Video Mediastinoscopy-Assisted Superior Mediastinal Dissection in the Treatment of Thyroid Carcinoma with Mediastinal Lymphadeno

Total Page:16

File Type:pdf, Size:1020Kb

Video Mediastinoscopy-Assisted Superior Mediastinal Dissection in the Treatment of Thyroid Carcinoma with Mediastinal Lymphadeno Song et al. BMC Surg (2021) 21:329 https://doi.org/10.1186/s12893-021-01326-9 RESEARCH Open Access Video mediastinoscopy-assisted superior mediastinal dissection in the treatment of thyroid carcinoma with mediastinal lymphadenopathy: preliminary results Yuntao Song1† , Liang Dai2†, Guohui Xu1, Tianxiao Wang1, Wenbin Yu1, Keneng Chen2 and Bin Zhang1* Abstract Background: Mediastinal lymph node metastases (MLNM) are not rare in thyroid cancer, but their treatment has not been extensively studied. This study aimed to explore the preliminary application of video mediastinoscopy- assisted superior mediastinal dissection in the diagnosis and treatment of thyroid carcinoma with mediastinal lymphadenopathy. Materials and methods: We retrospectively reviewed the clinical pathologic data and short-term outcomes of thy- roid cancer patients with suspicious MLNM treated with video mediastinoscopy-assisted mediastinal dissection at our institution from 2017 to 2020. Results: Nineteen patients were included: 14 with medullary thyroid carcinoma and fve with papillary thyroid carci- noma. Superior mediastinal nodes were positive in nine (64.3%) patients with medullary thyroid carcinoma and in four (80.0%) patients with papillary carcinoma. No fatal bleeding occurred. There were three cases of temporary recurrent laryngeal nerve (RLN) palsy postoperatively, one of which was bilateral. Four patients had temporary hypocalcemia requiring supplementation, one had a chyle fstula, and one developed wound infection after the procedure. Post- operative serum molecular markers decreased in all patients. One patient died of cancer while the other 18 patients remained disease-free, with a median follow-up of 33 months. Conclusion: Video mediastinoscopy-assisted superior mediastinal dissection can be performed relatively safely in patients with suspicious MLNM. This diagnostic and therapeutic approach may help control locoregional recurrences. Keywords: Thyroid carcinoma, Video mediastinoscopy, Mediastinal lymph node metastases, Mediastinal dissection, Mediastinal lymphadenopathy Introduction Te incidence of thyroid cancer (TC) has been continu- ously increasing worldwide during the past decades [1, *Correspondence: [email protected] 2]. Common TC categories, such as papillary thyroid car- † Yuntao Song and Liang Dai contributed equally to this article as frst cinoma (PTC) and medullary thyroid carcinoma (MTC), authors 1 Key Laboratory of Carcinogenesis and Translational Research (Ministry tend to develop regional lymphatic metastasis [3], of Education/Beijing), Department of Head and Neck Surgery, Peking which is an important factor in predicting the structural University Cancer Hospital and Institute, 52 Fucheng Road, Haidian recurrence of PTC [4] and is associated with decreased District, Beijing, China Full list of author information is available at the end of the article © The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. Song et al. BMC Surg (2021) 21:329 Page 2 of 7 prognosis in MTC [5]. Surgical dissection is the frst enhancement or greater enhancement than the adjacent choice of treatment [6]. muscle [13]. Six patients underwent preoperative func- Lymph nodes involved in thyroid carcinoma could tional imaging examination, including 99mTc-methoxy- be classifed into three regions: the central, lateral, and isobutylisonitrile (99mTc-MIBI) single-photon emission mediastinal compartments [7]. Te central neck is the computed tomography/computed tomography (SPECT/ most commonly involved region, which is defned inferi- CT) or fuorine-18-deoxyglucose (FDG) positron emis- orly by the superior sternal border [8]. Lymphatic tissue sion tomography (PET), all with positive results. All in this portion is in continuity with the superior medi- patients underwent preoperative laryngoscopy and astinum. Terefore, mediastinal lymph node metastases signed informed consent forms. (MLNM) from TC are not uncommon. According to A multidisciplinary discussion was conducted by the