Hybrid Metal Oxide Cycle Water Splitting Richard B

Total Page:16

File Type:pdf, Size:1020Kb

Hybrid Metal Oxide Cycle Water Splitting Richard B Bucknell University Bucknell Digital Commons Other Faculty Research and Publications Faculty Scholarship 2016 Hybrid metal oxide cycle water splitting Richard B. Diver Jr Robert D. Palumbo Nathan P. Siegel Bucknell University James E. Miller Follow this and additional works at: https://digitalcommons.bucknell.edu/fac_pubs Part of the Energy Systems Commons, and the Thermodynamics Commons Recommended Citation Diver, Richard B. Jr; Palumbo, Robert D.; Siegel, Nathan P.; and Miller, James E., "Hybrid metal oxide cycle water splitting" (2016). Other Faculty Research and Publications. 137. https://digitalcommons.bucknell.edu/fac_pubs/137 This Other is brought to you for free and open access by the Faculty Scholarship at Bucknell Digital Commons. It has been accepted for inclusion in Other Faculty Research and Publications by an authorized administrator of Bucknell Digital Commons. For more information, please contact [email protected]. US009279188B2 (12) United States Patent (10) Patent No.: US 9.279,188 B2 Diver, Jr. et al. (45) Date of Patent: Mar. 8, 2016 (54) HYBRD METAL OXDE CYCLE WATER (58) Field of Classification Search SPLITTING CPC ......................................................... C25B 1/04 USPC .......................................................... 205/637 (75) Inventors: Richard B. Diver, Jr., Albuquerque, NM See application file for complete search history. (US); Robert D. Palumbo, Valparaiso, IN (US); Nathan P. Siegel, Lewisburg, (56) References Cited PA (US); James E. Miller, Albuquerque, NM (US) U.S. PATENT DOCUMENTS 3,807,090 A 4, 1974 Moss (73) Assignee: Sandia Corporation, Albuquerque, NM 4,192,726 A 3/1980 Pangbornet al. (US) 4,202,744. A * 5/1980 Pan et al. ...................... 205/339 4,256,549 A * 3/1981 Divisek et al. ................ 2O5,354 (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 (Continued) U.S.C. 154(b) by 99 days. FOREIGN PATENT DOCUMENTS (21) Appl. No.: 14/115,095 WO WO 2013,019 167 A1 3, 2013 (22) PCT Filed: Jul. 29, 2011 OTHER PUBLICATIONS PCT NO.: PCT/US2O11AOO1340 PCT/US2011/001340 International Search Report mailed Dec. 14, (86) 2011, 2 pages. S371 (c)(1), (2), (4) Date: Oct. 31, 2013 Primary Examiner — Nicholas A Smith (74) Attorney, Agent, or Firm — Daniel J. Jenkins (87) PCT Pub. No.: WO2O13/O19167 PCT Pub. Date: Feb. 7, 2013 (57) ABSTRACT Hybrid thermochemical water splitting cycles are provided in (65) Prior Publication Data which thermally reduced metal oxides particles are used to displace Some but not all of the electrical requirements in a US 2014/O1 O29 12 A1 Apr. 17, 2014 water splitting electrolytic cell. In these hybrid cycles, the Related U.S. Application Data thermal reduction temperature is significantly reduced com pared to two-step metal-oxide thermochemical cycles in (60) Provisional application No. 61/368,756, filed on Jul. which only thermal energy is required to produce hydrogen 29, 2010. from water. Also, unlike the conventional higher temperature cycles where the reduction step must be carried out under (51) Int. C. reduced oxygen pressure, the reduction step in the proposed C25B I/04 (2006.01) hybrid cycles can be carried out in air, allowing for thermal COIB 3/06 (2006.01) input by a solar power tower with a windowless, cavity (52) U.S. C. receiver. CPC, C25B I/04 (2013.01); COIB3/063 (2013.01); Y02E 60/36 (2013.01) 6 Claims, 2 Drawing Sheets s al US 9.279,188 B2 Page 2 (56) References Cited 2006, O1884.33 A1 8, 2006 Weimer et al. 2007/004.5.125 A1 3, 2007 Hartvigsen et al. U.S. PATENT DOCUMENTS 2008, OO19903 A1 1, 2008 Wegner 2009, O120802 A1 5/2009 Ciampi et al. 4,608,137 A * 8/1986 Vaughan et al. .............. 205,637 2012/0175268 A1* T/2012 Joshi et al. .................... 205/412 5.492.777 A * 2/1996 Isenberg ................. CO1B 3.061 429,221 * cited by examiner U.S. Patent Mar. 8, 2016 Sheet 1 of 2 US 9.279,188 B2 U.S. Patent Mar. 8, 2016 Sheet 2 of 2 US 9.279,188 B2 von 8 Inert 44 ReceiverReactive Part N Concentrated Solar Flux w & a a Aa A & a a as sala sa a A a Hot Particle Storage Particle To Electric Lift Power Cycle Heat Exchanger Electrolyzer H Electricity HO eCC 'O F.G. 2 US 9,279,188 B2 1. 