Development of Efficient Cytochrome P450-Dependent Whole-Cell Biotransformation Reactions for Steroid Hydroxylation and Drug Discovery

Total Page:16

File Type:pdf, Size:1020Kb

Development of Efficient Cytochrome P450-Dependent Whole-Cell Biotransformation Reactions for Steroid Hydroxylation and Drug Discovery Development of efficient cytochrome P450-dependent whole-cell biotransformation reactions for steroid hydroxylation and drug discovery Dissertation zur Erlangung des Grades des Doktors der Naturwissenschaften der Naturwissenschaftlich-Technischen Fakultät III Chemie, Pharmazie, Bio- und Werkstoffwissenschaften der Universität des Saarlandes von Tarek Hakki Saarbrücken 2008 Index . Publications resulting from this work I Abbreviations II Abstract IV Zusammenfassung V Summary VI 1. Introduction 1 1.1. Steroid hormones and cytochromes P450 1 1.2. Human CYP11B1 and CYP11B2 6 1.2.1. General aspects 6 1.2.2. Physiological role of CYP11B1 and CYP11B2 7 1.2.3. Differences and similarities between CYP11B1 and CYP11B2 11 1.2.4. CYP11B1 and CYP11B2 modelling 11 1.2.5. CYP11B1 and CYP11B2 as drug targets 13 1.2.6. General requirements for the development of CYP11B2 inhibitors 15 1.2.7. Heterologous expression of CYP11B1 and CYP11B2 in stable cell 16 cultures 1.2.8. Heterologous expression of CYP11B1 and CYP11B2 in yeast 16 1.2.9. Inhibitors of CYP11B1 and CYP11B2 17 1.3. Fission yeast Schizosaccharomyces pombe as a model system 18 1.4. Biotechnological applications of the 11β-Hydroxylases 20 1.5. Aim of the work 21 2. Materials & Methods 23 2.1. Materials 23 2.1.1. Microorganism growth media 23 2.1.1.1. Growth media for Escherichia coli (E. coli) 23 2.1.1.2. Growth media for Schizosaccharomyces pombe (S. pombe) 24 2.1.2. Microorganisms 26 2.1.3. Plasmids 26 2.1.4. Oligonucleotides 29 2.1.5. Library of pharmacologically active compounds (LOPAC) 29 2.1.6. Mega Block plates 30 2.2. Methods 31 2.2.1. Molecular biology methods 31 Index . 2.2.1.1. pNMT1- TOPO cloning 31 2.2.1.2. Amplification of the human AdR 32 2.2.1.3. DNA electrophoresis and manipulation 33 2.2.1.4. DNA restriction and ligation 33 2.2.1.5. Plasmid purification and DNA sequencing 33 2.2.2. Microbiology methods 34 2.2.2.1. E. coli cultivation and transformation 34 2.2.2.2. S. pombe cultivation and transformation 34 2.2.2.3. ura4 gene disruption in S. pombe 35 2.2.3. Biochemical methods 36 2.2.3.1. Subcellular fractionation and protein preparation from S. pombe 36 2.2.3.2. SDS (Sodium dodecylsulfate) polyacrylamid gel electrophoresis and gel 37 blotting 2.2.3.3. Immunologic detection of proteins 37 2.2.4. Steroid hydroxylation assays 39 2.2.4.1. Bioconversion assay in Erlenmeyer flasks 39 2.2.4.2. Bioconversion in modified 1.5 ml tubes 39 2.2.4.3. Steroid extraction 40 2.2.4.4. Steroid analysing methods 41 2.2.4.4.1. High performance liquid chromatography (HPLC) 41 2.2.4.4.2. High performance thin layer chromatography (HPTLC) 41 2.2.4.5. Measuring of steroid bioconversion 42 2.2.4.6. Measuring of the inhibition of steroid bioconversion (Determination of the 42 IC50 values) 2.2.5. Structure activity relationship (SAR) study 43 2.2.6. Statistical analysis 44 2.2.6.1. Descriptive statistics (Measures of variation) 44 2.2.6.2. Statistical tests 44 2.2.6.2.1. t-test for independent samples 44 2.2.6.2.2. Correlation 45 2.2.6.2.3. Z'-Factor of assay 45 3. Results 47 3.1. Optimisation of a steroid hydroxylation assay for the 96-well plate format 47 Index . 