the literature, the incidence of MLNM was reported to head and neck surgeon, thoracic surgeon and radiologist. range from 0.7 to 48.1% [9, 10]. Patients with mediasti- Indications for VMSASMD included: (1) PTC or MTC nal metastases have a poorer prognosis [11], and surgical with suspected upper MLNM that are not amenable to extirpation is the preferred treatment for MLNM of thy- remove through transcervical approach. (2) No major roid cancer whenever possible. vascular involvement was found by imaging investiga- Currently, there are two surgical approaches to treat tions. We routinely informed the patient of the possible MLNM. Transcervical approach is an extension of cen- complications of surgery and the possible instance that tral compartment dissection, which is indicated for postoperative pathology may be negative. Other options, LNs located superior to innominate artery. While lower such as sternotomy, were also provided to the patient. MLNM requires a more extensive operation. Sometimes, Close cooperation between head and neck surgeon a partial-complete median sternotomy or thoracotomy is and thoracic surgeon during surgery was important. All mandatory, which could potentially increase the risk of patients underwent dissection of pretracheal and paratra- complications [12]. Ultrasound-guided fne needle aspi- cheal (level VI) lymphatic tissue through a transcervical ration cannot be easily done on mediastinal lymph nodes incision above the sternal notch. If an intact or residual due to interference of bony structures of the chest wall. thyroid gland exists, a total or complemental thyroid- Consequently, it is difcult to confrm the enlarged medi- ectomy is performed, and if the lateral neck is clinically astinal lymph node by pathology preoperatively, which involved, it is dissected concurrently. Bilateral recurrent thus leads to a diagnostic dilemma for physicians. laryngeal nerves (RLNs) were routinely exposed with the To minimize operative trauma in TC patients with sus- assistance of intraoperative neuromonitoring (IONM, pected mediastinal metastasis, we explored a transcervi- NIM-Response 3.0, Medtronic, Jacksonville, Florida, cal approach of video mediastinoscopy-assisted superior USA). mediastinal dissection (VMSASMD), which has not Standard open surgical instrumentation was used for been investigated in previous literature to the best of our cervical surgery. Part of the superior mediastinal LNs knowledge. Te goal of this study was to review a series were taken together with the central neck specimen espe- of cases as preliminary communication demonstrating cially on the left side, which was superior to the innomi- this technique. nate vein. Te suprainnominate artery lymph nodes, also known as the level VII LNs, were resected through open Materials and methods approach as well. A retrospective review was performed involving patients Mediastinal dissection was performed by senior tho- with thyroid carcinomas who underwent transcervi- racic surgeons who were familiar with mediastinoscopic cal VMSASMD in the setting of suspicious mediastinal biopsy and sternotomy using video mediastinoscopy lymph nodes. Patients were treated between March 2017 (Karl Storz, Tuttlingen, Germany). Te equipment for and October 2020 at the Peking University Cancer Hos- immediate sternotomy or thoracotomy was also prepared pital. Demographic data, histology, incidence of medias- in case of intraoperative conversion. Te surgeon stood tinal nodal metastasis, postoperative complications, and on the cranial side of the patient and the video monitor follow-up were reviewed. A Wilcoxon signed rank test was placed on the caudal side. Trough routine cervical was used to compare pre- and post-operative biomarkers. thyroid incision, the thymus is separated from the tra- Data were analyzed using SPSS 22.0. chea. Te index fnger followed the trachea and broke the All patients required demonstration of suspicious pretracheal fascia (Fig. 1). Ten, the scope is introduced MLNM on preoperative contrast-enhanced CT. CT with the blades closed. features suggestive of metastasis included the pres- Te right pulmonary artery was separated, the scope ence of calcifcations, central necrosis or cystic changes, blades were spread, the right and left tracheobronchial and lymph nodes showing heterogeneous cortical angles were identifed (Fig. 2A), and the axis of the scope Song et al. BMC Surg (2021) 21:329 Page 3 of 7 Fig. 1 By separating the pretracheal fascia using the index fnger, each compartment
