Broken Sheets—On the Numbers and Areas of Tectonic Plates

Total Page:16

File Type:pdf, Size:1020Kb

Broken Sheets—On the Numbers and Areas of Tectonic Plates Broken Sheets—On the Numbers and Areas of Tectonic Plates Bruce H. Wilkinson, Department of Earth Sciences, Syracuse University, Syracuse, New York, 13244, USA, [email protected]; Brandon J. McElroy, Department of Geology & Geophysics, University of Wyoming, Laramie, Wyoming, USA; and Carl N. Dummond, Department of Physics, Purdue University Fort Wayne, Fort Wayne, Indiana 46805-1499, USA ABSTRACT unpredictable, thus reflecting the inher- comprise a single continuous power law The sizes and numbers of tectonic ently complicated nature of processes distribution of size frequency, but with the plates are thought to record the impor- associated with their formation. proviso that a finite Earth surface area tance of plate division, amalgamation, and imposes an upper limit on larger plate INTRODUCTION destruction at divergent and convergent areas. Like Bird (2003), Morra et al. (2013) margins. Changes in slope apparent on log The outer brittle layer of the Earth con- concluded that plate sizes consist of large area versus log frequency plots have been sists of lithospheric plates that move over the and small populations, and that this differ- interpreted as evidence for discrete popu- relatively weak asthenosphere. Larger-scale ence in plate areas persists back in time at lations of plate sizes, but the sizes of litho- aspects of plate movement are the surficial least several tens of millions of years. spheric plates are also closely approxi- manifestations of mantle convection in the Mallard et al. (2016) employed spherical mated by a continuous density function in deeper Earth, but local processes of defor- models of mantle convection to examine which diameters of individual plates are mation may be only indirectly related to the geodynamical processes that drive the exponentially distributed; such size fre- regional stress fields. Because size frequen- tessellation of the Earth’s lithosphere and quencies are dependent only on the total cies from brittle fragmentation might be concurred with Bird (2003) and Morra et area and number of designated elements. manifest as self-similar (fractal) power laws al. (2013) that plate areas comprise several This implies that the spatial locations of (e.g., Davydova and Uvarov, 2013), it is distinct populations. Harrison (2016) pro- plate boundaries are controlled by a myr- important to know the relationships between posed an additional 107 plates as subdivi- iad of complicated and interrelated pro- lithospheric rheology and degree of frag- sions of the 52 plates proposed by Bird cesses such that the geographic occur- mentation, as well as the degree to which the (2003); he also interpreted several changes rence of any particular boundary is largely breakup of the lithosphere reflects the of slope in log-log plots of plate number indeterminate and thus spatially indepen- dynamics of mantle convection versus local versus area as reflecting the presence of dent of the proximity of other plate bound- interactions along plate boundaries. This is several size populations. aries. Observed breaks in slope on linear- particularly so as models of the evolution of While the designation of any particular ized size versus frequency plots are tectonic plates are extended over ever- region as a discrete “plate” is somewhat of merely coincidental and of themselves do increasing spans of geologic time (e.g., an evolving enterprise (e.g., Zhang et al., not support an interpretation of discrete Domeier and Torsvik, 2014; Matthews et al., 2017), the actuality of either single tectonic processes operating over distinct 2016; Merdith et al., 2017). (Sornette and Pisarenko, 2003) or multiple length scales. Although a purely random One approach to this question derives (Anderson, 2002; Bird, 2003; Mallard et distribution of plate boundaries also impli- from considerations of the numbers and al., 2016; Harrison, 2016) populations of cates a similar chance distribution of plate sizes of the tectonic plates. Anderson plate sizes is important to interpreting the sizes, some smaller plates are indeed clus- (2002), for example, noted that fracture manifestation of causative tectonic pro- tered along convergent boundaries in the patterns tend to self-organize such that cesses. If sizes of tectonic plates are read- southwestern Pacific. Such association of mud cracks, frozen ground, basalt col- ily characterized by a single frequency plates of similar (small) sizes suggests umns, and other natural features exhibit distribution, be it fractal or otherwise, an that locations of plate boundaries are best similar patterns. He argued that tectonic interpretation of multiple processes operat- described as reflecting nonhomogeneous plates therefore might consist of semi-rigid ing at distinct length scales is not sup- Poisson processes wherein probabilities larger polygons separated by (at times dif- ported. Conversely, if plate area-frequen- of reaching some plate boundary vary fuse) boundary zones of deformation sur- cies