3.1.1. Steroid bioconversion assay in modified 1.5 ml tubes (tip-tube format) 47 3.1.2. Steroid bioconversion assay in 96-well plate 49 3.2. Coexpression of the corresponding redox partners in CYP11B1- expressing fission yeast Schizosaccharomyces pombe 60 3.2.1. The Coexpression of AdR and Adx through two expression vectors 60 (Strategy I) 3.2.1.1. Ura4 gene disruption in S. pombe (SZ1) and the characterisation of the 61 new strain 3.2.1.2. Construction of AdR expressing vector (pTH1) 63 3.2.2. Construction of an AdR+Adx expressing vector pTH2 (Strategy II) 63 3.2.3. Coexpression of Adx and AdR in fission yeast 65 3.2.4. The 11β-hydroxylation activity of CYP11B1 in the new recombinant 68 fission yeast strains 3.2.4.1. Comparison of biotransformation activity of CYP11B1-expressing strains after coexpressing of the corresponding redox partners 69 3.2.4.2. Quantification of hydrocortisone production in the novel strain TH75 71 3.2.4.2.1. Optimisation of the biotransformation parameters to a achieve a high conversion rate 71 3.2.4.2.2. Hydrocortisone production efficiency in the fission yeast strain TH75 72 3.3. Development of a cell-based high throughput screening system for the discovery of human aldosterone synthase inhibitors 74 3.3.1. Automated screening technology plate-format 74 3.3.2. Optimisation of the screening assay parameters to get detectable conversion/inhibition response 76 3.3.3. Proof of principle 81 3.3.4. Validation of the new CYP11B2 inhibitors identified during the screening 88 assay 3.3.4.1. Toxicity in fission yeast 88 3.3.4.2. Determination of the IC50 values against CYP11B2 and CYP11B1 89 4. Discussion and Outlook 95 4.1. Optimisation of steroid hydroxylation assay for the 96-well plate format 95 4.2. Coexpression of redox partners in CYP11B1 expressing fission yeast 96 Schizosaccharomyces pombe Index . 4.3. The development of a cell-based high throughput screening system for the 100 discovery of human aldosterone synthase inhibitors 4.4. Testing of a library of pharmacologically active compounds using the 103 developed screening system 5. References 111 6. Appendix 128 6.1. Contributions to international meetings 128 6.2. Index of Figures 129 6.3 Index of Tables 132 6.4. Materials and Methods 133 6.4.1. Stock solutions for EMM medium 133 6.4.2. Oligonucleotides 134 6.4.3. Library of pharmacologically active compounds 136 6.4.4. Liquid class programs 165 7. Acknowledgment 167 Curriculum Vitae Publications resulting from this work I Publications resulting from this work A. Manuscripts: 1. Derouet-Hümbert, E., Dragan, C. A., Hakki, T. and Bureik, M., 2007. ROS production by adrenodoxin does not cause apoptosis in fission yeast. Apoptosis. 12, 2135-2142. 2. Hakki, T. and Bernhardt, R., 2006. CYP17- and CYP11B-dependent steroid hydroxylases as drug development targets. Pharmacol Ther. 111, 27-52. 3. Hakki, T., Zearo, S., Dragan, C. A., Bureik, M. and Bernhardt, R., 2008. Coexpression of redox partners increases the hydrocortisone (cortisol) production efficiency in CYP11B1 expressing fission yeast Schizosaccharomyces pombe. J Biotechnol. 133, 354-359. 4. Hakki, T., Hübel, K., Waldmann, H. and Bernhardt, R., in preparation. The development of high throughput screening system for the discovery of human aldosterone synthase (CYP11B2) inhibitors. 