Recommended publications
  • Vocal Cord Dysfunction JAMES DECKERT, MD, Saint Louis University School of Medicine, St
    Vocal Cord Dysfunction JAMES DECKERT, MD, Saint Louis University School of Medicine, St. Louis, Missouri LINDA DECKERT, MA, CCC-SLP, Special School District of St. Louis County, Town & Country, Missouri Vocal cord dysfunction involves inappropriate vocal cord motion that produces partial airway obstruction. Patients may present with respiratory distress that is often mistakenly diagnosed as asthma. Exercise, psychological conditions, airborne irritants, rhinosinusitis, gastroesophageal reflux disease, or use of certain medications may trigger vocal cord dysfunction. The differential diagnosis includes asthma, angioedema, vocal cord tumors, and vocal cord paralysis. Pulmo- nary function testing with a flow-volume loop and flexible laryngoscopy are valuable diagnostic tests for confirming vocal cord dysfunction. Treatment of acute episodes includes reassurance, breathing instruction, and use of a helium and oxygen mixture (heliox). Long-term manage- ment strategies include treatment for symptom triggers and speech therapy. (Am Fam Physician. 2010;81(2):156-159, 160. Copyright © 2010 American Academy of Family Physicians.) ▲ Patient information: ocal cord dysfunction is a syn- been previously diagnosed with asthma.8 A handout on vocal cord drome in which inappropriate Most patients with vocal cord dysfunction dysfunction, written by the authors of this article, is vocal cord motion produces par- have intermittent and relatively mild symp- provided on page 160. tial airway obstruction, leading toms, although some patients may have pro- toV subjective respiratory distress. When a per- longed and severe symptoms. son breathes normally, the vocal cords move Laryngospasm, a subtype of vocal cord away from the midline during inspiration and dysfunction, is a brief involuntary spasm of only slightly toward the midline during expi- the vocal cords that often produces aphonia ration.1 However, in patients with vocal cord and acute respiratory distress.
    [Show full text]
  • Diagnostic Direct Laryngoscopy, Bronchoscopy & Esophagoscopy
    Post-Operative Instruction Sheet Diagnostic Direct Laryngoscopy, Bronchoscopy & Esophagoscopy Direct Laryngoscopy: Examination of the voice box or larynx (pronounced “lair-inks”) under general anesthesia. An instrument called a laryngoscope is carefully placed into the mouth and used to visualize the larynx and surrounding structures. Bronchoscopy: Examination of the windpipe below the voice box in the neck and chest under general anesthesia. A long narrow telescope is passed through the larynx and used to carefully inspect the structures of the trachea and bronchi. Esophagoscopy: Examination of the swallowing pipe in the neck and chest under general anesthesia. An instrument called an esophagoscope is passed into the esophagus (just behind the larynx and trachea) and used to visualize the mucus membranes and surrounding structures of the esophagus. Frequently a small biopsy is taken to evaluate for signs of esophageal inflammation (esophagitis). What to Expect: Diagnostic airway endoscopy procedures generally take about 45 minutes to complete. Usually the procedure is well-tolerated and the child is back-to-normal the next day. Mild throat or tongue discomfort may persist for a few days after the procedure and is usually well-controlled with over-the-counter acetaminophen (Tylenol) or ibuprofen (Motrin). Warning Signs: Contact the office immediately at (603) 650-4399 if any of the following develop: • Worsening harsh, high-pitched noisy-breathing (stridor) • Labored breathing with chest retractions or flaring of the nostrils • Bluish discoloration of the lips or fingernails (cyanosis) • Persistent fever above 102°F that does not respond to Tylenol or Motrin • Excessive coughing or respiratory distress during feeding • Coughing or throwing up bright red blood • Excessive drowsiness or unresponsiveness Diet: Resume baseline diet (no special postoperative diet restrictions).