are best described by multimodal along any Earth-surface transect. Size faced by smaller elements. Bird (2003) distributions, then interpretations linking frequencies of continents, calderas, and presented a global data set interpreted as populations of large plates to processes many other geologic entities where embodying several fractal subpopulations occurring at convective length scales (e.g., dimensions are expressed as areal extent of plate sizes, each manifest as an approxi- Lenardic et al., 2006) and populations of exhibit similar size-frequency distribu- mately linear trend in log area versus log smaller plates to the generation of litho- tions, suggesting that lateral occurrences occurrence–frequency space. Sornette and spheric fragments at the edge of plate of their boundaries are also largely Pisarenko (2003) argued that plate sizes boundaries are entirely reasonable. GSA Today, v. 28, doi: 10.1130/GSATG358A.1. Copyright 2017, The Geological Society of America. CC-BY-NC. NUMBERS AND AREAS OF Plate Area (km2) TECTONIC PLATES 10,000 1,000,000 100,000,000 100 Detailed data on major tectonic bound- aries and areas of enclosed plates are sum- A n = 52 p = 0.045 % /km marized by Bird (2003), who presented the R2 = 0.87 characteristics and locations of 6,048 Bird (2003) utuna Manus Gurnis et al. (2012) F points that serve to define 229 boundary Shetland Galapagos segments delineating 52 lithospheric Fernandez plates. The relationship between plate area Juan 10 and frequency of occurrence is most con- B n = 20 South American Australian veniently represented as a cumulative fre- p = 0.025 % /km ceedence 2 Eurasian R = 0.93 Ex quency distribution in which plate area is North American plotted relative to size exceedance—the 10 Antarctic e South American number of plates equal to or larger than North American African any size in question; the Y-intercept East Antarctic Australian ceedenc Pacic defines the total number (e.g., 52) of data Eurasian 1 Ex values (Fig. 1). E = n e(-Ap2)0.5 African Breaking and annealing P = 0.5 Nπ/T0.5 THE BROKEN SHEET FUNCTION Resamplings of Broken Sheets Pacic 1 Average breaking & annealing The general curvilinear form of log-log 1,000,000 100,000,000 Broken Sheet Function plate area frequency distributions is simi- 2 Inferred log-linear trends lar to size-frequency distributions for some Plate Area (km ) other area mosaics that include regions of Figure 1. Areas of tectonic plates relative to exceedance, the number of plate areas equal to or like sediment (lithotopes) across deposi- greater than the x-axis values. (A) Plate areas from Bird (2003). (B) Areas from Gurnis et al. (2012). Division into three apparent subpopulations in (A) (n = 52) and two subpopulations in (B) (n = 20) is tional surfaces (Wilkinson and based on seemingly linear trends (straight red lines). Light blue lines in (A) are 500 sets of plate Drummond, 2004), regions on global geo- areas (n = 52) resampled from a stable model time series wherein two random plates are annealed and another two randomly divided over thousands of iterations (see text). Heavy blue line in (A) is the logic maps (Wilkinson et al., 2009), sizes average area of many realizations of such annealed and broken plates. Light brown lines in (B) are of geopolitical subdivisions (McElroy et 500 sets of plate areas (n = 20) resampled from the broken sheet density function. Heavy brown line al., 2005), and taxonomic divisions of in (B) is the ideal broken sheet size frequency distributions predicated by the number of designated plates (20) and the total area of the sphere on which they exist (4 π steradians; ~510 × 106 km2). White organismal morphospace (Wilkinson, lines in (A) and (B) are the two series whose areas, by chance, are closest to observed sizes. Since 2011). Size-frequency distributions for there is no inherent division of sizes in these models, any subdivision based on the perception of differing slopes for straight-line segments is spurious. these tessellations reflect the partitioning of the total area into mosaics of sub-ele- ments wherein locations of boundaries, and therefore the sizes of these elements, are statistically independent. exponentially distributed. The broken per unit length of transect, itself expressed Conceptually, if the sizes of sub-ele- sheet distribution (e.g., Fig. 1) is the form as Equation (2), ments are represented by linear distances that results when sizes of randomly parti- p = 0.5 np/A0.5, (2) across them rather than areas, the distribu- tioned sub-elements are plotted as areas, rather than distances. The surface of the tion of distances between boundaries is the and A is the total surface or “sheet” area Earth can therefore be described as being same as that arising from the classic one- being divided (for Earth, ~510 × 106 km2). subdivided into tectonic plates such that dimensional “broken stick” model of ran- Comparisons to the 52 plate areas from dom linear subdivision proposed by plate sizes, as measured by the linear dis- Bird (2003) and the 20 plate areas from MacArthur (1957), who suggested that tances across them, are exponentially dis- Gurnis et al.
