The Exploration of Space (1954)

Total Page:16

File Type:pdf, Size:1020Kb

The Exploration of Space (1954) C-135 THE EXPLORATION OF 35c SPACE A CARDINAL EDITION A DRAMATIC AND ACCURATE ACCOUNT OF MAN'S NEWEST AND GREATEST . FRONTIER Chairman of the British Interplanetary Society » 1946-47, 1950-53 THE COMPLETE BOOK A Brilliant Book! “The author . has done a magnificent job. What gives the book such charm and magnetism is Clarke’s ability to reduce complex subjects to simple language....” —Chicago Sunday Tribune “Mr. Clarke’s book will serve as the most im­ portant yet published in its field. ...” —New York Herald Tribune “An exceptionally lucid job of scientific exposi­ tion for the layman. .” —Atlantic Monthly Arthur C. Clarke’s The Exploration of Space was originally published by Harper & Brothers. Other books by Arthur C. Clarke NONFICTION INTERPLANETARY FLIGHT GOING INTO SPACE THE EXPLORATION OF THE MOON FICTION *THE SANDS OF MARS ISLANDS IN THE SKY CHILDHOOD'S END EXPEDITION TO EARTH AGAINST THE FALL OF NIGHT PRELUDE TO SPACE •Published In a Pocket Book edition. THE . ~ EXPLORATION OF - - SPACE ARTHUR C. CLARKE B.Sc., F.R.A.S. Chairman, British Interplanetary Society 1946-47, 1950-53 E D ITION POCKET BOOKS, INC. NEW YORK, N. Y. This Cardinal edition includes every word contained in the original, higher-priced edition. It is printed from brand-new plates made from completely reset, clear, easy-to-read type. THE EXPLORATION OF SPACE Harper edition published June, 1952 4 PRINTINGS Book-of-the-Month Club edition published July, 1952 Serialization in the Baltimore Sun October, 1952 Condensation in Science Digest, April, 1953 Cardinal edition published August, 1954 1st printing....................................................June, 1954 Copyright, 1951, by Arthur Charles Clarke, for the text. Copyright, 1951, by Temple Press, Ltd., for color plates and line illustrations. All rights reserved. Library of Congress Catalog Card No. 52-5430. This Cardinal edition is pub­ lished by arrangement with Harper & Brothers. Printed in the U. S. A. A Notice: Cardinal editions are published in the United States by Pocket Zp Books, Inc. and in Canada by Pocket Books of Canada, Ltd. Trade marks registered in the United States by Pocket Books, Inc. and regis- fctfl tered in Canada by Pocket Books of Canada, Ltd. Application for registration filed in the British Patent Office by Pocket Books, Inc. To Jim, who suggested it To Fred, who provided the environment To Dot, who had to read my writing List of Plates (Following page 98) Plate 1* The Lunar Base Plate 2 (a) Lunar Type Spaceship: Sectional View (b) High-Altitude Man-Carrying Rocket Plate 3 Spaceships Refuelling in Free Orbit Plate 4 (a) Spaceship on Moon (b) The Space-Suit Plate 5* The Martian Base Plate 6 (a) Pictorial Map of Moon (b) Mare Imbrium Region Plate 7 Lunar Formations: (a) Hevel and Lohrmann (b) Sirsalis Plate 8 Map of Mars Plate 9* Automatic Rocket Surveying Mars Plate 10 (a) Building the Space-Station (b) The Space-Station Plate 11 (a) The Great Nebula in Andromeda (b) Star Clouds in Cygnus Plate 12* A Multiple Sun System Note: These plates are in four colors. Contents CHAPTER PAGE Preface viii Preface to Pocket Book Edition xi 1. The Shaping of the Dream 1 2. The Earth and Its Neighbours 9 3. The Rocket 18 4. Escaping from Earth 32 5. The Road to the Planets 46 6. The Spaceship 61 7. The Journey to the Moon 75 8. Navigation and Communication in Space 84 9. Life in the Spaceship 94 ■ .10. The Moon 109 11. The Lunar Base 118 12. The Inner Planets 128 13. The Outer Planets 142 14. Exploring the Planets 151 15. Stations in Space 159 16. Other Suns than Ours 173 17. To the Stars 184 18. Concerning Meansand Ends 194 Index 208 ----- E rrata ■ ' —------ The following corrections were received too late to be made in this edition: The credit lines for Plates 6 and 11 should read Mount Wilson Observatory instead of Royal Astronomical Society. Preface THIS book has been written to fill a need which has become increasingly apparent since my earlier work Interplanetary Flight was published little more than a year ago. The latter book was intended as a technical though non­ specialist treatment of astronautics—the science of space­ travel—but it was soon clear that it had a large sale among readers who were certainly less than enthusiastic about the details of mass-ratios, rocket fuel performances and the dy­ namics of orbits. The present work has, therefore, been prepared for the benefit of all those .who are interested in the “why” and “how” of astronautics yet do not wish to go into too many scientific details. I believe that there is nothing in this book that the in­ telligent