2 HYBRD METAL OXDE CYCLE WATER Thermochemical cycles are an attractive alternative to SPLITTING electrolysis as they have the potential for higher energy effi ciency due to the fact that they avoid the need to first convert CROSS REFERENCE TO RELATED thermal energy into electrical energy. There are many pro APPLICATION posed metal oxide thermochemical cycles for water splitting. For example, the Iron Oxide cycle is one that has been inter This application claims priority to U.S. provisional appli esting to the research community because the reduced iron cation Ser. No. 61/368,756, filed on Jul. 29, 2010, which is oxide is capable of reacting with water to produce hydrogen. hereby incorporated by reference in its entirety. However, in this cycle very high temperatures are needed to 10 thermally reduce magnetite, Fe-O, to the reduced oxide, BACKGROUND OF THE DISCLOSURE wustite. FeC). Complicating matters is the fact that the recov ery of Fe0 is dependent on the reduction step being con The present disclosure relates generally to methods and ducted under reduced oxygen partial pressure, e.g. in a apparatus associated with hybrid metal oxide cycle water vacuum or in the presence of an inert Sweep gas. Also, the splitting. 15 oxides melt and are somewhat Volatile at the required tem peratures. The thermodynamic high temperature require SUMMARY OF THE INVENTION ments and thermodynamic and kinetic requirements forcing the reaction to take place under an inert atmosphere as well as In one aspect of the disclosure, a hea hybrid thermochemi numerous materials challenges posed for these types of cal water splitting cycle includes thermally reducing a metal cycles compromise significantly the potential of engineering oxide with concentrated Solar energy and reoxidizing an oxy these cycles into an efficient and industrially economically gen-deficient metal oxide in an electrochemical cell, wherein realizable process. We are, therefore, interested in processes the chemical potential for the reactions is provided by the where the thermal reduction step can be done attemperatures metal oxide and electrical energy, and wherein the electrical below 1500° C. and even in air. energy required is significantly lower than needed for water 25 As an example, oxygen can be driven off from cobalt and or carbon dioxide electrolysis alone. manganese oxides (i.e. Co-O, MnO, and Mn2O) at signifi cantly lower temperatures than needed to thermally reduce BRIEF DESCRIPTION OF THE DRAWINGS magnetite. In addition, oxygen can also be produced from hematite, Fe2O, at much lower temperatures. FIG. 1 illustrates a schematic view of a hybrid metal oxide 30 cycle; and FIG. 2 shows one implementation strategy of the hybrid The factor previously eliminating the use of these attractive metal oxide cycle of FIG. 1. thermal reduction chemistries has been the other half of the two-step cycle. The Gibbs free energy, AG, of the oxidation DETAILED DESCRIPTION 35 FeO and the thermally reduced States of cobalt and manga nese oxides with water are positive at any temperature above Hybrid thermochemical water splitting cycles are pro and including room temperature. That is, they are thermody posed in which thermally reduced metal oxides particles are namically stable in the presence of water and steam, and will used to displace Some but not all of the electrical requirements not spontaneously oxidize to yield hydrogen. (Note: Because in a water splitting electrolytic cell. In these hybrid cycles, the 40 the reaction with water is not favorable, steam is essentially thermal reduction temperature is significantly reduced com inert in the system and could be employed gainfully as a pared to two-step metal-oxide thermochemical cycles in sweep to promote the reduction reaction if desired). which only thermal energy is required to produce hydrogen The factor previously eliminating the use of these attractive from water. Also, unlike the conventional higher temperature thermal reduction chemistries has been the other half of the cycles where the reduction step must be carried out under 45 two-step cycle. The Gibbs free energy, AG, of