Recommended publications
  • Center 1 Ectonic Evolution of the Cocos-Nazca Spreading
    ,, s11bs1i11ae the.se pages for pages J.10../-/../(}(¡ 111 tÍle Ocwber 1977 Bulletin. 1•. 88. 110. JO. Giorgio DE LA TORRE Mora1e~ Teniente de Fragata-SU 1 ectonic evolution of the Cocos-Nazca spreading center RICHARD HEY ''· Department of Geolog1cal and Geophysical Sciences, Prmceton Unwersity, Prmceto11, New }asey 08 5-1 11 ABSTRACT zone of compression suggesr~(ferron and Heirrzler ( 1967) an( Raff (1968) is ºAAfecSbl quirement rhat rwo or pos_sibh Magnetic and bathymetric data from the easrern Pacific have three of rhe rirn'~u s r sprea o liquely, because "ar triple 1unc been analyzed and a model for the evolution of the Galapagos re­ tions, slafloor spreading cannot be perpendicular to al i rhree of th1 gion developed. The Farallon piare appears to have broken apart rifts" ( to~~:o . ;ipd Dietz, 1972, p. 267). Jn' fact. spreading may b, along a pre-existing Pacific-Farallon fracture zone, possibly the perpen ifulaF· tb-'a~l ·~ r!fts wirhour resulting zones of compres- Marquesas fracture zone, ar about 25 m.y. B.P. to fonn the Cocos sion an · ho.uwcio!a~ 0Í-ffte-rig;d-plate hypothesis. and Nazca plates. This break is marked on the Nazca piare topo­ Van Andel and others (197 1) proposed rhar the aseismic Coco~ graphically by the Grij alva scarp and magnetically by a rough­ and Carnegie Ridges were formed by rifring apart of a pre-exisrint smooth boundary coincident with the scarp. The oldest Cocos­ ancestral ridge. This hypothesis has since undergone severa! mod­ Nazca magnetic anomalies parallel this boundary, implying that ificarions (Malfair and Dinkelman, 1972; Heath and van Andel.
    [Show full text]
  • Shankar Ias Academy Test 8 – Geography - Ii - Answer Key
    SHANKAR IAS ACADEMY TEST 8 – GEOGRAPHY - II - ANSWER KEY 1. Ans (c) Explanation: http://www.iasparliament.com/article/prelim-bits-18-07-2017?q=national%20park 2. Ans (d) Explanation: Sl. No. Integrated check post State Border 1. Petrapole West Bengal India-B’desh 2. Moreh Manipur India-Myanmar 3. Raxaul Bihar India-Nepal 4. Attari (Wagah) Punjab India-Pakistan 5. Dawki Meghalaya India-B’desh 6. Akhaura Tripura India-B’desh 7. Jogbani Bihar India-Nepal 8. Hili West Bengal India-B’desh 9. Chandrabangha West Bengal India-B’desh 10. Sutarkhandi Assam India-B’desh 11. Kawarpuchiah Mizoram India-B’desh 12. Sunauli Uttar Pradesh India-Nepal 13. Rupaidiha Uttar Pradesh India-Nepal 3. Ans (b) Explanation: Devprayag: where river Alaknanda meet river Bhagirathi Rudraprayag: where river Alaknanda meet river Mandakini Karnaprayag: where river Alaknanda meet river Pinder Nandprayag: where river Alaknanda meet river Nandakini Vishnuprayag: where river Alaknanda meet river Dhauli Ganga 4. Ans (c) Explanation: The Haryana government launched Asia's First 'Gyps Vulture Reintroduction Programme' at Jatayu Conservation Breeding Centre, Pinjore. SHANKAR IAS ACADEMY The Centre has become prominent vulture breeding and conservation centre in the country-after successfully breeding Himalayan Griffon Vultures-an old world vulture in the family of Accipitridae-in captivity. The government had released two Himalayan Griffon Vultures The Himalayan Griffon is closely related to the critically endangered resident Gyps species of vultures but is not endangered. Two Himalayan Griffons have been in captivity for over a decade and have been in the aviary with resident Gyps vultures. These birds were wing-tagged and were leg-ringed for identification.