layman could not follow: he may encounter unfa­ miliar ideas, but that will be owing to the very nature of the subject, and in this respect he will be no worse off than many specialists. In this work I have also attempted to cover a considerably wider field than was possible in the earlier volume. I have tried to give concrete answers to such questions as “What would a spaceship look like?,” “What may we expect to find on the planets?,” and, above all, “What will we do when we get there?” Very obviously, any such replies must at present be based on a most meagre foundation of exact knowledge, and I have little doubt that many of them will look rather odd in the near future. But unless some attempt is made to deal with these points, the whole subject remains, as far as the ordinary reader is concerned, in the realm of theory. The ex­ perts may be satisfied with graphs and equations: most of us prefer more substantial fare. I have, therefore, not been afraid to use my imagination where I thought fit: those who want a more exact, quantita­ VIII PREFACE tive treatment can find it in Interplanetary Flight. Yet I have tried to base all my speculations firmly upon facts, or at least upon probabilities, and have avoided sensationalism for its own sake. Some readers may find this a little difficult to credit —particularly when they look at Plates 1 and 5—but it is the truth. Space-travel is a sufficiently sensational subject to re­ quire no additional embellishments, and in the long run we can be sure that our wildest flights of fancy will fall far short of the facts—as has always happened in the past history of scientific prediction. I do not expect all my readers to accept unreservedly every­ thing I suggest as a possibility of the future, but I would ask those who may find it hard to take seriously the idea of colonies on the Moon and the planets to consider this question: What would their great-grandfathers have thought if, by some mir­ acle, they could have visited London Airport or Idlewild on a busy day and watched the Constellations and Stratocruisers coming in from all comers of the earth? This is the experi­ ence which, perhaps above all others that the modem world can give, should convince any unbiased mind that we are already far closer in time to the first ships of space than to the first ships of the sea. In writing this book I have tried to anticipate all the ques­ tions that the reader will ask, and have also attempted to ex­ plain everything that is explainable in a work of this length and scope. Some matters, however, the reader will have to accept on trust. Thus he will find a straightforward—I hope­ demonstration of why the rocket works in a vacuum, but the reasons for the time-contraction effects mentioned in Chapter 17 he must seek in books on Relativity. Astronautics, perhaps even more than nuclear physics, raises questions far outside the purely technical domain. The possi­ bility of space-flight is often admitted by those who can see no point in its accomplishment, or who ask the very reasonable question: "Why bother about the planets when there is so IX PREFACE much to do here on Earth?” Many people today have had quite enough of science for the sake of science and look with distaste, or even active hostility, on the extension of Man’s powers which is represented by interplanetary travel. An at­ tempt has therefore been made, in the closing chapter, to deal with this viewpoint and to show how astronautics may contribute to the progress of civilisation, and the ultimate happiness of mankind. Once again it is a pleasure to thank my colleagues in the British Interplanetary Society for their assistance during the preparation of this book. Although I take responsibility for any views put forward, I can claim originality for very few of the ideas mentioned herein, most of which have been thrashed out in discussions with other members of the B.I.S. over a pe­ riod of more than fifteen years. My particular thanks are due to R. A. Smith and Leslie Carr for their splendid work on the illustrations. Besides executing Plates 2, 3, 4 and 10, Mr. Smith (with his colleague H. E. Ross) is almost entirely responsible for the ideas de­ picted there: my own contribution is limited to the middle distance of Plate 3. Plates 1, 5 and 9 are also largely based on Mr. Smith’s designs, though the execution is entirely Leslie Carr’s. Thanks are also due to the British Astronomical Association for permission to reproduce Plates 7 and 8 from the Memoirs of its Lunar and Mars Sections; to Mr. John Murray for Plate 6 (a), taken from Nasmyth and Carpenter’s classic The Moon; and to the Mount Wilson Observatory for Plates 6(b) and 11.