    [Show full text]
  • Efficacy of Fiberoptic Laryngoscopy in the Diagnosis of Inhalation Injuries
    ORIGINAL ARTICLE Efficacy of Fiberoptic Laryngoscopy in the Diagnosis of Inhalation Injuries Thomas Muehlberger, MD; Dario Kunar, MD; Andrew Munster, MD; Marion Couch, MD, PhD Background: Asignificantproportionofburnpatientswith Results: Six (55%) of 11 patients had clinical findings and inhalation injuries incur difficulties with airway protection, symptoms that indicated, under traditional criteria, endo- dysphagia, and aspiration. In assessing the need for intu- tracheal intubation for airway protection. Visualization of bation in burn patients, the efficacy of fiberoptic laryngos- the upper airway with fiberoptic laryngoscopy obviated the copy was compared with clinical findings and the findings need for endotracheal intubation in all 11 patients. These of diagnostic tests, such as arterial blood gas analysis, mea- patients also failed to evidence an increased risk of aspira- surement of carboxyhemoglobin levels, pulmonary func- tion or other swallowing dysfunction. tion tests, and radiography of the lateral aspect of the neck. Conclusions: In comparison with other diagnostic cri- Objective: To determine if these patients were at risk teria, fiberoptic laryngoscopy allows differentiation of for aspiration or dysphagia, barium-enhanced fluoro- those patients with inhalation injuries who, while at scopic swallowing studies were performed. risk for upper airway obstruction, do not require intu- bation. These patients may be safely observed in a moni- Design: Prospective study. tored setting with serial fiberoptic examinations, thus avoiding the possible complications associated with in- Settings: Burn intensive care unit in an academic ter- tubation of an airway with a compromised mucosalized tiary referral center. surface. In these patients, swallowing abnormalities do not manifest. Main Outcome Measures: Need for endotracheal in- tubation and potential for aspiration.
    [Show full text]
  • Table of Contents 1
    GENERAL THORACIC SURGERY DATABASE v.2.3 TRAINING MANUAL August 2017 Table of Contents 1. Demographics ................................................................................................................................................................. 2 2. Follow Up ........................................................................................................................................................................ 9 3. Admission ..................................................................................................................................................................... 10 4. Pre-Operative Evaluation ............................................................................................................................................. 14 5. Diagnosis (Category of Disease) ................................................................................................................................... 48 6. Procedure ..................................................................................................................................................................... 70 7. Post-Operative Events ................................................................................................................................................ 111 8. Discharge .................................................................................................................................................................... 135 9. Quality Measures ......................................................................................................................................................
    [Show full text]
  • Laryngectomy
    The Head+Neck Center John U. Coniglio, MD, LLC 1065 Senator Keating Blvd. Suite 240 Rochester, NY 14618 Office Hours: 8-4 Monday-Friday t 585.256.3550 f 585.256.3554 www.RochesterHNC.com Laryngectomy SINUS Voice change, difficulty swallowing, unexplained weight loss, ear or ENDOCRINE HEAD AND NECK CANCER throat pain and a lump in the throat, smoking and alcohol use are all VOICE DISORDERS SALIVARY GLANDS indications for further evaluation. Smoking and alcohol can contribute TONSILS AND ADENOIDS to these symptoms. A direct laryngoscopy – an exam of larynx (voice EARS PEDIATRICS box), with biopsy – will help determine if a laryngectomy is indicated. SNORING / SLEEP APNEA Laryngectomy may involve partial or total removal of one or more or both vocal cords. Alteration of voice will occur with either total or partial laryngectomy. Postoperative rehabilitation is usually successful in helping the patient recover a voice that can be understood. The degree of alteration in voice depends on the extent of the disease. Partial or total laryngectomy has been a highly successful method to remove cancer of the larynx. The extent of the tumor invasion, and therefore the extent of surgery, determines the way you will communicate following surgery. The choice of surgery over other forms of treatment such as radiation or chemotherapy is determined by the site of the tumor. It is quite likely that there has been spread of the tumor to the neck; a neck or lymph node dissection may also be recommended. Complete neck dissection (exploration of the neck tissues) is performed in order to remove known or suspected lymph nodes containing cancer that has spread from the primary tumor site.