5. Petric, S., Hakki, T., Bernhardt, R., Cresnar, B. in preparation. Characterization and expression of progesterone-inducible cytochrome P450 genes in the zygomycete fungus Rhizopus oryzae. B. Patent application Tarek Hakki1, Rita Bernhardt 1, Matthias Bureik1, Katja Hübel2, Herbert Waldmann2. Vier neue und spezifische Inhibitoren der humanen Aldosteronsynthase (Submitted) 1Institute of Biochemistry, P. O. Box: 151150, Saarland University, D-66041 Saarbrücken, Germany 2Max Planck Institute of Molecular Physiology, Otto-Hahn-Str, 11, D-44227 Dortmund, Germany Abbreviations II Abbreviations 18-OH-B 18-hydroxycorticosterone 5-FOA 5 -fluoroorotic acid A Area ACE Angiotensin-converting enzyme ACTH Adrenocorticotropic hormone AdR Adrenodoxin reductase Adx Adrenodoxin AdxD113Y Adx substitution mutant containing Tyr instead of Asp at position 113 AdxS112W Adx substitution mutant containing Trp instead of Ser at position 112 AdxWT Adrenodoxin wild type AGS Adrenogenital syndrome Aldo Aldosterone ampR Ampicillin resistance gene arh1 Fission yeast ferredoxin reductase ars1 Autosomal replicating sequence B Corticosterone CAH Congenital adrenal hyperplasia cinh Inhibitor concentration CMO Corticosterone methyl oxidase CPR Cytochrome P450 reductase CRH Corticotropin-relasing hormone CYP11B1 Steroid 11β-hydroxylase, cytochrome P450c11 CYP11B2 Aldosterone synthase, cytochrome P450c11Aldo Da Dalton DBH Dopamine β- hydroxylase DHEA Dehyhdroepiandrosterone DITIs Disposable Tips DMSO Dimethyl sulfoxide DNA Deoxyribonucleic acid DOC 11-deoxycorticosterone DTE 1,4-Dithioerythritol EMM Edinburgh minimal medium EPHESUS The Eplerenone Post-Acute Myocardial Infarction Heart Failure Efficacy and Survival Study ET Electron transfer EtOH Ethanol etp1fd Adrenodoxin-like ferrodoxin F Cortisol (Hydrocortisone) f Correction factor FAD Flavine adenine dinucleotide FH-I Familial hyperaldosteronism type I Abbreviations III FMN Flavine mononucleotide GRA Glucocorticoid-remediable aldosteronism GSH Glucocorticoid-suppressible hyperaldosteronism HPLC High performance liquid chromatography HPTLC High performance thin-layer chromatography HTS High throughput screening system IC50 Concentration of inhibitor that gives 50% inhibition INH(P) The inhibition of the product production Iradio Intensity of the radioactive signal IST Internal standard IZA Inner zone antigen kDa kilodalton LB Luria-Bertani LiAc Lithium acetate LOPAC Library of pharmacologically active compounds MAO Monoamine oxidase MeOH Methanol NaAc Sodium acetate NADPH Nicotinamide adenine dinucleotide phosphate NC Negative control PC Positive control PEG Polyethylene glycol PMSF Phenyl methyl sulfonyl fluoride PNMT Phenylethanolamine N-methyltransferase pNMT no message with thiamine promoter RALES Randomized Aldosterone Evaluation Study trial RNA Ribonucleic acid ROI Region of interest RSS 11-deoxycortisol RT Room temperature S. cerevisiae Saccharomyces cerevisiae S. pombe Schizosaccharomyces pombe SAR Structure-activity relationship SCC Side-chain cleavage SDH Steroid dehydrogenases SDS-PAGE Sodium dodecylsulfate polyacrylamid gel electrophoresis SE Standard error of the mean TH Tyrosine hydroxylase YEA Yeast extract and supplements Abstract IV Abstract Cytochromes P450 play a vital role in the steroid biosynthesis in the human adrenal gland, e.g. the production of hydrocortisone and aldosterone by CYP11B1 and CYP11B2, respectively. The steroid hydroxylases of the CYP11B family are important targets for drug development. Since they are very closely related, the discovery of selective inhibitors has been a focus of interest.