Recommended publications
  • “Savage and Deformed”: Stigma As Drama in the Tempest Jeffrey R
    “Savage and Deformed”: Stigma as Drama in The Tempest Jeffrey R. Wilson The dramatis personae of The Tempest casts Caliban as “asavageand deformed slave.”1 Since the mid-twentieth century, critics have scrutinized Caliban’s status as a “slave,” developing a riveting post-colonial reading of the play, but I want to address the pairing of “savage and deformed.”2 If not Shakespeare’s own mixture of moral and corporeal abominations, “savage and deformed” is the first editorial comment on Caliban, the “and” here Stigmatized as such, Caliban’s body never comes to us .”ס“ working as an uninterpreted. It is always already laden with meaning. But what, if we try to strip away meaning from fact, does Caliban actually look like? The ambiguous and therefore amorphous nature of Caliban’s deformity has been a perennial problem in both dramaturgical and critical studies of The Tempest at least since George Steevens’s edition of the play (1793), acutely since Alden and Virginia Vaughan’s Shakespeare’s Caliban: A Cultural His- tory (1993), and enduringly in recent readings by Paul Franssen, Julia Lup- ton, and Mark Burnett.3 Of all the “deformed” images that actors, artists, and critics have assigned to Caliban, four stand out as the most popular: the devil, the monster, the humanoid, and the racial other. First, thanks to Prospero’s yarn of a “demi-devil” (5.1.272) or a “born devil” (4.1.188) that was “got by the devil himself” (1.2.319), early critics like John Dryden and Joseph War- ton envisioned a demonic Caliban.4 In a second set of images, the reverbera- tions of “monster” in The Tempest have led writers and artists to envision Caliban as one of three prodigies: an earth creature, a fish-like thing, or an animal-headed man.
    [Show full text]
  • Phobos, Deimos: Formation and Evolution Alex Soumbatov-Gur
    Phobos, Deimos: Formation and Evolution Alex Soumbatov-Gur To cite this version: Alex Soumbatov-Gur. Phobos, Deimos: Formation and Evolution. [Research Report] Karpov institute of physical chemistry. 2019. hal-02147461 HAL Id: hal-02147461 https://hal.archives-ouvertes.fr/hal-02147461 Submitted on 4 Jun 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Phobos, Deimos: Formation and Evolution Alex Soumbatov-Gur The moons are confirmed to be ejected parts of Mars’ crust. After explosive throwing out as cone-like rocks they plastically evolved with density decays and materials transformations. Their expansion evolutions were accompanied by global ruptures and small scale rock ejections with concurrent crater formations. The scenario reconciles orbital and physical parameters of the moons. It coherently explains dozens of their properties including spectra, appearances, size differences, crater locations, fracture symmetries, orbits, evolution trends, geologic activity, Phobos’ grooves, mechanism of their origin, etc. The ejective approach is also discussed in the context of observational data on near-Earth asteroids, main belt asteroids Steins, Vesta, and Mars. The approach incorporates known fission mechanism of formation of miniature asteroids, logically accounts for its outliers, and naturally explains formations of small celestial bodies of various sizes.
