REALISING the POTENTIAL of CONCENTRATING SOLAR POWER in AUSTRALIA Summary for Stakeholders

Total Page:16

File Type:pdf, Size:1020Kb

REALISING the POTENTIAL of CONCENTRATING SOLAR POWER in AUSTRALIA Summary for Stakeholders REALISING THE POTENTIAL OF CONCENTRATING SOLAR POWER IN AUSTRALIA Summary for Stakeholders PREPARED BY IT POWER (AUSTRALIA) PTY LTD FOR THE AUSTRALIAN SOLAR INSTITUTE MAY 2012 AUSTRALIAN SOLAR INSTITUTE Realising the Potential of Concentrating Solar Power in Australia – Summary for Stakeholders Realising the Potential of Concentrating Solar Power in Australia – Summary for Stakeholders is available as a separate document but also forms part of the full detailed report: Realising the Potential of Concentrating Solar Power in Australia. The Australian Solar Institute (ASI) has commissioned this study to facilitate discussion on the potential for Concentrating Solar Power (CSP) in Australia. Study undertaken and report prepared by IT Power (Australia) Pty Ltd, part of the IT Power group, a specialist engineering consultancy focussing on renewable energy, energy efficiency and climate change. IT Power has offices in Australia, China, India, Kenya,, Morocco, Portugal, UK and USA. Authors: Keith Lovegrove, Muriel Watt, Robert Passey, Graeme Pollock, Joseph Wyder, Josh Dowse. The views expressed in this report are views held by IT Power, formed on the basis of the conclusions reached in the course of its analysis. The report does not seek to present the views of ASI, or any employee or Director of ASI, nor that of the Australian Government. For further information contact IT Power (Australia) Pty Ltd phone: 61-2 6257 3511 email: [email protected] web: www.itpau.com.au © Australian Solar Institute May 2012 www.australiansolarinstitute.com.au ISBN: 978-0-9873356-1-6 (paperback) 978-0-9873356-2-3 (online) Cover photography: CSIRO Solar Thermal Research Hub, CSIRO Energy Centre, Newcastle, NSW, Australia. Contents Report at a Glance 4 Outlining CSP’s future in Australia 6 Meeting Australia’s energy needs 6 CSP’s role in meeting those needs 6 Available CSP technologies 8 Concentrating solar power systems 8 Conversion and storage systems 8 International growth in CSP capacity 9 Australian markets for CSP 11 Market segments and location 11 CSP’s potential advantages 13 Available revenue for a CSP asset 15 Pool prices in wholesale electricity markets 15 Additional network value and income 16 Income beyond the wholesale markets 17 Cost of delivering CSP energy 18 A baseline cost and sensitivities 18 Effect of energy storage 19 Effect of system size 20 Effect of power block size relative to field and store 21 Projected cost reductions 22 The commercial equation for a CSP asset 23 The financial gap 23 Comparison with other renewable sectors 24 Challenges, confidence and risk 25 Public and sector benefits 26 Potential benefits 26 Option value of CSP 27 Actions needed for CSP investment 28 1: Bridge the reducing cost-revenue gap 28 2: Build confidence in CSP’s offer 29 3: Establish CSP-solar precincts 29 4: Foster CSP research, development and demonstration 30 Supporting actions 30 CSP’s future contribution 31 Glossary 34 Report at a Glance Major changes in the world’s established energy • Emission reduction: 10 GW of capacity supply systems are being driven by growing would reduce Australia’s emissions by roughly energy demand, energy security concerns, rising 30 Mt CO2 per year, about 15% of current greenhouse gas emissions, local environmental electricity sector emissions. issues, increasing oil prices, and international • Clean energy sector growth: Only a few competition to lead in the emerging clean countries are currently investing in CSP. With energy technologies. Australia shares these CSP exploiting its world-leading solar global concerns. To address them all at least cost resources, Australia can claim a significant and risk, while providing energy for intra-day place in the global clean energy supply chain. peaks and longer-term demands, a portfolio of Delaying action will see that opportunity energy options is needed. Concentrating Solar missed. Power (CSP) is one of those options. However, a • Community-supported generation: CSP significant cost-revenue gap for CSP projects is need not compete for valuable land or water deterring private investment. Concerted action is and is low-impact. Every 100 MW system needed to close that gap and retain CSP as a would create around 500 job years during strong energy option for