Recommended publications
  • (Danio Rerio Hamilton 1822) Adulto: Diferenças Entre Modelos Comportamentais, Linhagens E Efeitos Do Estresse Predatório Agudo
    I CAIO MAXIMINO DE OLIVEIRA Papel da serotonina no comportamento defensivo do paulistinha (Danio rerio Hamilton 1822) adulto: Diferenças entre modelos comportamentais, linhagens e efeitos do estresse predatório agudo Tese apresentada ao Programa de Pós- Graduação em Neurociências e Biologia Celular do Instituto de Ciências Biológicas da Universidade Federal do Pará, como requisito parcial para obtenção do título de Doutor em Neurociências e Biologia Celular Área de concentração: Neurociências Orientador: Prof. Dr. Anderson Manoel Herculano Belém/PA 2014 CIP – Catalogação na Publicação OL48p Oliveira, Caio Maximino de, 1983- Papel da serotonina no comportamento defensivo do paulistinha (Danio rerio Hamilton 1822) adulto: Diferenças entre modelos comportamentais, linhagens, e efeitos do estresse predatório agudo / Caio Maximino de Oliveira ± 2014 Orientador: Anderson Manoel Herculano Tese (Doutorado) ± Universidade Federal do Pará, Programa de Pós- Graduação em Neurociências e Biologia Celular, Belém/PA, 2014 1. Neuropsicofarmacologia. 2. Neurociências. 3. Psicopatologia. I. Herculano, Anderson Manoel, orient. II. Título CDD: 610 CDU: 615 III CAIO MAXIMINO DE OLIVEIRA Papel da serotonina no comportamento defensivo do paulistinha (Danio rerio Hamilton 1822) adulto: Diferenças entre modelos comportamentais, linhagens e efeitos do estresse predatório agudo Tese apresentada ao Programa de Pós-Graduação em Neurociências e Biologia Celular do Instituto de Ciências Biológicas da Universidade Federal do Pará, como requisito parcial para obtenção do título de Doutor em Neurociências e Biologia Celular (Ênfase em Neurociências) pela Comissão Julgadora composta pelos membros: COMISSÃO JULGADORA ___________________________________ Prof. Dr. Anderson Manoel Herculano Universidade Federal do Pará (Presidente) ___________________________________ Prof. Dr. Amauri Gouveia Jr. Universidade Federal do Pará ___________________________________ Prof. Dr. Fernando Allan Rocha Universidade Federal do Pará ___________________________________ Prof.
    [Show full text]
  • Characterization of a Domoic Acid Binding Site from Pacific Razor Clam
    Aquatic Toxicology 69 (2004) 125–132 Characterization of a domoic acid binding site from Pacific razor clam Vera L. Trainer∗, Brian D. Bill NOAA Fisheries, Northwest Fisheries Science Center, Marine Biotoxin Program, 2725 Montlake Blvd. E., Seattle, WA 98112, USA Received 5 November 2003; received in revised form 27 April 2004; accepted 27 April 2004 Abstract The Pacific razor clam, Siliqua patula, is known to retain domoic acid, a water-soluble glutamate receptor agonist produced by diatoms of the genus Pseudo-nitzschia. The mechanism by which razor clams tolerate high levels of the toxin, domoic acid, in their tissues while still retaining normal nerve function is unknown. In our study, a domoic acid binding site was solubilized from razor clam siphon using a combination of Triton X-100 and digitonin. In a Scatchard analysis using [3H]kainic acid, the partially-purified membrane showed two distinct receptor sites, a high affinity, low capacity site with a KD (mean ± S.E.) of 28 ± 9.4 nM and a maximal binding capacity of 12 ± 3.8 pmol/mg protein and a low affinity, high capacity site with a mM affinity for radiolabeled kainic acid, the latter site which was lost upon solubilization. Competition experiments showed that the rank order potency for competitive ligands in displacing [3H]kainate binding from the membrane-bound receptors was quisqualate > ibotenate > iodowillardiine = AMPA = fluorowillardiine > domoate > kainate > l-glutamate. At high micromolar concentrations, NBQX, NMDA and ATPA showed little or no ability to displace [3H]kainate. In contrast, Scatchard analysis 3 using [ H]glutamate showed linearity, indicating the presence of a single binding site with a KD and Bmax of 500 ± 50 nM and 14 ± 0.8 pmol/mg protein, respectively.
