International Journal of Molecular Sciences Review Role of Mesenchymal Stem Cells in Counteracting Oxidative Stress—Related Neurodegeneration Cristina Angeloni 1 , Martina Gatti 2, Cecilia Prata 3,* , Silvana Hrelia 4 and Tullia Maraldi 2 1 School of Pharmacy, University of Camerino, Via Gentile III da Varano, 62032 Camerino, Italy;
[email protected] 2 Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Via del Pozzo 71, 41124 Modena, Italy;
[email protected] (M.G.);
[email protected] (T.M.) 3 Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Irnerio 48, 40126 Bologna, Italy 4 Department for Life Quality Studies, Alma Mater Studiorum—University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy;
[email protected] * Correspondence:
[email protected] Received: 7 April 2020; Accepted: 4 May 2020; Published: 7 May 2020 Abstract: Neurodegenerative diseases include a variety of pathologies such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, and so forth, which share many common characteristics such as oxidative stress, glycation, abnormal protein deposition, inflammation, and progressive neuronal loss. The last century has witnessed significant research to identify mechanisms and risk factors contributing to the complex etiopathogenesis of neurodegenerative diseases, such as genetic, vascular/metabolic, and lifestyle-related factors, which often co-occur and interact with each other. Apart from several environmental or genetic factors, in recent years, much evidence hints that impairment in redox homeostasis is a common mechanism in different neurological diseases. However, from a pharmacological perspective, oxidative stress is a difficult target, and antioxidants, the only strategy used so far, have been ineffective or even provoked side effects.