Australia’s future. construction and 20 jobs during operation, CSP is proven and available mostly in regional areas. Global installed capacity of CSP is growing • Potential for future solar fuels: Emerging rapidly and is predicted to reach 2 GW in 2013, technology will convert solar energy to liquid led by Spain and the US. Concentrating solar fuels, supplied at scale to both domestic and thermal (CST) plants dominate, typically using export markets. standard steam turbines and often integrating However, the cost-revenue gap thermal energy storage. is currently too great CSP can contribute significantly The CSP cost-revenue equation varies to Australia’s energy needs enormously with system configuration and Australia has just over 50 GW in electricity location. Instantaneous CSP generation generation capacity from all sources. This study correlates well with peak electricity prices. With finds that, it would be technically feasible to thermal storage, the energy value of CSP add up to 15 GW of CSP capacity, with only systems is even higher, up to double the modest grid extensions. Hybrid systems within wholesale market average. Even so, existing fossil-fuel plants, and smaller plants for CSP projects are not yet commercially attractive off-grid mines and towns, are important near in Australia. For utility-scale systems, the term applications for CSP systems. Future baseline ‘levelised cost of energy’ (LCOE) is ‘nation-building’ grid extensions would unlock around $250 per MWh, while maximum more of Australia’s world-leading solar revenue streams in main grid-connected resource, which vastly exceeds all predictable markets currently total around $120 per MWh energy demand. (including renewable certificates). The gap is smaller for the relatively small off-grid mining CSP offers particular benefits and remote towns sector. As part of a future energy portfolio, CSP systems would deliver: • Dispatchable energy supply: Systems that can dispatch electricity in the range of baseload to peaking power are an essential complement to variable renewable sources. CSP with storage has that capability. • Lower emission conventional power plants: CSP can be efficiently integrated into existing and new coal and gas power plants to reduce emissions and extend plant life for a least-cost transition to a low-emission energy future. 4 Realising the Potential of Concentrating Solar Power in Australia The gap will close, with the help 2: Build confidence in CSP’s offer of Australian action The CSP sector should better Consistent with overseas research, this study communicate CSP’s value proposition to finds that the cost-revenue gap for CSP in key stakeholders including AEMO, AEMC, Australia is likely to close over the next 6 to 18 electricity retailers and financiers. years as plant costs fall through global Government, consumer, energy industry and deployment and technology improvement and investor support for CSP will remain ephemeral available revenue rises. However, these until there is a base of understanding and projections depend on continued global confidence. The CSP sector must explain CSP’s investment in CSP. At this early stage of the potential benefits, demonstrate them in global industry, Australia has the opportunity to practice, and respond to concerns. contribute significantly to momentum in reducing costs and risk. Completing 250 MW 3: Establish CSP-solar precincts of Solar Flagships and other deployments and The CSP sector should work with maintaining a sector annual growth in line with governments, regulators and service recent global rates would lead to an Australian providers to pre-approve and provide CSP capacity of around 2 GW by 2020. connections for CSP systems in selected areas of high solar resource. CSP precincts would reduce planning, approvals and grid connection costs, helping to reduce early-stage project risk. They would also spread the costs of solar data collection, environmental impact assessments and community consultation across projects. 