    [Show full text]
  • Advances in the Synthesis of 5- and 6-Substituted Uracil Derivatives
    701xml UOPP_A_438055 October 9, 2009 12:27 UOPP #438055, VOL 41, ISS 6 Advances in the Synthesis of 5- and 6-Substituted Uracil Derivatives Javier I. Bardag´ı and Roberto A. Rossi QUERY SHEET This page lists questions we have about your paper. The numbers displayed at left can be found in the text of the paper for reference. In addition, please review your paper as a whole for correctness. There are no Editor Queries for this paper. TABLE OF CONTENTS LISTING The table of contents for the journal will list your paper exactly as it appears below: Advances in the Synthesis of 5- and 6-Substituted Uracil Derivatives Javier I. Bardag´ı and Roberto A. Rossi 701xml UOPP_A_438055 October 9, 2009 12:27 Organic Preparations and Procedures International, 41:1–36, 2009 Copyright © Taylor & Francis Group, LLC ISSN: 0030-4948 print DOI: 10.1080/00304940903378776 Advances in the Synthesis of 5- and 6-Substituted Uracil Derivatives Javier I. Bardag´ı and Roberto A. Rossi INFIQC, Departamento de Qu´ımica Organica,´ Facultad de Ciencias Qu´ımicas, Universidad Nacional de Cordoba,´ Ciudad Universitaria, 5000 Cordoba,´ ARGENTINA INTRODUCTION ................................................................................... 2 I. Uracils with Carbon-based Substituent ................................................. 3 1. C(Uracil)-C(sp3) Bonds............................................................................ 3 a. Perfluoroalkyl Compounds...................................................................12 2. C(Uracil)-C(sp2) Bonds...........................................................................13
    [Show full text]
  • Use of Compounds Binding to the Sigma Receptor Ligands for the Treatment of Neuropathic Pain Developing As a Consequence of Chemotherapy
    (19) & (11) EP 2 090 311 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 19.08.2009 Bulletin 2009/34 A61K 31/495 (2006.01) A61P 25/02 (2006.01) A61P 29/02 (2006.01) (21) Application number: 08384001.7 (22) Date of filing: 18.02.2008 (84) Designated Contracting States: • Vela Hernàndez, José Miguel AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 08028 Barcelona (ES) HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT • Zamanillo-Castanedo, Daniel RO SE SI SK TR 08041 Barcelona (ES) Designated Extension States: • Nieto-López, Francisco Rafael AL BA MK RS Dpt. Farmacia, Facultad de Medicina 18012 Granada (ES) (71) Applicant: Laboratorios Del. Dr. Esteve, S.A. 08041 Barcelona (ES) (74) Representative: Peters, Hajo et al Graf von Stosch (72) Inventors: Patentanwaltsgesellschaft mbH • Baeyens-Cabrera, José Manuel Prinzregentenstrasse 22 Dpt. Farmacia, F. Medicina 80538 München (DE) 18012 Granada (ES) • Buschmann, Helmut H. Remarks: 08960 Sant Just Desvern (ES) The references to the drawing(s) no. 6 are deemed to be deleted (Rule 56(4) EPC). (54) Use of compounds binding to the sigma receptor ligands for the treatment of neuropathic pain developing as a consequence of chemotherapy (57) The present invention refers to the use of compounds binding to the sigma receptor for the treatment or prevention of neuropathic pain resulting from chemotherapy. EP 2 090 311 A1 Printed by Jouve, 75001 PARIS (FR) EP 2 090 311 A1 Description Field of the invention 5 [0001] The present invention refers to the use of compounds binding to the sigma receptor for the treatment or prevention of neuropathic pain resulting from chemotherapy.