    [Show full text]
  • Lecture 12 the Rings and Moons of the Outer Planets October 15, 2018
    Lecture 12 The Rings and Moons of the Outer Planets October 15, 2018 1 2 Rings of Outer Planets • Rings are not solid but are fragments of material – Saturn: Ice and ice-coated rock (bright) – Others: Dusty ice, rocky material (dark) • Very thin – Saturn rings ~0.05 km thick! • Rings can have many gaps due to small satellites – Saturn and Uranus 3 Rings of Jupiter •Very thin and made of small, dark particles. 4 Rings of Saturn Flash movie 5 Saturn’s Rings Ring structure in natural color, photographed by Cassini probe July 23, 2004. Click on image for Astronomy Picture of the Day site, or here for JPL information 6 Saturn’s Rings (false color) Photo taken by Voyager 2 on August 17, 1981. Click on image for more information 7 Saturn’s Ring System (Cassini) Mars Mimas Janus Venus Prometheus A B C D F G E Pandora Enceladus Epimetheus Earth Tethys Moon Wikipedia image with annotations On July 19, 2013, in an event celebrated the world over, NASA's Cassini spacecraft slipped into Saturn's shadow and turned to image the planet, seven of its moons, its inner rings -- and, in the background, our home planet, Earth. 8 Newly Discovered Saturnian Ring • Nearly invisible ring in the plane of the moon Pheobe’s orbit, tilted 27° from Saturn’s equatorial plane • Discovered by the infrared Spitzer Space Telescope and announced 6 October 2009 • Extends from 128 to 207 Saturnian radii and is about 40 radii thick • Contributes to the two-tone coloring of the moon Iapetus • Click here for more info about the artist’s rendering 9 Rings of Uranus • Uranus -- rings discovered through stellar occultation – Rings block light from star as Uranus moves by.
    [Show full text]
  • Predictable Patterns in Planetary Transit Timing Variations and Transit Duration Variations Due to Exomoons
    Astronomy & Astrophysics manuscript no. ms c ESO 2016 June 21, 2016 Predictable patterns in planetary transit timing variations and transit duration variations due to exomoons René Heller1, Michael Hippke2, Ben Placek3, Daniel Angerhausen4, 5, and Eric Agol6, 7 1 Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany; [email protected] 2 Luiter Straße 21b, 47506 Neukirchen-Vluyn, Germany; [email protected] 3 Center for Science and Technology, Schenectady County Community College, Schenectady, NY 12305, USA; [email protected] 4 NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA; [email protected] 5 USRA NASA Postdoctoral Program Fellow, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771, USA 6 Astronomy Department, University of Washington, Seattle, WA 98195, USA; [email protected] 7 NASA Astrobiology Institute’s Virtual Planetary Laboratory, Seattle, WA 98195, USA Received 22 March 2016; Accepted 12 April 2016 ABSTRACT We present new ways to identify single and multiple moons around extrasolar planets using planetary transit timing variations (TTVs) and transit duration variations (TDVs). For planets with one moon, measurements from successive transits exhibit a hitherto unde- scribed pattern in the TTV-TDV diagram, originating from the stroboscopic sampling of the planet’s orbit around the planet–moon barycenter. This pattern is fully determined and analytically predictable after three consecutive transits. The more measurements become available, the more the TTV-TDV diagram approaches an ellipse. For planets with multi-moons in orbital mean motion reso- nance (MMR), like the Galilean moon system, the pattern is much more complex and addressed numerically in this report.