    [Show full text]
  • Endoscopy Matrix
    Endoscopy Matrix CPT Description of Endoscopy Diagnostic Therapeutic Code (Surgical) 31231 Nasal endoscopy, diagnostic, unilateral or bilateral (separate procedure) X 31233 Nasal/sinus endoscopy, diagnostic with maxillary sinusoscopy (via X inferior meatus or canine fossa puncture) 31235 Nasal/sinus endoscopy, diagnostic with sphenoid sinusoscopy (via X puncture of sphenoidal face or cannulation of ostium) 31237 Nasal/sinus endoscopy, surgical; with biopsy, polypectomy or X debridement (separate procedure) 31238 Nasal/sinus endoscopy, surgical; with control of hemorrhage X 31239 Nasal/sinus endoscopy, surgical; with dacryocystorhinostomy X 31240 Nasal/sinus endoscopy, surgical; with concha bullosa resection X 31241 Nasal/sinus endoscopy, surgical; with ligation of sphenopalatine artery X 31253 Nasal/sinus endoscopy, surgical; with ethmoidectomy, total (anterior X and posterior), including frontal sinus exploration, with removal of tissue from frontal sinus, when performed 31254 Nasal/sinus endoscopy, surgical; with ethmoidectomy, partial (anterior) X 31255 Nasal/sinus endoscopy, surgical; with ethmoidectomy, total (anterior X and posterior 31256 Nasal/sinus endoscopy, surgical; with maxillary antrostomy X 31257 Nasal/sinus endoscopy, surgical; with ethmoidectomy, total (anterior X and posterior), including sphenoidotomy 31259 Nasal/sinus endoscopy, surgical; with ethmoidectomy, total (anterior X and posterior), including sphenoidotomy, with removal of tissue from the sphenoid sinus 31267 Nasal/sinus endoscopy, surgical; with removal of
    [Show full text]
  • Thoracic Surgery Institution: Nashville VA Medical Center & Duration: 6 Weeks Vanderbilt University Medical Center Supervising Physician: Eric L
    Thoracic Surgery Institution: Nashville VA Medical Center & Duration: 6 weeks Vanderbilt University Medical Center Supervising Physician: Eric L. Grogan, M.D. Contact Information: 615-300-2900 Year of Training: PGY-4 Educational Objectives: During this rotation, the resident will better understand the pathophysiology of thoracic diseases including lung, esophagus, and chest wall diseases. The resident will identify the general risks and complications of thoracic surgery operations, and learn the preoperative and postoperative care of patients undergoing thoracic surgery operations Evaluation of the resident's understanding of the patient and disease process will be reviewed (in part) at the time of operation and through resident-faculty interaction. Feedback will be verbal and timely; residents are encouraged to establish a dialogue with the faculty to facilitate feedback. Residents are expected to notify Dr. Grogan and meet with him when starting the service. Other Comments and Responsibilities Daily rounds will include the General Care Wards and the Intensive Care Unit at the VA. Medical Knowledge and Patient Care: I. CHEST WALL A. Anatomy, Physiology and Embryology Learner Objectives: • Understands the anatomy and physiology of the cutaneous, muscular, and bony components of the chest wall and their anatomic and physiologic relationships to adjacent structures; • Knows various operative approaches to the chest wall. Clinical Skills: • Recognizes the normal and abnormal anatomy of the chest wall. B. Acquired Abnormalities and Neoplasms Learner Objectives: • Evaluates and diagnoses primary and metastatic chest wall tumors, knows their histologic appearance, and understands the indications for incisional versus excisional biopsy; • Knows the radiologic characteristics of tumors. Clinical Skills: • Performs a variety of surgical incisions to expose components of the chest wall and interior thoracic organs.