the oxidation reduced oxygen pressure, the reduction step in the proposed FeO and the thermally reduced States of cobalt and manga hybrid cycles can be (but are not required to be) carried out in nese oxides with water are positive at any temperature above air, allowing for thermal input by a solar power tower with a and including room temperature. That is, they are thermody windowless, cavity receiver. These proposed hybrid cycles namically stable in the presence of water and steam, and will could also potentially enable the use of heat from a nuclear 50 not spontaneously oxidize to yield hydrogen. (Note: Because reactor. Regardless of the energy input source, Solar or the reaction with water is not favorable, steam is essentially nuclear, in the hybrid scheme the products from thermal inert in the system and could be employed gainfully as a reduction are utilized as a chemically active anode material in sweep to promote the reduction reaction if desired). a water splitting electrolyzer. Because the anode is re-oxi dized during electrolysis, the electrical input required to split 55 water is reduced substantially below the electric input Employing a third reaction with sodium hydroxide or required to drive a conventional water splitting electrolyzer. potassium hydroxide has been proposed to make the oxida For example, the ideal decomposition Voltage can drop from tion thermodynamics favorable for metal oxide cycles in the 1.23 volts needed in a conventional cell to values as low as which the oxidation reaction is not favorable However, the 0.23 volts.
Recommended publications
  • Solar Thermochemical Hydrogen Production Research (STCH)
    SANDIA REPORT SAND2011-3622 Unlimited Release Printed May 2011 Solar Thermochemical Hydrogen Production Research (STCH) Thermochemical Cycle Selection and Investment Priority Robert Perret Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550 Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. Approved for public release; further dissemination unlimited. Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia Corporation. NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States Government, any agency thereof, or any of their contractors. Printed in the United States of America. This report has been reproduced directly from the best available copy.
    [Show full text]
  • Metal Oxides Applied to Thermochemical Water-Splitting for Hydrogen Production Using Concentrated Solar Energy
    chemengineering Review Metal Oxides Applied to Thermochemical Water-Splitting for Hydrogen Production Using Concentrated Solar Energy Stéphane Abanades Processes, Materials, and Solar Energy Laboratory, PROMES-CNRS, 7 Rue du Four Solaire, 66120 Font Romeu, France; [email protected]; Tel.: +33-0468307730 Received: 17 May 2019; Accepted: 2 July 2019; Published: 4 July 2019 Abstract: Solar thermochemical processes have the potential to efficiently convert high-temperature solar heat into storable and transportable chemical fuels such as hydrogen. In such processes, the thermal energy required for the endothermic reaction is supplied by concentrated solar energy and the hydrogen production routes differ as a function of the feedstock resource. While hydrogen production should still rely on carbonaceous feedstocks in a transition period, thermochemical water-splitting using metal oxide redox reactions is considered to date as one of the most attractive methods in the long-term to produce renewable H2 for direct use in fuel cells or further conversion to synthetic liquid hydrocarbon fuels. The two-step redox cycles generally consist of the endothermic solar thermal reduction of a metal oxide releasing oxygen with concentrated solar energy used as the high-temperature heat source for providing reaction enthalpy; and the exothermic oxidation of the reduced oxide with H2O to generate H2. This approach requires the development of redox-active and thermally-stable oxide materials able to split water with both high fuel productivities and chemical conversion rates. The main relevant two-step metal oxide systems are commonly based on volatile (ZnO/Zn, SnO2/SnO) and non-volatile redox pairs (Fe3O4/FeO, ferrites, CeO2/CeO2 δ, perovskites).