    [Show full text]
  • Durham Research Online
    Durham Research Online Deposited in DRO: 27 March 2018 Version of attached le: Published Version Peer-review status of attached le: Peer-reviewed Citation for published item: Vargas, C.A. and Pulido, J.E. and Hobbs, R.W. (2018) 'Thermal structure of the Panama Basin by analysis of seismic attenuation.', Tectonophysics., 730 . pp. 81-99. Further information on publisher's website: https://doi.org/10.1016/j.tecto.2018.02.017 Publisher's copyright statement: c 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/BY/4.0/). Additional information: Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full DRO policy for further details. Durham University Library, Stockton Road, Durham DH1 3LY, United Kingdom Tel : +44 (0)191 334 3042 | Fax : +44 (0)191 334 2971 https://dro.dur.ac.uk Tectonophysics 730 (2018) 81–99 Contents lists available at ScienceDirect Tectonophysics journal homepage: www.elsevier.com/locate/tecto Thermal structure of the Panama Basin by analysis of seismic attenuation T ⁎ Carlos A.
    [Show full text]
  • Unconventional Views of Whole Earth Carbon Cycling: from Formation to Production
    UNCONVENTIONAL VIEWS OF WHOLE EARTH CARBON CYCLING: FROM FORMATION TO PRODUCTION February 22-23, 2018 Rice University www.earthscience.rice.edu Unconventional views of whole Earth carbon cycling: from formation to production This workshop will bring together a diverse set of experts from academia and industry to follow carbon from its geology to its biology to its use as the energy that sustains 7 billion people on our planet. How has carbon cycling evolved on Earth? How do these long term geologic processes lead to the formation of hydrocarbon source rocks? We will also discuss carbon in the context of energy, from the origin of hydrocarbon source rocks to the generation of reservoirs to new technologies for rock characterization, hydrocarbon exploration, and enhancing production. Finally, we will discuss carbon economics and policy in terms of energy, environment and society. IRESS 2018 represents a unique opportunity to have a vigorous discussion about carbon in the context of economic growth and the habitability of our planet. CENTER FOR A SUSTAINABLE EARTH To sustain 7 billion people in the world, it is necessary to consider energy, natural resources and the environment as one continuous spectrum, all part of a highly complex and interconnected system. We must worry about our impacts to the environment, but we also need reliable energy resources to sustain our economies and bring the world out of poverty. There are no simple solutions. As a community, however, we may not be well prepared to tackle the complexity of the energy-environment nexus because we are more polarized and specialized than ever.
    [Show full text]
  • Sismotectónica De Colombia: Deformación Continental Activa Y Subducción
    Física ele la ‘Tierra 155N: 02144557 1998, u.’ 10: 111-147 Sismotectónica de Colombia: deformación continental activa y subducción A. TABOADA ‘,C. DIMATÉ 2 yA. FUENZALIDA Departamento de Ingeniería Civil. Centro de Investigaciones en Ciencias de la Tierra-CICTI. Universidad de Los Andes, AA. 4976. Bogotá (Colombia) 2 Ingeominas, Diagonal 53 N~ 34-53. Santafé de Bogotá, Colombia. cdimate@ esmeralda.ingeomin.gov.co Ingeominas. Actualmente en Sipetrol, Calle 93B N~ 17-25, Of. 410. Santafé de Bogotá, Colombia RESUMEN Los Andes del Norte comprenden una extensa zona de deformación con- tinental limitada por el cratón sudamericano a] oriente y por las zonas de sub- ducción de las placas Nazca y Caribe, situadas paralelamente a las costas de Colombia. La convergencia relativa entre estas tres placas se absorbe entre la zona de subducción del Pacifico colombiano yalolargo de diversos sistemas de fallas activas paralelos a los piedemontes dé las tres cordilleras colombia- nas. Se destacan el Sistema del Piedemonte Llanero en el limite entre la Cor- dillera Oriental yelCratón, el Sistema del Valle del Magdalena entre las cor- dilleras Central y Oriental, yelSistema Romeral a lo largo del Valle del Cauca-Patía (entre las cordilleras Central y Occidental). Las fallas de estos sistemas son generalmente inversas con buzamiento hacia la cordillera excep- to al 5W de Colombia donde se observan fallas de alto ángulo de dirección NNE y movimiento lateral derecho. Este movimiento se amortigua progresi- vamente hacia el norte, donde domina el movimiento inverso. Al norte de Colombia se observa el bloque’ triangular de Maracaibo limitado por tres grandes fallas de rumbo: Oca de dirección EW, Santa Marta-Bucaramanga de dirección NNW y Boconó de azimut NE (paralela a los Andes de Mérida).