    [Show full text]
  • Abstracts of the 50Th DDA Meeting (Boulder, CO)
    Abstracts of the 50th DDA Meeting (Boulder, CO) American Astronomical Society June, 2019 100 — Dynamics on Asteroids break-up event around a Lagrange point. 100.01 — Simulations of a Synthetic Eurybates 100.02 — High-Fidelity Testing of Binary Asteroid Collisional Family Formation with Applications to 1999 KW4 Timothy Holt1; David Nesvorny2; Jonathan Horner1; Alex B. Davis1; Daniel Scheeres1 Rachel King1; Brad Carter1; Leigh Brookshaw1 1 Aerospace Engineering Sciences, University of Colorado Boulder 1 Centre for Astrophysics, University of Southern Queensland (Boulder, Colorado, United States) (Longmont, Colorado, United States) 2 Southwest Research Institute (Boulder, Connecticut, United The commonly accepted formation process for asym- States) metric binary asteroids is the spin up and eventual fission of rubble pile asteroids as proposed by Walsh, Of the six recognized collisional families in the Jo- Richardson and Michel (Walsh et al., Nature 2008) vian Trojan swarms, the Eurybates family is the and Scheeres (Scheeres, Icarus 2007). In this theory largest, with over 200 recognized members. Located a rubble pile asteroid is spun up by YORP until it around the Jovian L4 Lagrange point, librations of reaches a critical spin rate and experiences a mass the members make this family an interesting study shedding event forming a close, low-eccentricity in orbital dynamics. The Jovian Trojans are thought satellite. Further work by Jacobson and Scheeres to have been captured during an early period of in- used a planar, two-ellipsoid model to analyze the stability in the Solar system. The parent body of the evolutionary pathways of such a formation event family, 3548 Eurybates is one of the targets for the from the moment the bodies initially fission (Jacob- LUCY spacecraft, and our work will provide a dy- son and Scheeres, Icarus 2011).
    [Show full text]
  • The Asteroid Florence 3122
    The Asteroid Florence 3122 By Mohammad Hassan BACKGROUND • Asteroid 3122 Florence is a stony trinary asteroid of the Amor group. • It was discovered on March 2nd 1981 by Astronomer Schelte J. ”Bobby” Bus at Siding Spring Observatory. It was named in honor of Florence Nightingdale, the founder of modern nursing. • It has an approximate diameter of 5 kilometers. It also orbits the Sun at a distance of 1.0-2.5 astronomical unit once every 2 years and 4 months (859 days). • Florence rotates once every 2.4 hours, a result that was determined previously from optical measurements of the asteroid’s brightness variations. • THE MOST FASINATING THING IS THAT IT HAS TWO MOONS, HENCE WHY IT IS A PART OF THE AMOR GROUP. • The reason why this Asteroid 3122 Florence is important is because it is a near-earth object with the potential of hitting the earth in the future time. Concerns? • Florence 3122 was classified as a potentially hazardous object because of its minimum orbit intersection distance (less than 0.05 AU). This means that Florence 3122 has the potential to make close approaches to the Earth. • Another thing to keep in mind was that Florence 3122 minimum distance from us was 7 millions of km, about 20 times farthest than our moon. What actually happened? • On September 1st, 2017, Florence passed 0.047237 AU from Earth. That is about 7,000 km or 4,400 miles. • From Earth’s perspective, it brightened to apparent magnitude 8.5. It was also visible in small telescopes for several nights as it moved from south to north through the constellations.
    [Show full text]
  • Exploration of the Planets – 1971
    Video Transcript for Archival Research Catalog (ARC) Identifier 649404 Exploration of the Planets – 1971 Narrator: For thousands of years, man observed the rising and setting Sun, the cycle of seasons, the fixed stars, and those he called wanderers, or planets. And from these observations evolved his notions of the universe. The naked eye extended its vision through instruments that saw the craters on the Moon, the changing colors of Mars, and the rings of Saturn. The fantasies, dreams, and visions of space travel became the reality of Apollo. Early in 1970, President Nixon announced the objectives of a balanced space program for the United States that would include the scientific investigation of all the planets in the solar system. Of the nine planets circling the Sun, only the Earth is known to us at firsthand. But observational techniques on Earth and in space have given us some idea of the appearance and movement of the planets. And enable us to depict their physical characteristics in some detail. Mercury, only slightly larger than the Moon, is so close to the Sun that it is difficult to observe by telescope. It is believed to be one large cinder, with no atmosphere and a day-night temperature range of nearly 1,000 degrees. Venus is perpetually cloud-covered. Spacecraft report a surface temperature of 900 degrees Fahrenheit and an atmospheric pressure 100 times greater than Earth’s. We can only guess what the surface is like, possibly a seething netherworld beneath a crushing, poisonous carbon dioxide atmosphere. Of Mars, the Red Planet, we have evidence of its cratered surface, photographed by the Mariner spacecraft.