    [Show full text]
  • Exercise-Induced Laryngeal Obstruction
    American Thoracic Society PATIENT EDUCATION | INFORMATION SERIES Exercise-induced Laryngeal Obstruction Exercise-induced laryngeal obstruction (EILO) is a breathing problem that affects people during exercise. EILO is defined by inappropriate narrowing of the upper airway at the level of the vocal cords (glottis) and/or supraglottis (above the vocal cords). This can make it hard to get air into your lungs during exercise and cause a noisy breathing that can be frightening. EILO has also been called vocal cord dysfunction (VCD) or paradoxical vocal fold motion (PVFM). Most people with EILO only have symptoms when they Common signs and symptoms of EILO exercise, those some people may have the problem at During (or immediately after) high-intensity exercise, other times as well. (See ATS Patient Information Series with EILO you may experience: fact sheet ‘Inducible Laryngeal Obstruction/Vocal Cord ■■ Profound shortness of breath or breathlessness Dysfunction’) ■■ Noisy breathing, particularly when breathing in Where are the vocal cords and what do they do? (stridor, gasping, raspy sounds, or “wheezing”) Your vocal cords are located in your upper airway or ■■ A feeling of choking or suffocation that can be scary larynx. Your supraglottic structures (including your ■■ CLIP AND COPY AND CLIP Feeling like there is a lump in the throat arytenoid cartilages and epiglottis) are located above the ■■ Throat or chest tightness vocal cords and are part of your larynx. The larynx is often called the voice box and is deep in your throat. When These symptoms often come on suddenly during you speak, the vocal cords vibrate as you breathe out, exercise, and are typically quite noticeable or concerning to people around you as well.
    [Show full text]
  • Airway Assessment Authors: Dr Pierre Bradley Dr Gordon Chapman Dr Ben Crooke Dr Keith Greenland
    Airway Assessment Authors: Dr Pierre Bradley Dr Gordon Chapman Dr Ben Crooke Dr Keith Greenland August 2016 Contents Part 1. Introduction 3 Part 2. The traditional approach to normal and difficult airway assessment 6 Part 3. The anatomical basis for airway assessment and management 36 Part 4. Airway device selection based on the two-curve theory and three-column assessment model 48 DISCLAIMER This document is provided as an educational resource by ANZCA and represents the views of the authors. Statements therein do not represent College policy unless supported by ANZCA professional documents. Professor David A Scott, President, ANZCA 2 Airway Assessment Part 1. Introduction This airway assessment resource has been produced for use by ANZCA Fellows and trainees to improve understanding and guide management of airway assessment and difficult airways. It is the first of an airway resource series and complements the Transition to CICO resource document (and ANZCA professional document PS61), which are available on the ANZCA website. There are four components to this resource: Part 1. Introduction. Part 2. The traditional approach to normal and difficult airway assessment. Part 3. The anatomical basis for airway assessment and management: i) The “two-curve” theory. ii) The “three-column” approach. Part 4. Airway device selection based on the two-curve theory and three-column assessment model. OVERVIEW The role of airway assessment is to identify potential problems with the maintenance of oxygenation and ventilation during airway management. It is the first step in formulating an appropriate airway plan, which should incorporate a staged approach to manage an unexpected difficult airway or the institution of emergency airway management.