    [Show full text]
  • Slab Flattening and the Rise of the Eastern Cordillera, Colombia
    Earth and Planetary Science Letters 512 (2019) 100–110 Contents lists available at ScienceDirect Earth and Planetary Science Letters www.elsevier.com/locate/epsl Slab flattening and the rise of the Eastern Cordillera, Colombia ∗ Gaia Siravo a, , Claudio Faccenna a, Mélanie Gérault b, Thorsten W. Becker c, Maria Giuditta Fellin d, Frédéric Herman e, Paola Molin a a Dipartimento di Scienze, Università degli Studi Roma Tre, Roma, Italy b Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA c Institute for Geophysics and Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, TX, USA d Department of Earth Sciences, ETH Zürich, Zürich, Switzerland e Faculté des géosciences et de l’environnement, Institut des dynamiques de la surface terrestre, Lausanne, Switzerland a r t i c l e i n f o a b s t r a c t Article history: The topographic growth of a mountain belt is commonly attributed to isostatic balance in response to Received 28 June 2018 crustal and lithospheric thickening. However, deeper mantle processes may also influence the topography Received in revised form 24 January 2019 of the Earth. Here, we discuss the role of these processes in the Eastern Cordillera (EC) of Colombia. The Accepted 1 February 2019 EC is an active, double-vergent fold and thrust belt that formed during the Cenozoic by the inversion of Available online xxxx a Mesozoic rift, and topography there has risen up to ∼5,000 m (Cocuy Sierra). The belt is located ∼500 Editor: J.-P.
    [Show full text]
  • Upper and Middle Crustal Velocity Structure of the Colombian Andes from Ambient Noise Tomography: Investigating Subduction-Relat
    Upper and middle crustal velocity structure of the Colombian Andes from ambient noise tomography: Investigating subduction-related magmatism in the overriding plate. E. Poveda1, J. Julià1, 2, M. Schimmel3, and N. Perez-Garcia4, 5 1Programa de Pós-Graduação em Geodinâmica e Geofísica, Universidade Federal do Rio Grande do Norte, Natal, RN CEP 59078-090, Brazil 2Departamento de Geofísica, Universidade Federal do Rio Grande do Norte, Natal, RN CEP 59078-970, Brazil 3Institut de Ciències de la Terra “Jaume Almera”, CSIC, 08028 Barcelona, Spain 4Red Sismológica Nacional, Dirección de Geoamenazas, Servicio Geológico Colombiano, Bogotá, Colombia 5Now, Ecopetrol S.A., Bogotá, Colombia Corresponding author: Esteban Poveda ([email protected]) Key Points: The magmatic signature of the subducting Nazca plate is mapped at mid- crustal depths under the Central Cordillera. Asthenospheric magmas might have breached the Caribbean flat slab through a pre-existing vertical tear. Fluid migration on major faults might also explain observed low velocitiy anomalies under the Lower Magdalena Basin. This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1002/2017JB014688 © 2018 American Geophysical Union. All rights reserved. Abstract New maps of S-velocity variation for the upper and middle crust making up the northwestern most corner of South America have been developed from cross-correlation of ambient seismic noise at 52 broadband stations in the region. Over 1300 empirical Green’s functions, reconstructing the Rayleigh-wave portion of the seismic wave-field, were obtained after time- and frequency-domain normalization of the ambient noise recordings and stacking of 48 months of normalized data.