    [Show full text]
  • Comparative Thermodynamics of Partial Agonist Binding to An
    COMPARATIVE THERMODYNAMICS OF PARTIAL AGONIST BINDING TO AN AMPA RECEPTOR BINDING DOMAIN A Dissertation Presented to the Faculty of the Graduate School of Cornell University In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Madeline Martínez May 2015 © 2015 Madeline Martínez ALL RIGHTS RESERVED Comparative Thermodynamics of Partial Agonist Binding to an AMPA Receptor Binding Domain Madeline Martínez, Ph.D. Cornell University 2015 AMPA receptors, ligand-gated cation channels endogenously activated by glutamate, mediate the majority of rapid excitatory synaptic transmission in the vertebrate central nervous system and are crucial for information processing within neural networks. Their involvement in a variety of neuropathologies and injured states makes them important therapeutic targets, and understanding the forces that drive the interactions between the ligands and protein binding sites is a key element in the development and optimization of potential drug candidates. Calorimetric studies yield quantitative data on the thermodynamic forces that drive binding reactions. This information can help elucidate mechanisms of binding and characterize ligand- induced conformational changes, as well as reduce the potential unwanted effects in drug candidates. The studies presented here characterize the thermodynamics of binding of a series of 5’substituted willardiine analogues, partial agonists to the GluA2 LBD under several conditions. The moiety substitutions (F, Cl, I, H, and NO2) explore a range of electronegativity, pKa, radii, and h-bonding capability. Competitive binding of these ligands to glutamate-bound GluA2 LBD at different pH conditions demonstrates the effects of charge in the enthalpic and entropic components of the Gibb’s free energy of binding.
    [Show full text]
  • 5994392 Tion of Application No. 67375.734 Eb3-1685, PEN. T
    USOO5994392A United States Patent (19) 11 Patent Number: 5,994,392 Shashoua (45) Date of Patent: Nov.30, 1999 54 ANTIPSYCHOTIC PRODRUGS COMPRISING 5,120,760 6/1992 Horrobin ................................. 514/458 AN ANTIPSYCHOTICAGENT COUPLED TO 5,141,958 8/1992 Crozier-Willi et al. ................ 514/558 AN UNSATURATED FATTY ACID 5,216,023 6/1993 Literati et al. .......................... 514/538 5,246,726 9/1993 Horrobin et al. ....................... 424/646 5,516,800 5/1996 Horrobin et al. ....................... 514/560 75 Inventor: Victor E. Shashoua, Brookline, Mass. 5,580,556 12/1996 Horrobin ................................ 424/85.4 73 Assignee: Neuromedica, Inc., Conshohocken, Pa. FOREIGN PATENT DOCUMENTS 30009 6/1981 European Pat. Off.. 21 Appl. No.: 08/462,820 009 1694 10/1983 European Pat. Off.. 22 Filed: Jun. 5, 1995 09 1694 10/1983 European Pat. Off.. 91694 10/1983 European Pat. Off.. Related U.S. Application Data 59-025327 2/1984 Japan. 1153629 6/1989 Japan. 63 Continuation of application No. 08/080,675, Jun. 21, 1993, 1203331 8/1989 Japan. abandoned, which is a continuation of application No. 07/952,191, Sep. 28, 1992, abandoned, which is a continu- (List continued on next page.) ation of application No. 07/577,329, Sep. 4, 1990, aban doned, which is a continuation-in-part of application No. OTHER PUBLICATIONS 07/535,812,tion of application Jun. 11, No. 1990, 67,375.734 abandoned, Eb3-1685, which is a continu-PEN. T. Higuchi et al. 66 Prodrugs as Noye Drug Delivery Sys 4,933,324, which is a continuation-in-part of application No.