    [Show full text]
  • Optimization of the Hybrid Sulfur Cycle for Nuclear Hydrogen Production Using Unisim Design
    Transactions of the Korean Nuclear Society Spring Meeting Jeju, Korea, May 22, 2009 Optimization of the Hybrid Sulfur Cycle for Nuclear Hydrogen Production Using UniSim Design Yong Hun Jung a∗, Yong Hoon Jeong a aKAIST, 335 Gwahangno, Yuseong-gu, Daejeon 305-701, Korea *Corresponding author: [email protected] 1. Introduction 2. Simulation The sulfur-based thermochemical cycles are A simple Hybrid Sulfur Cycle flow sheet was considered as the most promising methods to produce developed and described on the UniSim Design as hydrogen. The Hybrid Sulfur (HyS) Cycle is a mixed shown in Fig. 2. PR-Twu equation of state model is thermochemical cycle with the sulfur-aided electrolysis selected among the fluid packages provided by basis as depicted in the Fig. 1. Hydrogen is produced from environment of UniSim Design [3]. Electrolyzer unit is water by oxidizing sulfur dioxide in the low not described. Instead, the experimental data of the temperature electrolysis step and the sulfuric acid which required electrode potentials for the various acid is also produced in the electrolyzer proceeds to the high concentrations is inputted in the linked spread sheet of temperature thermochemical step. The sulfuric acid is the UniSim Design [2]. The thermochemical step: the concentrated in the concentrator first and then cycle except the electrolyzer is adjusted to produce decomposed into steam and sulfur trioxide, which is 1kgmole/h of sulfur dioxide and this is equivalent to further decomposed into sulfur dioxide and oxygen at 1kgmole/h of hydrogen from the whole cycle assuming high temperature (;1100 K) in the decomposer. After that all the sulfur dioxide are consumed in the separated with oxygen in the separator, the sulfur electrolyzer.
    [Show full text]
  • Hybrid Sulfur (Westinghouse) V0.Pub
    IEA/HIA TASK 25 : HIGH TEMPERATURE HYDROGEN PRODUCTION PROCESS Hybrid Sulfur cycle Process principle H2 ½ O2 H2 + H2SO4 ½ O2 (1) 2 H2O + SO2 —> H2SO4 + H2 S + H SO (2) SO2 (2a) H2SO4 —> H2O + SO3 (1) Circulation 2 4 2 H2O + SO2 + 2 H O (2b) SO —> SO + ½ O Electrolysis 80°C 2 3 2 2 850°CH2O Heat H2O Electrical Energy Current status : Hybrid Sulfur The Hybrid Sulfur (Westinghouse) Cycle is a Process description : two-step thermochemical cycle for decomposing (1) SO electrolysis at 80° C water into hydrogen and oxygen. Sulfur oxides 2 (2) H2SO4 decomposition : (2a) Starts at 450° C serve as recycled intermediates within the system. (2b) Starts at 800° C • Significant research activity for nuclear Heat source : and solar. Nuclear or Solar heat source • Chemical reactions all demonstrated. Materials : Electrodes : carbon-supported platinum catalysts Advantages : H2SO4 Decomposition : Ceramics such as silicon • Uses common / inexpensive chemicals. carbide, silicon nitride and cermets • Cycle has the potential for achieving high thermal efficiencies. Efficiency : • Only one intermediary species (oxides of The cycle efficiency is 42 % which has the potential sulfur). to be increased to 48.8 % 1. Challenges : Cost evaluation : • Requires high temperature. Between 4.4 and 6.8 $/kg for a nuclear heat source12 • Corrosion by H SO . 2 4 Between 1.6 and 5.6 €/kg for a solar heat source13,14 Version 1 1 IEA/HIA TASK 25: HIGH TEMPERATURE HYDROGEN PRODUCTION PROCESS Flow-sheet The Hybrid Sulphur cycle, also named Ispra Mark 11 cycle or Westinghouse Sulphur cycle was developed in the 70’s by Westinghouse Electric corporation.
    [Show full text]
  • Click to Add Title SOL2HY2 Solar to Hydrogen Hybrid Cycles
    SOL2HY2 Solar To Hydrogen Hybrid Cycles Michael Gasik Aalto University Foundation sol2hy2.eucoord.com Coordinator email: [email protected] to add title Programme Review Days 2016 Brussels, 21-22 November PROJECT OVERVIEW Project Information Call topic SP1-JTI-FCH.2012.2.5 – Thermo-electrical- chemical processes with solar heat sources Grant agreement number 325320 Application area (FP7) Hydrogen Production Start date 01/06/2013 End date 30/11/2016 Total budget (€) 3,701,300 FCH JU contribution (€) 1,991,115 Other contribution (€, source) 214,000 (Tekes, FI) Stage of implementation 99% project months elapsed vs total project duration, at date of November 1, 2016 Partners Enginsoft (IT), Aalto (FI), ENEA (IT), DLR (DE), Outotec (FI), Erbicol (CH), Woikoski (FI) PROJECT SUMMARY • The project focuses on applied R&D and demo of the relevant-scale key components of the solar-powered, CO2-free hybrid water splitting cycles, complemented by their advanced modeling and process simulation and site-specific optimization • Solar-powered thermo-chemical cycles are capable to directly transfer concentrated sunlight into chemical energy. Of these, hybrid-sulfur (HyS) cycle was identified as the most promising, but its challenges remain in materials and the whole flowsheet optimization, tailored to specific solar input and plant site location. • In the project, consortium developed solutions for the SO2-depolarized electrolyser, sulfuric acid handling and for the BoP. • The on-Sun demo has proven the said concepts and a new software tool were created, allowing the tailoring of such flexible plant at any worldwide location, leading to H2 plants and technology “green concepts” commercialization.