    [Show full text]
  • The Algeciras Fault System of the Upper Magdalena Valley, Huila Department
    Volume 4 Quaternary Chapter 12 Neogene https://doi.org/10.32685/pub.esp.38.2019.12 The Algeciras Fault System of the Upper Published online 27 November 2020 Magdalena Valley, Huila Department 1 [email protected] Paleogene Consultant geologist 1 2 3 Hans DIEDERIX * , Olga Patricia BOHÓRQUEZ , Héctor MORA–PÁEZ , Servicio Geológico Colombiano 4 5 6 Dirección de Geoamenazas Juan Ramón PELÁEZ , Leonardo CARDONA , Yuli CORCHUELO , Grupo de Trabajo Investigaciones Geodésicas Jaír RAMÍREZ7 , and Fredy DÍAZ–MILA8 Espaciales (GeoRED) Dirección de Geociencias Básicas Grupo de Trabajo Tectónica Abstract The Algeciras Fault System, of predominant dextral strike–slip displacement, Paul Krugerstraat 9, 1521 EH Wormerveer, Cretaceous The Netherlands is part of the major interplate transform fault system, known in Ecuador, Colombia, and 2 [email protected] Servicio Geológico Colombiano Venezuela as the Eastern Frontal Fault System. This unique transform deformation belt Dirección de Geoamenazas connects the Nazca Plate in the Gulf of Guayaquil in Ecuador with the Caribbean Plate Grupo de Trabajo Investigaciones Geodésicas Espaciales (GeoRED) along the coast of Venezuela. Its dextral strike–slip displacement along the eastern Diagonal 53 n.° 34–53 Jurassic Bogotá, Colombia boundary of the North Andean Block facilitates tectonic escape of this microplate 3 [email protected] Servicio Geológico Colombiano in a NNE direction. The Algeciras Fault System constitutes the southern half of this Dirección de Geoamenazas transform belt in Colombia, the northern half runs along the foothills of the Eastern Grupo de Trabajo Investigaciones Geodésicas Espaciales (GeoRED) Diagonal 53 n.° 34–53 Cordillera and is known as the Guaicáramo Thrust Fault System that connects to the Triassic Bogotá, Colombia Boconó Fault in Venezuela.
    [Show full text]
  • Download Software From
    BugPlates 2014: Linking Biogeography and Palaeogeography Trond Helge Torsvik Centre for Earth Evolution and Dynamics (CEED) CEED develops advanced GIS-orientated reconstruction software and BugPlates is a stripped-down version of our first software development; it only operates between 540 and 250 Ma but interfaces with fossil databases. BugPlates is offered to the IGCP 503 Project: Early Palaeozoic biogeography and palaeogeography. The project aims to develop a better understanding of the environmental changes that influenced the biodiversity trends in Ordovician and Early Silurian times. The major objective is to attempt to find the possible physical and/or chemical causes (e.g. related to changes in climate, sea level, volcanism, plate movements and extraterrestrial influences) of Ordovician biodiversification, end-Ordovician extinction and the Silurian radiation. 1 BugPates2014 Software Installation: (1) Unzip Bugplates2014.zip to C-drive and install to c:\BPlates with sub-directories as seen below: (2) If BugPlates has never been installed on your computer go to the subdirectory “Bennet Setup if needed” and run setup.exe (3) Click on BugPlates2.exe to start the program (or create a shortcut and put on desktop) 2 Start-up menu During start-up a dialog box with some project information will appear and simply click on 'continue' to proceed. All continents and terranes are loaded to memory (will take a little time on slow computers) and the main menu with the world reconstructed in orthographic projection will appear. At start-up the centre of the globe is set to 0,0 (latitude, longitude) and the world is reconstructed to 250 Ma (Fig.