    [Show full text]
  • Diamandis Thesis
    !"!#$ CHEMICAL GENETIC INTERROGATION OF NEURAL STEM CELLS: PHENOTYPE AND FUNCTION OF NEUROTRANSMITTER PATHWAYS IN NORMAL AND BRAIN TUMOUR INITIATING NEURAL PRECUSOR CELLS by Phedias Diamandis A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy. Department of Molecular Genetics University of Toronto © Copyright by Phedias Diamandis 2010 Phenotype and Function of Neurotransmitter Pathways in Normal and Brain Tumor Initiating Neural Precursor Cells Phedias Diamandis Doctor of Philosophy Department of Molecular Genetics University of Toronto 2010 &'(!)&*!% The identification of self-renewing and multipotent neural stem cells (NSCs) in the mammalian brain brings promise for the treatment of neurological diseases and has yielded new insight into brain cancer. The complete repertoire of signaling pathways that governs these cells however remains largely uncharacterized. This thesis describes how chemical genetic approaches can be used to probe and better define the operational circuitry of the NSC. I describe the development of a small molecule chemical genetic screen of NSCs that uncovered an unappreciated precursor role of a number of neurotransmitter pathways commonly thought to operate primarily in the mature central nervous system (CNS). Given the similarities between stem cells and cancer, I then translated this knowledge to demonstrate that these neurotransmitter regulatory effects are also conserved within cultures of cancer stem cells. I then provide experimental and epidemiologically support for this hypothesis and suggest that neurotransmitter signals may also regulate the expansion of precursor cells that drive tumor growth in the brain. Specifically, I first evaluate the effects of neurochemicals in mouse models of brain tumors. I then outline a retrospective meta-analysis of brain tumor incidence rates in psychiatric patients presumed to be chronically taking neuromodulators similar to those identified in the initial screen.
    [Show full text]
  • Functional Properties of Vertebrate Non- Nmda Excitatory Amino Acid Receptors Expressed in Xenopus Laevis Oocytes
    FUNCTIONAL PROPERTIES OF VERTEBRATE NON- NMDA EXCITATORY AMINO ACID RECEPTORS EXPRESSED IN XENOPUS LAEVIS OOCYTES A thesis submitted for the Degree of Doctor of Philosophy in the University of London, Faculty of Science. by Derek Bowie, B.Sc. (Hons.) Department of Pharmacology, School of Pharmacy, 29/39, Brunswick Square, London. WC1N 1AX. September 1991 1 ProQuest N um ber: U552896 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest U552896 Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 ABSTRACT The Xenopus oocyte expression system was used to express non-N-methyl-D-aspartate (non- NMDA) receptors from mammalian (calf and rat) and avian (chick) brains. In each case, the properties of the expressed receptors were examined using two-electrode current and voltage clamp techniques and compared by examining their pharmacology using dose-response curve analysis (D/R) and constructing current-voltage (l-V) relationships using non-NMDA agonists. Fully-grown immature oocytes (stages V and VI) removed from female Xenopus laevis were microinjected with exogenous messenger ribonucleic acid (mRNA) and after a period of incubation (2-3 days), became responsive to a variety of agonists including central nervous system (CNS) transmitters.
    [Show full text]
  • Serotonergic Modulation of Zebrafish Behavior
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Progress in Neuro-Psychopharmacology & Biological Psychiatry 55 (2014) 50–66 Contents lists available at ScienceDirect Progress in Neuro-Psychopharmacology & Biological Psychiatry journal homepage: www.elsevier.com/locate/pnp Serotonergic modulation of zebrafish behavior: Towards a paradox Anderson Manoel Herculano a,b, Caio Maximino b,c,⁎ a Neuroendocrinology Laboratory, Biological Sciences Institute, Federal University of Pará, Belém, PA, Brazil b “Frederico Graeff” Neurosciences and Behavior Laboratory, Department of Morphology and Physiological Sciences, Biological and Health Sciences Center, State University of Pará, Marabá, PA, Brazil c International Zebrafish Neuroscience Research Consortium, United States article info abstract Available online 28 March 2014 Due to the fish-specific genome duplication event (~320–350 mya), some genes which code for serotonin pro- teins were duplicated in teleosts; this duplication event was preceded by a reorganization of the serotonergic sys- Keywords: tem, with the appearance of the raphe nuclei (dependent on the isthmus organizer) and prosencephalic nuclei, Defensive behavior including the paraventricular and pretectal complexes. With the appearance of amniotes, duplicated genes were Offensive behavior lost, and the serotonergic system was reduced to a more complex raphe system. From a comparative point of Psychedelic drugs view, then, the serotonergic system of zebrafish and that of mammals shows many important differences. How- Serotonin ever, many different behavioral functions of serotonin, as well as the effects of drugs which affect the serotonergic Zebrafish system, seem to be conserved among species. For example, in both zebrafish and rodents acute serotonin reup- take inhibitors (SSRIs) seem to increase anxiety-like behavior, while chronic SSRIs decrease it; drugs which act at the 5-HT1A receptor seem to decrease anxiety-like behavior in both zebrafish and rodents.
