Osteology of Simosaurus Gaillardoti and the Relationships of Stem-Group Sauropterygia

Total Page:16

File Type:pdf, Size:1020Kb

Osteology of Simosaurus Gaillardoti and the Relationships of Stem-Group Sauropterygia I NOTICE: Return or renew all Library Materials! The Minimum Fee tor each Lost Book is $50.00. The person charging this material is responsible for its return to the library from which it was withdrawn on or before the Latest Date stamped below. Thett, mutilation, and ot underlining books are reasons for discipli- nary action and result in may dismissal from the University. To renew call Telephone Center, 333-8400 UNIVERSITY OF ILLINOIS LIBRARY AT URBANA-CHAMPAIGN novo saw LI6I—O-I096 ILLINOIS LI Y ST JRBAN/\- PAIGN AUG 1 3 tPPR 550-O FlELDlANA Geology NEW SERIES, NO. 28 Osteology of Simosaurus gaillardoti and the Relationships of Stem-Group Sauropterygia Olivier Rieppel December 30, 1994 Publication 1462 PUBLISHED BY FIELD MUSEUM OF NATURAL HISTORY Information for Contributors to Fieldiana and research General: Fieldiana is primarily a journal for Field Museum staff members associates, although manuscripts from nonaffiliated authors may be considered as space permits. of at least of The Journal carries a page charge of $65.00 per printed page or fraction thereof. Payment 50% page which reduces the time. Contributions from staff, research charges qualifies a paper for expedited processing, publication to the full associates, and invited authors will be considered for publication regardless of ability pay page charges, however, of the text title charge is mandatory for nonaffiliated authors of unsolicited manuscripts. Three complete copies (including should be submitted two review which be page and abstract) and of the illustrations (one original copy plus copies may or submitted to reviewers before all materials are machine-copies). No manuscripts will be considered for publication complete and in the hands of the Scientific Editor. of Natural Illinois Manuscripts should be submitted to Scientific Editor, Fieldiana, Field Museum History, Chicago, 60605-2496, USA. 11-inch with wide Text: Manuscripts must be typewritten double-spaced on standard-weight, 8Vfe- by paper margins submit text on 5V4-inch diskette on all four sides. If typed on an IBM-compatible computer using MS-DOS, also Microsoft or (WordPerfect 4.1, 4.2, or 5.0, MultiMate, Displaywrite 2, 3 & 4, Wang PC, Samna, Word, Volkswriter, WordStar programs or ASCII). a Table of a "List of For papers over 100 manuscript pages, authors are requested to submit Contents," Illustrations," an "Abstract" and and a "List of Tables" immediately following title page. In most cases, the text should be preceded by Cited." should conclude with "Acknowledgments" (if any) and "Literature format All measurements should be in the metric system (periods are not used after abbreviated measurements). The that issues of Fieldiana. and style of headings should follow of recent The of For more detailed style information, see The Chicago Manual of Style (13th ed.), published by University Chicago Press, and also recent issues of Fieldiana. are desirable References: In "Literature Cited," book and journal titles should be given in full. Where abbreviations authors should follow Botanico-Periodicum-Huntianum and TL-2 Taxonomic (e.g., in citation of synonymies), consistently Sources the Biosis Data Base Literature by F. A. Stafleu & R. S. Cowan (1976 et seq.) (botanical papers) or Serial for (1983) of botanical authors should follow the "Draft Index of Author published by the BioSciences Information Service. Names Abbreviations, Royal Botanic Gardens, Kew," 1984 edition, or TL-2. References should be typed in the following form: 943 