    [Show full text]
  • IRESS 2018 Program with Abstracts
    Welcome to IRESS 2018 This workshop will consist of two parts. The first will be to redefine our understanding of sequence stratigraphy in the context of contemporary concepts in sedimentary transport, climate, sea level, tectonics, mantle dynamics, and whole Earth system models. We will highlight key developments in technology and geologic data that have made scientific advances possible. The second part will consist of understanding the complex interplays between mantle and surface processes on the origin and development of the passive margin basement from the initiation of rifting to the maturation of an ocean basin. One of the goals of this workshop is to develop a new text, outlining passive margin evolution for the next generation of students and researchers. The workshop will be published as a journal special issue to be edited by Kevin Biddle, Gerald Dickens, and Cin-Ty Lee. Chatham House Rule This Symposium is held under the Chatham House Rule, under which participants are free to use the information received, but neither the identity nor the affiliation of the speaker(s), nor that of any other participant, may be revealed. The use of this rule is intended to encourage openness in discussion and, it is hoped, will make this IRESS event more useful to all the participants. 1 SCHEDULE- Baker Institute Day 1: Thursday, February 22, 2018 7:30-8:10 am Registration and Coffee Session 1: 8:15-8:25 am Opening remarks: Cin-Ty Lee - Rice University 8:25-8:55 am Lee Kump - Pennsylvania State University Long term carbon cycling 8:55-9:25
    [Show full text]
  • Seismotectonic Characterization of the Colombian Pacific Region: Identification of Tectonic Patterns Through Geostatistical Analysis
    School of Sciences Faculty of Geosciences Undergraduate Thesis: Seismotectonic Characterization of the Colombian Pacific Region: Identification of Tectonic Patterns Through Geostatistical Analysis María Daniela Gracia 201222439 Director: Fabio Iwashita ____________________ Co-Director: Jean Baptiste Tary ____________________ November 24/2017 - 1 - I wish to thank my mother Pilar, father Daniel and sisters Manuela and Sara for being a constant source of help and encouragement. Special thanks to my lovely boyfriend Jesse for supporting me and helping me believe in myself and to friends who have supported me throughout the process. And finally, I wish to thank the faculty of geosciences and my professors Fabio Iwashita and Jean Baptiste Tary for their motivation, disposition to help and great knowledge. - 2 - Abstract Earthquake occurrence is a consequence of many processes within the Earth such as tectonic stress loading, fluid diffusion or static stress triggering. As a result of this, patterns of spatial and temporal distribution, that earthquakes have historically displayed, keep the footprint of the mechanisms that give them origin. Quantifying these patterns and the extent of the causality and correlation between seismic events is then an interesting and useful subject of study. It is useful because it opens the doors to more accurate estimations of the behavior of earthquakes, which inherently decreases the risk of catastrophes. The Colombian Pacific region is a zone that presents a high degree of geological complexity, it lies parallel to a trench where the Nazca plate subducts below the South American Plate, which inherently results in increased seismic activity and rupture. In this study a sequence of 134 events that happened in this zone in a period of 68 months is studied.
    [Show full text]
  • Spatial-Temporal Distribution Characteristics of Global Seismic Clus- Ters and Associated Spatial Factors
    Chin. Geogra. Sci. 2019 Vol. 29 No. 4 pp. 614–625 Springer Science Press https://doi.org/10.1007/s11769-019-1059-6 www.springerlink.com/content/1002-0063 Spatial-temporal Distribution Characteristics of Global Seismic Clus- ters and Associated Spatial Factors YANG Jing1,2,3,4, CHENG Changxiu1,2,3,4, SONG Changqing2,3,4, SHEN Shi1,2,3,4, ZHANG Ting1,2,3,4, NING 1,2,3,4 Lixin (1. Key Laboratory of Environmental Change and Natural Disaster, Beijing Normal University, Beijing 100875, China; 2. State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China; 3. Faculty of Geo- graphical Science, Beijing Normal University, Beijing 100875, China; 4. Center for Geodata and Analysis, Beijing Normal University, Beijing 100875, China) Abstract: Earthquakes exhibit clear clustering on the earth. It is important to explore the spatial-temporal characteristics of seismicity clusters and their spatial heterogeneity. We analyze effects of plate space, tectonic style, and their interaction on characteristic of cluster. Based on data of earthquakes not less than moment magnitude (Mw) 5.6 from 1960 to 2014, this study used the spatial-temporal scan method to identify earthquake clusters. The results indicate that seismic spatial-temporal clusters can be classified into two types based on duration: persistent clusters and burst clusters. Finally, we analysed the spatial heterogeneity of the two types. The main conclusions are as follows: 1) Ninety percent of the persistent clusters last for 22−38 yr and show a high clustering likelihood; ninety percent of the burst clusters last for 1−1.78 yr and show a high relative risk.
    [Show full text]