4: Foster CSP research, development and demonstration The CSP sector should leverage continued public and industry investment in research, development and demonstration, with more emphasis on meeting Australian needs. Building CSP in Australia requires growth in skills and capabilities that are lacking; targeting Concerted Australian action needed deployment of systems below 50 MW 1: Bridge the reducing cost-revenue gap (overlooked by the global industry); Whilst continuing to focus on lowering incorporating energy storage; improving cost, the CSP sector should work with efficiency; hybridisation with fossil fuel plants; governments and regulators to increase and using advanced cooling technologies the reward for clean energy systems that (reflecting our water constraints). better correlate generation to real-time demand. If these actions are pursued successfully, the Rather than subsidising CSP specifically, CSP sector would be large enough to deliver technology-neutral measures should target the economies of scale within immediate dispatchable characteristics that Australia investment and policy horizons. needs. Early deployment where the cost- revenue gap and other challenges are smaller will help maximise CSP opportunities and bridge the gap. The CSP industry
Recommended publications
  • Australian Rooftop Solar Subsidy 2019 Outlook
    Australian Rooftop Solar Subsidy 2019 Outlook 18 February 2019 © Demand Manager Pty Ltd PO Box Q1251 QVB Post Office NSW 1230 AFSL 474395 www.demandmanager.com.au The material in this report is provided for general information and educative purposes only. The content does not investment advice or recommendations and should not be relied upon as such. Appropriate professional advice should be obtained for any investment decisions. While every care has been taken in the preparation of this material, Demand Manager cannot accept responsibility for any errors, including those caused by negligence, in the material. Demand Manager makes no statements, representations or warranties about the accuracy or completeness of the information and you should not rely on it. You are advised to make your own independent inquiries regarding the accuracy of any information provided in this report. Executive Summary The SRES is one half of the Australian Government’s Renewable Energy Target and offers upfront rebates to consumers installing small-scale solar power systems. This cost is borne by all electricity consumers as a levy charged per kWh of consumption. Solar power installations continue to accelerate, driven by: o Cheaper component costs; o Increasing adoption in the commercial sector; o Policy drivers in Victoria and South Australia and soon NSW In early 2018, Demand Manager forecast the cost of the SRES in 2018 to total $1.3 billion. Actual cost of the SRES in 2018 was in the order of $1.2 billion1. In our LOW case scenario, Demand Manager forecasts the economy-wide cost of the SRES to increase 30% in 2019 to $1.56 billion.
    [Show full text]
  • Analysis of a Hybrid Renewable Energy System Including a CST Plant Utilising a Supercritical CO2 Power Cycle for Off-Grid Power Generation
    THE UNIVERSITY OF QUEENSLAND Bachelor of Engineering and Master of Engineering (BE/ME) Thesis Analysis of a hybrid renewable energy system including a CST plant utilising a supercritical CO2 power cycle for off-grid power generation Student Name: Vishak BALAJI Course Code: ENGG7290 Supervisor: Professor Hal GURGENCI Submission Date: 28 June 2018 A thesis submitted in partial fulfilment of the requirements of the Bachelor of Engineering and Master of Engineering (BE/ME) degree in Mechanical and Materials Engineering Faculty of Engineering, Architecture and Information Technology Executive Summary The electrification of remote locations that lack grid-connectivity is a global challenge. In Australia, off-grid electricity accounts for 6% of total generation. At present these needs are met through the use of fossil fuels, resulting in a high electricity cost, and environmental consequences. With the present drive towards reducing greenhouse gas emissions and increasing the use of renewable energies, there is an opportunity to transition from the use of fossil fuels in remote locations to the use of renewables. In this regard, the hybridisation of renewable technologies with diesel generators has been shown to improve reliability and increase penetration. This project aims to explore the use of a hybrid renewable energy system consisting of solar photovoltaic (PV) with battery storage, concentrating solar thermal (CST) with thermal storage and diesel generators for off-grid power generation. The analysis considers two major consumer groups, viz. mining sites and communities, at three locations – Newman, Port Augusta and Halls Creek. In particular, the solar thermal system explored utilises a supercritical carbon dioxide power cycle, due to the suitability of this technology at scales appropriate for off-grid use.