    [Show full text]
  • Hydrogen As an Energy Vector
    Renewable and Sustainable Energy Reviews 120 (2020) 109620 Contents lists available at ScienceDirect Renewable and Sustainable Energy Reviews journal homepage: http://www.elsevier.com/locate/rser Hydrogen as an energy vector Zainul Abdin a,b, Ali Zafaranloo a, Ahmad Rafiee d, Walter M�erida b, Wojciech Lipinski� c, Kaveh R. Khalilpour a,e,f,* a Faculty of Information Technology, Monash University, Melbourne, VIC, 3145, Australia b Clean Energy Research Centre, The University of British Columbia, 6250 Applied Science Lane, Vancouver, BC, V6T 1Z4, Canada c Research School of Electrical, Energy and Materials Engineering, The Australian National University, Canberra, ACT, 2601, Australia d Department of Theoretical Foundations of Electrical Engineering, Faculty of Energy, South Ural State University, 76, Lenin Ave., Chelyabinsk, 454080, Russia e School of Information, Systems and Modelling, University of Technology Sydney, 81 Broadway, Ultimo, NSW, 2007, Australia f Perswade Centre, Faculty of Engineering and IT, University of Technology Sydney, 81 Broadway, Ultimo, NSW, 2007, Australia ARTICLE INFO ABSTRACT Keywords: Hydrogen is known as a technically viable and benign energy vector for applications ranging from the small-scale Hydrogen economy power supply in off-grid modes to large-scale chemical energy exports. However, with hydrogen being naturally Hydrogen supply chain unavailable in its pure form, traditionally reliant industries such as oil refining and fertilisers have sourced it Hydrogen carriers through emission-intensive gasificationand reforming of fossil fuels. Although the deployment of hydrogen as an Hydrogen generation alternative energy vector has long been discussed, it has not been realised because of the lack of low-cost Hydrogen storage Renewable hydrogen hydrogen generation and conversion technologies.
    [Show full text]
  • SO2 - an Indirect Source of Energy
    Downloaded from orbit.dtu.dk on: Dec 15, 2017 SO2 - An indirect source of energy Kriek, R.J.; Van Ravenswaay, J.P.; Potgieter, M.; Calitz, A.; Lates, V.; Björketun, Mårten; Siahrostami, Samira; Rossmeisl, Jan Published in: Southern African Institute of Mining and Metallurgy. Journal Publication date: 2013 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Kriek, R. J., Van Ravenswaay, J. P., Potgieter, M., Calitz, A., Lates, V., Björketun, M., ... Rossmeisl, J. (2013). SO2 - An indirect source of energy. Southern African Institute of Mining and Metallurgy. Journal, 113(8), 593- 604. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. SO2 – an indirect source of energy by R.J. Kriek*, J.P. van Ravenswaay*, M. Potgieter*, A. Calitz*, V. Lates*, M.E. Björketun†, S. Siahrostami†, and J. Rossmeisl† Around the mid-1970s SO2 emissions peaked, subsequently declining as a direct Synopsis result of the implementation of focused abatement technologies.