    [Show full text]
  • Low Velocity Impacts Mars's Inner Moon, Phobos, Is Located Deep In
    Phobos: Low Velocity Impacts Mars’s inner moon, Phobos, is located deep in the planet’s gravity well and orbits far below the planet’s synchronous orbit. Images of the surface of Phobos, in particular from Viking Orbiter 1, MGS, MRO, and MEX, reveal a rich collisional history, including fresh‐looking impact craters and subdued older ones, very large impact structures (compared to the size of Phobos), such as Stickney, and much smaller ones. Sources of impactors colliding with Phobos include a priori: A) Impactors from outside the martian system (asteroids, comets, and fragments thereof); B) Impactors from Mars itself (ejecta from large impacts on Mars); and C) Impactors from Mars orbit, including impact ejecta launched from Deimos and ejecta launched from, and reintercepted by, Phobos. In addition to individual craters on Phobos, the networks of grooves on this moon have also been attributed in part or in whole to impactors from some of these sources, particularly B. We report the preliminary results of a systematic survey of the distribution, morphology, albedo, and color characteristics of fresh impact craters and associated ejecta deposits on Phobos. Considering that the different potential impactor sources listed above are expected to display distinct dominant compositions and different characteristic impact velocity regimes, we identify specific craters on Phobos that are more likely the result of low velocity impacts by impactors derived from Mars orbit than from any alternative sources. Our finding supports the hypothesis that the spectrally “Redder Unit” on Phobos may be a superficial veneer of accreted ejecta from Deimos, and that Phobos’s bulk might be distinct in composition from Deimos.
    [Show full text]
  • Possibilities for Life in the Inner Solar System We Will Now Begin Going
    Possibilities for Life in the Inner Solar System We will now begin going systematically through other possible locations for life (not necessarily intelligent life) in the Solar System. Some possibilities are obvious: Mars and Jupiter’s moon Europa are examples. However, in the interest of continuing open-mindedness, in this lecture we will discuss our Moon, Mercury, the moons of Mars, and Venus. Next lec- ture will focus on Mars, which has a real possibility of having had life at one point, or even having it now below the surface. As we discuss each object, we will keep in mind our basic requirements for life: chemical building blocks, liquids in some place, energy, and stability. Our Moon The Moon is the closest astronomical object to the Earth, and the only one on which we can see significant surface features with our naked eyes (the Sun is too bright, and everything else is pointlike or, like the Andromeda galaxy, too dim). As a result, it has from time immemorial inspired many fanciful notions, including that the Moon is inhabited. In fact, life on the Moon was the subject of one of the most famous hoaxes ever perpetrated. On August 25, 1835 the New York Sun, a small newspaper with a daily circulation of about 4,000, printed a remarkable story on page 2. According to them Sir John Herschel (son of the discoverer of Uranus) had been observing the Moon with a new telescope based in South Africa. The results were astounding. He had seen herds of bison, many beavers, a rich variety of plants, and, most intriguingly, traces of artificial features with smoke coming out of them.
    [Show full text]
  • Martian Moon's Orbit Hints at an Ancient Ring of Mars
    Martian Moon’s Orbit Hints at an Ancient Ring of Mars PRESS RELEASE DATE June 2, 2020 CONTACT Rebecca McDonald Director of Communications SETI Institute [email protected] +1 650-960-4526 Photo credit: https://solarsystem.nasa.gov/moons/mars-moons/deimos/in-depth/ June 2, 2020, Mountain View, CA – Scientists from the SETI Institute and Purdue University have found that the only way to produce Deimos’s unusually tilted orbit is for Mars to have had a ring billions of years ago. While some of the more massive planets in our solar system have giant rings and numerous big moons, Mars only has two small, misshapen moons, Phobos and Deimos. Although these moons are small, their peculiar orbits hide important secrets about their past. For a long time, scientists believed that Mars’s two moons, discovered in 1877, were captured asteroids. However, since their orbits are almost in the same plane as Mars’s equator, that the moons must have formed at the same time as Mars. But the orbit of the smaller, more distant moon Deimos is tilted by two degrees. “The fact that Deimos’s orbit is not exactly in plane with Mars’s equator was considered unimportant, and nobody cared to try to explain it,” says lead author Matija Ćuk, a research scientist at the SETI Institute. “But once we had a big new idea and we looked at it with new eyes, Deimos’s orbital tilt revealed its big secret.” This significant new idea was put forward in 2017 byĆ uk’s co-author David Minton, professor at Purdue University and his then-graduate student Andrew Hesselbrock.