    [Show full text]
  • LCOE Analysis of Tower Concentrating Solar Power Plants Using Different Molten-Salts for Thermal Energy Storage in China
    energies Article LCOE Analysis of Tower Concentrating Solar Power Plants Using Different Molten-Salts for Thermal Energy Storage in China Xiaoru Zhuang, Xinhai Xu * , Wenrui Liu and Wenfu Xu School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China; [email protected] (X.Z.); [email protected] (W.L.); [email protected] (W.X.) * Correspondence: [email protected] Received: 11 March 2019; Accepted: 8 April 2019; Published: 11 April 2019 Abstract: In recent years, the Chinese government has vigorously promoted the development of concentrating solar power (CSP) technology. For the commercialization of CSP technology, economically competitive costs of electricity generation is one of the major obstacles. However, studies of electricity generation cost analysis for CSP systems in China, particularly for the tower systems, are quite limited. This paper conducts an economic analysis by applying a levelized cost of electricity (LCOE) model for 100 MW tower CSP plants in five locations in China with four different molten-salts for thermal energy storage (TES). The results show that it is inappropriate to build a tower CSP plant nearby Shenzhen and Shanghai. The solar salt (NaNO3-KNO3, 60-40 wt.%) has lower LCOE than the other three new molten-salts. In order to calculate the time when the grid parity would be reached, four scenarios for CSP development roadmap proposed by International Energy Agency (IEA) were considered in this study. It was found that the LCOE of tower CSP would reach the grid parity in the years of 2038–2041 in the case of no future penalties for the CO2 emissions.
    [Show full text]
  • FRV Announces Moree Solar Farm Opening and Confirms Long-Term Future for Solar in Australia
    FRV announces Moree Solar Farm opening and confirms long-term future for solar in Australia Spain; March 3, 2017 Global utility-scale solar developer, Fotowatio Renewable Ventures (FRV) officially inaugurated the Moree Solar Farm in Australia, and reaffirmed its commitment to helping develop the solar energy market in the country. The Moree Solar Farm commenced construction operations in February 2015 and 12 months later it started supplying electricity to the grid. Since then, the Moree Solar Farm has already delivered over 134 GWh of energy to the grid, enough to supply around 22,000 Australian households, and played an important role during the recent heat wave on 10th February 2017, operating at close to 100 percent capacity at the same time New South Wales (NSW) came close to hitting record electricity demand. Moree Solar Farm is the first large-scale solar project in Australia to use a single-axis tracking system, with PV modules that follow the sun's path from east to west to maximize the energy generated during the day and lengthen the period in which that energy is generated. Moree Solar Farm received US$ 77.9 million in funding support from the Australian Renewable Energy Agency (ARENA) and a debt finance commitment of US$ 35.2 million from the Clean Energy Finance Corporation (CEFC). Chief Executive Officer of Fotowatio Renewable Ventures (FRV), Rafael Benjumea noted “The project would not have been possible at the time without the support of ARENA and the CEFC”. In March 2016, FRV signed a 15-year power purchase agreement with Origin Energy Limited (Origin) which covers 100 percent of the output and all Renewable Energy Certificates generated by the solar farm.
    [Show full text]
  • Potential Map for the Installation of Concentrated Solar Power Towers in Chile
    energies Article Potential Map for the Installation of Concentrated Solar Power Towers in Chile Catalina Hernández 1,2, Rodrigo Barraza 1,*, Alejandro Saez 1, Mercedes Ibarra 2 and Danilo Estay 1 1 Department of Mechanical Engineering, Universidad Técnica Federico Santa María, Av. Vicuña Mackenna 3939, Santiago 8320000, Chile; [email protected] (C.H.); [email protected] (A.S.); [email protected] (D.E.) 2 Fraunhofer Chile Research Foundation, General del Canto 421, of. 402, Providencia Santiago 7500588, Chile; [email protected] * Correspondence: [email protected]; Tel.: +56-22-303-7251 Received: 18 March 2020; Accepted: 23 April 2020; Published: 28 April 2020 Abstract: This study aims to build a potential map for the installation of a central receiver concentrated solar power plant in Chile under the terms of the average net present cost of electricity generation during its lifetime. This is also called the levelized cost of electricity, which is a function of electricity production, capital costs, operational costs and financial parameters. The electricity production, capital and operational costs were defined as a function of the location through the Chilean territory. Solar resources and atmospheric conditions for each site were determined. A 130 MWe concentrated solar power plant was modeled to estimate annual electricity production for each site. The capital and operational costs were identified as a function of location. The electricity supplied by the power plant was tested, quantifying the potential of the solar resources, as well as technical and economic variables. The results reveal areas with great potential for the development of large-scale central receiver concentrated solar power plants, therefore accomplishing a low levelized cost of energy.