    [Show full text]
  • Method for Evaluation of Thermochemical and Hybrid Water-Splitting Cycles
    Ind. Eng. Chem. Res. 2009, 48, 8985–8998 8985 Method for Evaluation of Thermochemical and Hybrid Water-Splitting Cycles Miguel Bagajewicz,* Thang Cao, Robbie Crosier, Scott Mullin, Jacob Tarver, and DuyQuang Nguyen Department of Chemical, Biological and Materials Engineering, The UniVersity of Oklahoma, Norman, Oklahoma This paper presents a methodology for the preliminary evaluation of thermochemical and hybrid water-splitting cycles based on efficiency. Because the method does not incorporate sufficient flowsheet details, the efficiencies are upper bounds of the real efficiencies. Nonetheless, they provide sufficient information to warrant comparison with existing well-studied cycles, supporting the decision to disregard them when the bound is too low or continuing their study. In addition, we add features not present in previous works: equilibrium conversions as well as excess reactants are considered. The degrees of freedom of each cycle (temperatures, pressures, and excess reactants) were also considered, and these values were varied to optimize the cycle efficiency. Ten cycles are used to illustrate the method. I. Introduction species entering the process is water, and the only products of the process are hydrogen and oxygen. Heat and work are also Declining volumes of fossil fuel reserves and an increase in transferred across the system boundaries for the heating and their demand has caused a recent rise in the cost of energy. cooling of process streams, the separation of reactive species, Similarly, nations across the globe are aspirating to become less and to drive the chemical reactions. dependent on foreign resources for the fulfillment of energy requirements. Furthermore, a steady increase in greenhouse gas Many studies have been performed in previous years to emissions over the past decades has brought about the reality evaluate water-splitting cycles as a means to produce hydrogen.
    [Show full text]
  • Dynamic Simulation of a Solar Powered Hybrid Sulfur Process for Hydrogen Production Satwick Boddu University of South Carolina
    University of South Carolina Scholar Commons Theses and Dissertations 2018 Dynamic Simulation of a Solar Powered Hybrid sulfur Process for Hydrogen Production Satwick Boddu University of South Carolina Follow this and additional works at: https://scholarcommons.sc.edu/etd Part of the Chemical Engineering Commons Recommended Citation Boddu, S.(2018). Dynamic Simulation of a Solar Powered Hybrid sulfur Process for Hydrogen Production. (Master's thesis). Retrieved from https://scholarcommons.sc.edu/etd/4820 This Open Access Thesis is brought to you by Scholar Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Dynamic Simulation of a Solar Powered Hybrid sulfur Process for Hydrogen Production by Satwick Boddu Bachelor of Technology, Indian Institute of Technology - Guwahati, 2014 Submitted in Partial Fulfillment of the Requirements For the Degree of Master of Science in Chemical Engineering College of Engineering and Computing University of South Carolina 2018 Accepted by: Edward P. Gatzke, Director of Thesis Stanford G. Thomas, Reader John W. Weidner, Reader Cheryl L. Addy, Vice Provost and Dean of the Graduate School Abstract The Hybrid Sulfur process is a thermo-electrochemical cycle used to produce hydrogen from water. The process requires a high temperature energy source for H 2SO 4 decomposition with temperature reaching 800°C. This step is followed by SO 2 - depolarized water electrolysis. Using solar energy as the high temperature energy source allows for efficient environmentally friendly production of hydrogen. This method is an alternative to traditional photovoltaic electrolysis for hydrogen production.
    [Show full text]
  • Planet Hydrogen
    FOCUS ENEA_ Splitting water with renewable heat: green hydrogen beyond electrolysis In view of a diversification of energy sources and technologies for green hydrogen production, ENEA, since 2005, has been working on the development of water splitting thermochemical cycles powered by concen- trated solar energy, participating in several research projects within National and European programs. Par- ticularly ENEA has developed a unique expertise on materials and components with the aim of identifying critical aspects and defining innovative solutions to bring this challenging technology to an industrial maturi- ty. To this end, within the Electric System Research programme, ENEA is currently investigating a “modified Sulphur – Iodine” thermochemical cycle, to increase both the thermal efficiency of the hydrogen production route and the technical feasibility of its integration with the solar technology. Innovative materials are under study and the preliminary results show that the use of intermediate solid reactants can be the key to reduce the maximum operating temperatures and the energy consumption of the separation steps. In un'ottica di diversificazione delle fonti energetiche e delle tecnologie per la produzione di idrogeno verde, l'ENEA, dal 2005, si occupa dello sviluppo di cicli termochimici di scissione dell'acqua alimentati da energia solare concen- trata, partecipando a diversi progetti di ricerca nell'ambito di programmi nazionali ed europei. In particolare ENEA ha sviluppato una competenza unica su materiali e componenti con l'obiettivo di identificare gli aspetti critici e defi- nire soluzioni innovative per portare questa sfidante tecnologia ad una maturità industriale. A tal fine, all'interno del programma di Ricerca sul Sistema Elettrico, l'ENEA sta attualmente studiando un ciclo termochimico “Zolfo - Iodio modificato”, per aumentare sia l'efficienza termica del percorso di produzione dell'idrogeno, sia la fattibilità tecnica della sua integrazione con la tecnologia solare.