    [Show full text]
  • Accretion of Saturn's Mid-Sized Moons During the Viscous
    Accretion of Saturn’s mid-sized moons during the viscous spreading of young massive rings: solving the paradox of silicate-poor rings versus silicate-rich moons. Sébastien CHARNOZ *,1 Aurélien CRIDA 2 Julie C. CASTILLO-ROGEZ 3 Valery LAINEY 4 Luke DONES 5 Özgür KARATEKIN 6 Gabriel TOBIE 7 Stephane MATHIS 1 Christophe LE PONCIN-LAFITTE 8 Julien SALMON 5,1 (1) Laboratoire AIM, UMR 7158, Université Paris Diderot /CEA IRFU /CNRS, Centre de l’Orme les Merisiers, 91191, Gif sur Yvette Cedex France (2) Université de Nice Sophia-antipolis / C.N.R.S. / Observatoire de la Côte d'Azur Laboratoire Cassiopée UMR6202, BP4229, 06304 NICE cedex 4, France (3) Jet Propulsion Laboratory, California Institute of Technology, M/S 79-24, 4800 Oak Drive Pasadena, CA 91109 USA (4) IMCCE, Observatoire de Paris, UMR 8028 CNRS / UPMC, 77 Av. Denfert-Rochereau, 75014, Paris, France (5) Department of Space Studies, Southwest Research Institute, Boulder, Colorado 80302, USA (6) Royal Observatory of Belgium, Avenue Circulaire 3, 1180 Uccle, Bruxelles, Belgium (7) Université de Nantes, UFR des Sciences et des Techniques, Laboratoire de Planétologie et Géodynamique, 2 rue de la Houssinière, B.P. 92208, 44322 Nantes Cedex 3, France (8) SyRTE, Observatoire de Paris, UMR 8630 du CNRS, 77 Av. Denfert-Rochereau, 75014, Paris, France (*) To whom correspondence should be addressed ([email protected]) 1 ABSTRACT The origin of Saturn’s inner mid-sized moons (Mimas, Enceladus, Tethys, Dione and Rhea) and Saturn’s rings is debated. Charnoz et al. (2010) introduced the idea that the smallest inner moons could form from the spreading of the rings’ edge while Salmon et al.
    [Show full text]
  • Architecture for Going to the Outer Solar System
    ARGOSY ARGOSY: ARchitecture for Going to the Outer solar SYstem Ralph L. McNutt Jr. ll solar system objects are, in principle, targets for human in situ exploration. ARGOSY (ARchitecture for Going to the Outer solar SYstem) addresses anew the problem of human exploration to the outer planets. The ARGOSY architecture approach is scalable in size and power so that increasingly distant destinations—the systems of Jupiter, Saturn, Uranus, and Neptune—can be reached with the same crew size and time require- ments. To enable such missions, achievable technologies with appropriate margins must be used to construct a viable technical approach at the systems level. ARGOSY thus takes the step past Mars in addressing the most difficult part of the Vision for Space AExploration: To extend human presence across the solar system. INTRODUCTION The Vision for Space Exploration “The reasonable man adapts himself to the world: the unreason- 2. Extend human presence across the solar system, start- able one persists in trying to adapt the world to himself. Therefore ing with a return to the Moon by the year 2020, in 1 all progress depends on the unreasonable man.” preparation for human exploration of Mars and other G. B. Shaw destinations 3. Develop the innovative technologies, knowledge, On 14 January 2004, President Bush proposed a new and infrastructures to explore and support decisions four-point Vision for Space Exploration for NASA.2 about destinations for human exploration 1. Implement a sustained and affordable human and 4. Promote international and commercial participation robotic program to explore the solar system and in exploration to further U.S.
    [Show full text]