Croat, T. B. 1978. Flora of Barro Colorado Island. Stanford University Press, Stanford, Calif., pp. 1963. of montane and lowland rain forest in Ecuador. Grubb, P. J., J. R. Lloyd, and T D. Pennington. A comparison 51: 567-601. I. The forest structure, physiognomy, and fioristics. Journal of Ecology, D. R. A. Langdon, E. J. M. 1979. Yage among the Siona: Cultural patterns in visions, pp. 63-80. In Browman, L.,and The Netherlands. Schwarz, eds., Spirits, Shamans, and Stars. Mouton Publishers, Hague, of South American Murra, J. 1946. The historic tribes of Ecuador, pp. 785-821. In Steward, J. H., ed., Handbook Smithsonian Indians. Vol. 2, The Andean Civilizations. Bulletin 143, Bureau of American Ethnology, Institution, Washington, D.C. Fieldiana: 6: 1-522. Stolze, R. G. 1981. Ferns and fern allies of Guatemala. Part II. Polypodiaceae. Botany, n.s., must be Illustrations: Illustrations are referred to as "figures" in the text (not as "plates"). Figures accompanied by such as "x are not some indication of scale, normally a reference bar. Statements in figure captions alone, 0.8," acceptable. of Fieldiana for details of Captions should be typed double-spaced and consecutively. See recent issues style. All illustrations should be marked on the reverse with author's name, figure number(s), and "top." x 28 and not exceed 1VA x 16V* Figures as submitted should, whenever practicable, be SY2 x 11 inches (22 cm), may to be obtained in the work. This inches (30 x 42 cm). Illustrations should be mounted on boards in the arrangement printed as and ink be original set should be suitable for transmission to the printer follows: Pen drawings may originals (preferred) and must be or photostats; shaded drawings must be originals, but within the size limitation; photostats high-quality, glossy, to author unless otherwise black-and-white prints. Original illustrations will be returned the corresponding upon publication specified. or color must make Authors who wish to publish figures that require costly special paper reproduction prior arrangements with the Scientific Editor. author will receive a Page Proofs: Fieldiana employs a two-step correction system. The corresponding normally copy and answered. one set of of the edited manuscript on which deletions, additions, and changes can be made queries Only of in page proofs will be sent. All desired corrections of type must be made on the single set page proofs. Changes page in can be made if the proofs (as opposed to corrections) are very expensive. Author-generated changes page proofs only author agrees in advance to pay for them. THIS PUBLICATION IS PRINTED ON ACID-FREE PAPER. fiKfc06YUBRABY FIELDIANA Geology NEW SERIES, NO. 28 Osteology of Simosaurus gaillardoti and the Relationships of Stem-Group Sauropterygia Olivier Rieppel Department of Geology Field Museum of Natural History Roosevelt Road at Lake Shore Drive Chicago, Illinois 60605-2496 U.S.A. Accepted July 19, 1994 Published December 30, 1994 Publication 1462 PUBLISHED BY FIELD MUSEUM OF NATURAL HISTORY © 1 994 Field Museum of Natural History Library of Congress Catalog Card Number: 94-61792 ISSN 0096-2651 PRINTED IN THE UNITED STATES OF AMERICA Table of Contents 11. Lower jaw of Simosaurus gaillardoti ... 15 12. Posterior part of the lower jaw of Notho- saurus mirabilis 16 Abstract 1 13. Cervical vertebra of Simosaurus gaillar- zusammenfassung 1 doti 17 Introduction 1 14. Dorsal vertebrae of Simosaurus gaillar- Systematic Paleontology 4 doti 18 slmosaurus gaillardoti h.v. meyer, 1 842 . 4 15. Sacral vertebrae of Simosaurus gaillar- Morphological Description 10 doti 18 Skull 10 16. Dorsal centrum of Simosaurus gaillar- Lower Jaw 14 doti and Nothosaurus 19 Postcranial Skeleton 16 17. Sacral vertebrae of Simosaurus gaillar- Vertebral Column 16 doti 19 Ribs 20 18. Cervical ribs of Simosaurus gaillardoti ... 