghiorghis 2, Anil K. Mehta 4, Fabrizio Donnarumma 2, and Mario Rivera 2,* 1 Department of Chemistry, University of Kansas, 2030 Becker Dr., Lawrence, KS, 66047, USA; [email protected] 2 Department of Chemistry, Louisiana State University, 232 Choppin Hall, Baton Rouge, LA, 70803, USA; [email protected] (L.F); [email protected] (T.W); [email protected] (F.D) 3 Department of Biochemistry and Molecular Biology, Louisiana State University Health Science Center, 1901 Perdido Street, New Orleans, LA, 70112, USA; [email protected] 4 National High Magnetic Field Laboratory, University of Florida, 1149 Newell Drive, Gainesville, FL, 32610, USA; [email protected]. *Corresponding author. E-mail: [email protected] ORCID: 0000-0002-5692-5497 Figure S1. Growth curves and levels of pyoverdine secreted by wt and Δbfd P. aeruginosa cells. (A) P. aeruginosa cells (wt and Δbfd) were cultured in PI media supplemented with 10 µM Fe at 37 °C and shaking at 220 rpm. For the purpose of all the analyses reported in this work, the cells were harvested by centrifugation 30 h post inoculation. (B) Pyoverdine secreted by the cells was measured in the cell-free supernatants by acquiring fluorescence emission spectra (430-550 nm) with excitation at 400 nm (10 nm slit width) and emission at 460 nm (10 nm slit width). Fluorescence intensity normalized to viable cell count (CFU/mL) shows that the Δbfd cells secrete approximately sixfold more pyoverdine than the wt cells.
    [Show full text]
  • Inhibition of Microsomal Epoxide Hydrolases by Ureas, Amides, and Amines
    Chem. Res. Toxicol. 2001, 14, 409-415 409 Inhibition of Microsomal Epoxide Hydrolases by Ureas, Amides, and Amines Christophe Morisseau, John W. Newman, Deanna L. Dowdy, Marvin H. Goodrow, and Bruce D. Hammock* Department of Entomology and University of California Cancer Center, University of California, Davis, California 95616 Received August 11, 2000 The microsomal epoxide hydrolase (mEH) plays a significant role in the metabolism of xenobiotics such as polyaromatic toxicants. Additionally, polymorphism studies have underlined a potential role of this enzyme in relation to several diseases, such as emphysema, spontaneous abortion, and several forms of cancer. To provide new tools for studying the function of mEH, inhibition of this enzyme was investigated. Inhibition of recombinant rat and human mEH was achieved using primary ureas, amides, and amines. Several of these compounds are more potent than previously published inhibitors. Elaidamide, the most potent inhibitor that is obtained, has a Ki of 70 nM for recombinant rat mEH. This compound interacts with the enzyme forming a noncovalent complex, and blocks substrate turnover through an apparent mix of competitive and noncompetitive inhibition kinetics. Furthermore, in insect cell cultures expressing rat mEH, elaidamide enhances the toxicity effects of epoxide-containing xenobiotics. These inhibitors could be valuable tools for investigating the physiological and toxicological roles of mEH. Introduction Over the past decade, mEH was also described as mediating the transport of bile acid into hepatocytes (14, Epoxides are highly strained three-membered cyclic 15). The mechanism by which mEH participates in bile ethers that are often electrophilically reactive mutagens, absorption is not known. Obtaining potent mEH inhibi- carcinogens, or cytotoxins (1).
    [Show full text]