    [Show full text]
  • Icd-9-Cm (2010)
    ICD-9-CM (2010) PROCEDURE CODE LONG DESCRIPTION SHORT DESCRIPTION 0001 Therapeutic ultrasound of vessels of head and neck Ther ult head & neck ves 0002 Therapeutic ultrasound of heart Ther ultrasound of heart 0003 Therapeutic ultrasound of peripheral vascular vessels Ther ult peripheral ves 0009 Other therapeutic ultrasound Other therapeutic ultsnd 0010 Implantation of chemotherapeutic agent Implant chemothera agent 0011 Infusion of drotrecogin alfa (activated) Infus drotrecogin alfa 0012 Administration of inhaled nitric oxide Adm inhal nitric oxide 0013 Injection or infusion of nesiritide Inject/infus nesiritide 0014 Injection or infusion of oxazolidinone class of antibiotics Injection oxazolidinone 0015 High-dose infusion interleukin-2 [IL-2] High-dose infusion IL-2 0016 Pressurized treatment of venous bypass graft [conduit] with pharmaceutical substance Pressurized treat graft 0017 Infusion of vasopressor agent Infusion of vasopressor 0018 Infusion of immunosuppressive antibody therapy Infus immunosup antibody 0019 Disruption of blood brain barrier via infusion [BBBD] BBBD via infusion 0021 Intravascular imaging of extracranial cerebral vessels IVUS extracran cereb ves 0022 Intravascular imaging of intrathoracic vessels IVUS intrathoracic ves 0023 Intravascular imaging of peripheral vessels IVUS peripheral vessels 0024 Intravascular imaging of coronary vessels IVUS coronary vessels 0025 Intravascular imaging of renal vessels IVUS renal vessels 0028 Intravascular imaging, other specified vessel(s) Intravascul imaging NEC 0029 Intravascular
    [Show full text]
  • Laryngoscopy and Videostroboscopy
    Laryngoscopy and Videostroboscopy What is laryngoscopy and how is it performed? Laryngoscopy is the process of examining the larynx, the voice box. Because of its position deep in the throat, the larynx is not as easily examined with a flashlight, as the mouth and nose are. Special instruments are needed to evaluate this difficult-to-see area. Laryngoscopy is performed by using a light connected to either a mirror or a special tool, called a laryngoscope, which can visualize the larynx. Mirror laryngoscopy is performed by gently placing an angled mirror into the back of the mouth. Light is shone into the mouth and reflects off the mirror and downward towards the larynx. Mirror laryngoscopy has been performed since the late 1800’s and requires a mirror, a light source and gentle steady hand. Sometimes, mirror laryngoscopy can be challenging for both the physician and the patient, but it provides the most accurate color representation of the larynx; this can be helpful in diagnosing and monitoring treatment of disease that affect the larynx. Flexible laryngoscopy is the most commonly performed procedure for visualizing the larynx. In this case, a flexible endoscope (called a flexible laryngoscope), is typically inserted into one of the nostrils, into the back of the nose, behind the palate (and the gag reflex) and placed into position just above the larynx. Sometimes, anesthetic and decongestant medications are used to facilitate patient comfort. This examination gives an excellent birds-eye-view of the structures and functions of the voice box, allowing for the patient to speak, swallow and breathe naturally.
    [Show full text]
  • Rigid Laryngoscopy, Oesophagoscopy and Bronchoscopy in Adults
    OPEN ACCESS ATLAS OF OTOLARYNGOLOGY, HEAD & NECK OPERATIVE SURGERY RIGID LARYNGOSCOPY, OESOPHAGOSCOPY & BRONCHOSCOPY IN ADULTS Johan Fagan, Mark De Groot Adult bronchoscopy, rigid oesophagoscopy teeth (Figure 3). Ask a dentist to make a and laryngoscopy for both diagnostic and customised guard for patients with therapeutic reasons are generally done abnormal teeth (Figure 4) or fashion one in under general anaesthesia. Panendoscopy the operating room from thermoplastic (all 3 procedures) is commonly performed sheeting (Figures 5a, b). to rule out synchronous primaries with squamous cell cancer of the upper aerodi- gestive tract. This chapter covers the tech- niques, pitfalls and safety measures of these 3 procedures. Morbidity of rigid endoscopy Sharing the airway with an anaesthetist requires close communication and a good understanding between surgeon and anaes- thetist. Figure 1: Protecting the lips with the fingers of the non-dominant hand It is surprising how often rigid endoscopy causes minor extralaryngeal and extra- oesophageal trauma. It is extremely easy to tear or perforate the delicate tissues that line the upper aerodigestive tract; this can lead to deep cervical sepsis, mediastinitis and death. Consequently it is important that a surgeon exercises extreme caution and knows when to abandon e.g. a difficult oesophagoscopy procedure. Mucosal injury occurs in up to 75% of cases and commonly involves the lips or Figure 2: Endoscopes exert excessive 1 angles of the mouth . To protect especially lateral pressure on the teeth to either side the lower lip one should advance the scope of a gap between the front teeth over the fingers of the non-dominant hand (Figure 1).
    [Show full text]