    [Show full text]
  • Report: in the Spotlight Australian Solar Energy R&D Outcomes And
    Prepared for the Australian Renewable Energy Agency In the spotlight: Australian solar energy R&D outcomes and achievements in a global context A review of ARENA’s portfolio of solar research and development July 2018 About this report The research was commissioned by the Australian Renewable Energy Agency, (ARENA). This document presents the findings of reviews carried out by ITP Renewables in 2016 and 2018 of ARENA’s portfolio of solar research, development and pilot-scale demonstration projects, as well as associated PhD and Post-Doc Fellowship programs. Cover images From left to right: Solar Hybrid Fuels, CSIRO CloudCAM PV Generation Forecasting, Fulcrum 3D Forecasting Distributed Solar Energy, ANU About ITP Renewables The IT Power Group, formed in 1981, is a specialist renewable energy, energy efficiency and carbon markets consulting company. The Group has offices and projects throughout the world. ITP Renewables was established in 2003 and has undertaken a wide range of projects, including providing advice for government policy, feasibility studies for large renewable energy power systems, designing renewable energy power systems, developing micro-finance models for community-owned power systems in developing countries and modelling large-scale power systems for industrial use. The staff at ITP have backgrounds in research, renewable energy and energy efficiency, development and implementation, managing and reviewing government programs, high level policy analysis and research, including carbon markets, engineering design and project management. Report Control Record Document prepared by: ITP Renewables Ph: +61 2 6257 3511 PO Box 6127 Fx : +61 2 6257 3611 O’Connor ACT 2602 [email protected] Australia www.itpau.com.au Document Control Report Title In the spotlight: Australian solar energy R&D outcomes and achievements in a global context Client Contract No.
    [Show full text]
  • Solar Photovoltaic Architecture and Agronomic Management in Agrivoltaic System: a Review
    sustainability Review Solar Photovoltaic Architecture and Agronomic Management in Agrivoltaic System: A Review Mohd Ashraf Zainol Abidin 1,2 , Muhammad Nasiruddin Mahyuddin 2,* and Muhammad Ammirrul Atiqi Mohd Zainuri 3 1 Faculty of Plantation and Agrotechnology, Universiti Teknologi MARA, Perlis Branch, Arau Campus, Arau 02600, Perlis, Malaysia; [email protected] 2 School of Electrical and Electronic Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal 14300, Pulau Pinang, Malaysia 3 Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600 UKM, Selanor, Malaysia; [email protected] * Correspondence: [email protected] Abstract: Agrivoltaic systems (AVS) offer a symbiotic strategy for co-location sustainable renewable energy and agricultural production. This is particularly important in densely populated developing and developed countries, where renewable energy development is becoming more important; how- ever, profitable farmland must be preserved. As emphasized in the Food-Energy-Water (FEW) nexus, AVS advancements should not only focus on energy management, but also agronomic management (crop and water management). Thus, we critically review the important factors that influence the decision of energy management (solar PV architecture) and agronomic management in AV systems. The outcomes show that solar PV architecture and agronomic management advancements are reliant on (1) solar radiation qualities in term of light intensity and photosynthetically activate radiation (PAR), (2) AVS categories such as energy-centric, agricultural-centric, and agricultural-energy-centric, Citation: Zainol Abidin, M.A.; Mahyuddin, M.N.; Mohd Zainuri, and (3) shareholder perspective (especially farmers). Next, several adjustments for crop selection and M.A.A. Solar Photovoltaic management are needed due to light limitation, microclimate condition beneath the solar structure, Architecture and Agronomic and solar structure constraints.