    [Show full text]
  • The Glutamate Receptor Ion Channels
    0031-6997/99/5101-0007$03.00/0 PHARMACOLOGICAL REVIEWS Vol. 51, No. 1 Copyright © 1999 by The American Society for Pharmacology and Experimental Therapeutics Printed in U.S.A. The Glutamate Receptor Ion Channels RAYMOND DINGLEDINE,1 KARIN BORGES, DEREK BOWIE, AND STEPHEN F. TRAYNELIS Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia This paper is available online at http://www.pharmrev.org I. Introduction ............................................................................. 8 II. Gene families ............................................................................ 9 III. Receptor structure ...................................................................... 10 A. Transmembrane topology ............................................................. 10 B. Subunit stoichiometry ................................................................ 10 C. Ligand-binding sites located in a hinged clamshell-like gorge............................. 13 IV. RNA modifications that promote molecular diversity ....................................... 15 A. Alternative splicing .................................................................. 15 B. Editing of AMPA and kainate receptors ................................................ 17 V. Post-translational modifications .......................................................... 18 A. Phosphorylation of AMPA and kainate receptors ........................................ 18 B. Serine/threonine phosphorylation of NMDA receptors ..................................
    [Show full text]
  • WO 2016/106182 Al 30 June 2016 (30.06.2016) W P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/106182 Al 30 June 2016 (30.06.2016) W P O P C T (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, A61N 1/04 (2006.01) A61N 1/372 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, A61N 1/08 (2006.01) A61K 31/435 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, A61N 1/18 (2006.01) A61K 31/428 (2006.01) HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, A61N 1/24 (2006.01) A61K 31/137 (2006.01) KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, A61N 1/32 (2006.01) MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (21) International Application Number: SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, PCT/US20 15/0670 17 TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (22) International Filing Date: (84) Designated States (unless otherwise indicated, for every 2 1 December 2015 (21 .12.2015) kind of regional protection available): ARIPO (BW, GH, (25) Filing Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, (26) Publication Language: English TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, (30) Priority Data: DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, 62/096,226 23 December 2014 (23.
    [Show full text]
  • A Study on Beta Blockers - a Brief Review Tv
    IJRPC 2018, 8(4), 508-529 Namratha et al. ISSN: 22312781 INTERNATIONAL JOURNAL OF RESEARCH IN PHARMACY AND CHEMISTRY Available online at www.ijrpc.com Review Article A STUDY ON BETA BLOCKERS - A BRIEF REVIEW TV. Namratha*, KC. Chaluvaraju and AM. Anushree Department of Pharmaceutical Chemistry, Government College of Pharmacy, Bengaluru-560 027, Karnataka, India. ABSTRACT Beta blockers are agents or drugs which competitively inhibit the action of catecholamines at the beta adrenergic receptors, which are mainly used to treat variety of clinical conditions like angina, hypertension, asthma, COPD and arrhythmias. These drugs are also useful in several other therapeutic situations including shock, premature labor and opioid withdrawal, and as adjuncts to general anesthetics. These drugs produce their effect by interacting with the beta adrenergic receptors. In the present communication, an effort has been made to compile beta adrenergic receptors and the chemistry, discovery and development, classification and therapeutic applications of beta blockers. Keywords: Beta blockers, adrenergic receptors, catecholamines and aryloxypropanolamines. 1. INTRODUCTION Beta blockers were first developed by Sir 1.1 Adrenergic receptors James Black in 1962. The structures of The ability of a molecule to selectively these receptors have been studied by x- agonize or antagonize adrenergic ray crystallography.5 In the current article receptor made great advances in beta blockers are majorly focused with pharmacotherapeutics. The discovery of respect to their location, functions adrenergic receptors lead to major mediated, discovery and development, development of newer adrenergic SAR, classification, structures and agonists as well as antagonist.1 therapeutic applications. Adrenergic receptors are 7- transmembrane spanning receptors 1.2 Locations and agonistic action of beta which mediate both central and adrenergic receptors6 peripheral actions of the adrenergic The following are the various beta neurotransmitters.
    [Show full text]