    [Show full text]
  • Operational Strategy of a Two-Step Thermochemical Process for Solar Hydrogen Production
    international journal of hydrogen energy 34 (2009) 4537–4545 Available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/he Operational strategy of a two-step thermochemical process for solar hydrogen production Martin Roeb*, Martina Neises, Jan-Peter Sa¨ck, Peter Rietbrock, Nathalie Monnerie, Ju¨rgen Dersch, Mark Schmitz, Christian Sattler German Aerospace Center – DLR, Institute of Technical Thermodynamics, Solar Research, Linder Hoehe, 51147 Cologne, Germany article info abstract Article history: A two-step thermochemical cycle process for solar hydrogen production from water has Received 28 February 2008 been developed using ferrite-based redox systems at moderate temperatures. The cycle Received in revised form offers promising properties concerning thermodynamics and efficiency and produces pure 18 August 2008 hydrogen without need for product separation. Accepted 18 August 2008 The process works by cycling stationary ferrite-coated monoliths through sequential Available online 15 October 2008 oxidation and reduction steps at 1073 and 1473 K, respectively. By using two such mono- liths in parallel, it is possible to quasi-continuously produce hydrogen. A prototype solar Keywords: reactor and peripherals suitable to proof the process concept were developed and have Thermochemical cycle been successfully tested in DLR’s solar furnace in Cologne. Repeated cycling operation is Ferrites possible with a reproducible amount of hydrogen produced. In most cases, a distinct decay Solar thermal of the amount of the evolved hydrogen is observed from cycle to cycle due to inhomoge- Water splitting neous heating of the monolithic absorber in the very first cycles and due to disappearance Iron oxide of the porosity and the associated loss of surface area in later cycles.
    [Show full text]
  • Hydrogen Production by the Solar-Powered Hybrid Sulfur Process: Analysis of the Integration of the CSP and Chemical Plants in Selected Scenarios
    Hydrogen production by the solar-powered hybrid sulfur process: Analysis of the integration of the CSP and chemical plants in selected scenarios Cite as: AIP Conference Proceedings 1734, 120006 (2016); https://doi.org/10.1063/1.4949208 Published Online: 31 May 2016 Raffaele Liberatore, Michela Lanchi, and Luca Turchetti ARTICLES YOU MAY BE INTERESTED IN Integration of photovoltaic and concentrated solar thermal technologies for H2 production by the hybrid sulfur cycle AIP Conference Proceedings 1850, 100013 (2017); https://doi.org/10.1063/1.4984470 Solar hydrogen production with cerium oxides thermochemical cycle AIP Conference Proceedings 1850, 100002 (2017); https://doi.org/10.1063/1.4984459 Modeling of a CeO2 thermochemistry reduction process for hydrogen production by solar concentrated energy AIP Conference Proceedings 1734, 120008 (2016); https://doi.org/10.1063/1.4949210 AIP Conference Proceedings 1734, 120006 (2016); https://doi.org/10.1063/1.4949208 1734, 120006 © 2016 Author(s). Hydrogen Production by the Solar-powered Hybrid Sulfur Process: Analysis of the Integration of the CSP and Chemical Plants in Selected Scenarios Raffaele Liberatore1, Michela Lanchi1 and Luca Turchetti1, a) 1ENEA - Italian National Agency for New Technologies, Energy and Sustainable Economic Development, via Anguillarese 301 - 00123 Rome, Italy. a)Corresponding author: [email protected] Abstract. The Hybrid Sulfur (HyS) is a water splitting process for hydrogen production powered with high temperature nuclear heat and electric power; among the numerous thermo-chemical and thermo-electro-chemical cycles proposed in the literature, such cycle is considered to have a particularly high potential also if powered by renewable energy. SOL2HY2 (Solar to Hydrogen Hybrid Cycles) is a 3 year research project, co-funded by the Fuel Cells and Hydrogen Joint Undertaking (FCH JU).
    [Show full text]