    [Show full text]
  • Beauty of Agrivoltaic System Regarding Double Utilization of Same Piece of Land for Generation of Electricity & Food Production Dhyey D
    International Journal of Scientific & Engineering Research Volume 10, Issue 6, June-2019 118 ISSN 2229-5518 Beauty of Agrivoltaic System regarding double utilization of same piece of land for Generation of Electricity & Food Production Dhyey D. Mavani, P M Chauhan, Viral Joshi Abstract— In order to meet global energy demands with clean renewable energy such as with solar photovoltaic (PV) systems, large surface areas are needed because of the relatively diffuse nature of solar energy. Much of this demand can be matched with aggressive building integrated PV and rooftop PV, but the remainder can be met with land-based PV farms. Using large tracts of land for solar farms will increase competition for land resources as food production demand and energy demand are both growing and vie for the limited land resources. Land competition is exacerbated by the increasing population. These coupled land challenges can be ameliorated using the concept of agrivoltaics or co-developing the same area of land for both solar PV power as well as for conventional agriculture.A coupled simulation model is developed for PV production (PVSyst) and agricultural production (Simulateur mulTIdisciplinaire les Cultures Standard (STICS) crop model), to gauge the technical potential of scaling agrivoltaic systems. The results showed that the value of solar generated electricity coupled to shade-tolerant crop production created an over 30% increase in economic value from farms deploying agrivoltaic systems instead of conventional agriculture.Crop yield losses to be minimized and thus maintain crop price stability. In addition, this dual use of agricultural land can have a significant effect on national PV production.
    [Show full text]
  • BP in Australia Sustainability Report 2009–10
    BP in Australia Sustainability Report 2009-2010 BP in Australia Sustainability Report 2009-2010 What’s inside? About this report 01 Message from the President of BP The BP in Australia Sustainability Report 2009-10 covers the Australia 12 month period from 1 July 2009 to 30 June 2010 unless 03 BP Australia in 2009-2010 otherwise stated. Further information on BP group’s sustainability performance is available online, in PDF format, and in review form 04 BP Australia in figures at www.bp.com/sustainability. 06 How BP in Australia operates • Our operations For more information • Business strategy www.bp.com.au/envandsociety • Corporate governance Access insights into our sustainability performance in Australia. • Risk management www.bp.com/sustainability BP group sustainability performance. 10 Diverse and affordable energy • Meeting the energy challenge • Sustaining production and supply • Investing for the future • Petrol pricing 16 Low-carbon energy • Our position on climate change • Cleaner fuels • Cleaner power 20 Safe and responsible energy • Operating management system • Health and safety • Product safety • Environment 28 People energy • BP Australia’s people plan • Attracting and retaining talented people • Creating an engaging and inclusive environment • Learning and development • Supporting our staff 34 Local energy • Our approach to development and community • Supporting education and community needs • Building business skills 39 Independent assurance statement 40 Our approach to sustainability reporting 41 Further Information Cautionary statement The BP in Australia Sustainability Report 2009-10 contains certain forward-looking statements. By their nature, forward-looking statements involve risks and uncertainties because they relate to events and depend on circumstances that will or may occur in the future.
    [Show full text]
  • Sundown, Sunrise How Australia Can Finally Get Solar Power Right
    May 2015 Sundown, sunrise How Australia can finally get solar power right Tony Wood and David Blowers Sundown, sunrise Grattan Institute Support Grattan Institute Report No. 2015-2, May 2015 This report was written by Tony Wood, Grattan Institute Energy Program Director, Founding Members Program Support and David Blowers, Grattan Institute Energy Fellow. Cameron Chisholm, James Higher Education Program Button and Jessica Stone provided extensive research assistance and made substantial contributions to the report. We would like to thank the members of Grattan Institute’s Energy Reference Group for their helpful comments, as well as numerous industry participants and officials for their input. The opinions in this report are those of the authors and do not necessarily Affiliate Partners represent the views of Grattan Institute’s founding members, affiliates, individual Google board members reference group members or reviewers. Any remaining errors or Origin Foundation omissions are the responsibility of the authors. Senior Affiliates Grattan Institute is an independent think-tank focused on Australian public policy. EY Our work is independent, practical and rigorous. We aim to improve policy PwC outcomes by engaging with both decision-makers and the community. The Scanlon Foundation Wesfarmers For further information on the Institute’s programs, or to join our mailing list, please go to: http://www.grattan.edu.au/ Affiliates Ashurst This report may be cited as: Wood, T., Blowers, D., and Chisholm, C., 2015, Sundown, sunrise: how Australia can finally get Corrs solar power right, Grattan Institute Deloitte ISBN: 978-1-925015-67-6 Jacobs Mercy Health All material published or otherwise created by Grattan Institute is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License Urbis Westpac Grattan Institute 2015 Sundown, sunrise Overview About 1.4 million Australian homes have installed solar panels on As home batteries becomes widely available, consumers will be their roofs since 2001.
    [Show full text]
  • SOLAR PV MYTHS and FACTS Household Solar Power in Australia
    SOLAR PV MYTHS AND FACTS Household solar power in Australia Many myths exist about solar power to do with what it costs, what it can do and whether governments should support households and businesses in going solar. This fact sheet helps set the record straight. THE COSTS OF SOLAR TO CONSUMERS Solar panels are very expensive. MYTH: FACT: Solar panels are an increasingly affordable option that will save households money in the long run. 1 The cost of producing and installing solar power systems has fallen1950s dramaticallyand costs are over still coming recent years, and continues to fall. The solar panels installed on rooftops today are more than 500 times cheaper to produce than the first solar cells of the mid- down fast. Four years ago a solar system could cost as much as a small car; now it costs about the same as a big TV. But how does solar compare to traditional energy, such as coal and gas? If you count the cost of setting up a fossil-fuelled power source by including the return on investment, operation costs, fuel and maintenance over its entire life, solar is close to the cost of fossil fuel-based energy and will be the cheaper option within a few years. Solar is an insurance policy against the rising costs of fossil fuels like coal and gas. Solar panels are already affordable and cost-competitive The costs of solar panels has been falling by about 45 per cent per year, and in some countries is already competitive with diesel-generated power 1.
    [Show full text]
  • The Critical Decade: Global Action Building on Climate Change
    THE CRITICAL DECADE: AUSTRALIA’S FUTURE – SOLAR ENERGY Solar: the people’s choice 1,000,000+ 981,000 More than 1 million 644,000 rooftop solar Cumulative PV systems 283,000 PV installations* installed 85,102 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2.6 million Australians are using the sun to power their homes * based on Clean Energy Regulator data as of May 2013 Source: CER, 2013a and derived from ABS, 2010; 2013 CONTENTS CONTENTS PREFACE 3 KEY FINDINGS 4 INTRODUCTION 6 1. SOLAR ENERGY TODAY AND TOMORROW 8 1.1 What are the common solar technologies? 8 1.2 What role has Australia played in developing solar energy? 12 1.3 Innovative solar research and technology development 12 2. SOLAR ENERGY IN AUSTRALIA 14 2.1 What is Australia’s potential for solar energy use? 14 2.2 How quickly is Australia’s solar sector increasing? 16 2.3 Where are the number of solar installations growing most strongly? 18 2.4 Why are costs dropping so quickly? 20 2.5 What types of policies encourage solar energy? 23 3. SOLAR ENERGY IN A CHANGING WORLD 26 3.1 How quickly is global solar capacity increasing? 26 3.2 Why is solar energy becoming more affordable globally? 27 3.3 What is the global investment outlook for solar? 29 3.4 International policy environment 31 4. AUSTRALIA’S SOLAR ENERGY FUTURE 32 4.1 What is the future of solar energy in Australia? 32 4.2 How does solar energy provide continuous electricity supply? 34 4.3 How is solar power integrated in the existing electricity grid infrastructure? 34 REFERENCES 37 COMMON QUESTIONS ABOUT SOLAR ENERGY 42 Prefacexxxx /00 PREFACE The Climate Commission brings together Environmental Markets, University of internationally-renowned climate scientists, New South Wales; Dr Kylie Catchpole, as well as policy and business leaders, to Associate Professor, Australian National provide an independent and reliable source University and Mr Jeff Cumpston, Solar of information about climate change to the Thermal Group, Research School of Australian public.
    [Show full text]