20 Pectoral Girdle 22 19. Cervical ribs of Nothosaurus 20 Pelvic Girdle 23 20. Ribs of Simosaurus gaillardoti 21 Forelimb 25 21. Sacral ribs of Simosaurus gaillardoti ... 22 Hindlimb 27 22. Caudal ribs of Simosaurus gaillardoti . 22 Functional Morphological Correlates 23. Gastral rib of Nothosaurus 23 in the Skeleton of Simosaurus gail- 24. Pectoral girdle of Simosaurus gaillar- LARDOTl 30 doti 23 Phylogenetic Analysis 36 25. Dermal pectoral girdle of Simosaurus Definition of Characters 37 gaillardoti 24 Summary and Conclusions 73 26. Endochondral pectoral girdle of Simo- Acknowledgments 76 saurus gaillardoti 25 Literature Cited 76 27. Left ilium of Simosaurus gaillardoti .... 26 Appendix I 81 28. Pelvic girdle of Simosaurus gaillardoti ... 27 Appendix II 82 29. Pubis of Nothosaurus sp 28 30. Forelimb of Simosaurus gaillardoti .... 29 31. Intermedium and astragalus of Simo- saurus gaillardoti 31 32. Metacarpal series of Simosaurus gaillar- List of Illustrations doti 31 33. Hindlimb of Simosaurus gaillardoti .... 32 34. Astragalus of Simosaurus gaillardoti ... 33 1. Competing hypotheses of sauropterygian 35. Metatarsal series of Simosaurus gaillar- interrelationships 3 doti 33 2. Distribution of outcrops yielding Simo- 36. Reconstruction of the skeleton of Simo- saurus gaillardoti in the upper Muschel- saurus gaillardoti 34 kalk basin 6 37. Dual jaw adductor system of Simosau- 3. Mandibular symphysis of Simosaurus rus 35 gaillardoti, Nothosaurus mougeoti, and 38. Skull of Pistosaurus longaevus 38 Nothosaurus mirabilis 7 39. Incomplete skull of Cymatosaurus 40 4. Holotype of Simosaurus guilielmi 8 40. Parietal skull table of cf. Cymatosaurus . 40 5. Sutures identified on holotype of Simo- 41. Skull fragment of Placodus gigas 41 saurus guilielmi 9 42. Skull of Nothosaurus mirabilis and Pla- 6. Skull of holotype of Simosaurus guiliel- codus gigas 43 mi var. angusticeps 10 43. Skull of Placodus gigas 45 7. Jaw fragment of cf. Lamprosauroides 44. Mandibular symphysis of Lariosaurus. goepperti 10 Cymatosaurus, and Nothosaurus 46 8. Skull of Simosaurus gaillardoti 11 45. Lower jaw of Placodus gigas 47 9. Skull of Simosaurus gaillardoti in dorsal 46. Mandibular symphysis of Nothosaurus view 12 mirabilis 47 10. Skull of Simosaurus gaillardoti in ven- 47. Dorsal vertebra of a placodont (?Cy- tral view 13 amodus) 49 in 48. Dorsal centrum of Simosaurus, Notho- List of Tables saurus, and Placodus 50 49. Dorsal centrum of a pachypleurosaur and of Pistosaurus 50 1 . Measurements of coracoids of Simosau- 50. Ilium of Nothosaurus and Placodus gi- rus gaillardoti 25 gas 50 2. Measurements of pubis and ischium of 51. Pelvis of Nothosaurus "raabr 50 Simosaurus gaillardoti 30 52. Pectoral girdle of Placodus gigas 51 3. Measurements of the humerus of Simo- 53. Clavicle of Nothosaurus 52 saurus gaillardoti 30 54.
Recommended publications
  • A New Plesiosaur from the Lower Jurassic of Portugal and the Early Radiation of Plesiosauroidea
    A new plesiosaur from the Lower Jurassic of Portugal and the early radiation of Plesiosauroidea EDUARDO PUÉRTOLAS-PASCUAL, MIGUEL MARX, OCTÁVIO MATEUS, ANDRÉ SALEIRO, ALEXANDRA E. FERNANDES, JOÃO MARINHEIRO, CARLA TOMÁS, and SIMÃO MATEUS Puértolas-Pascual, E., Marx, M., Mateus, O., Saleiro, A., Fernandes, A.E., Marinheiro, J., Tomás, C. and Mateus, S. 2021. A new plesiosaur from the Lower Jurassic of Portugal and the early radiation of Plesiosauroidea. Acta Palaeontologica Polonica 66 (2): 369–388. A new plesiosaur partial skeleton, comprising most of the trunk and including axial, limb, and girdle bones, was collected in the lower Sinemurian (Coimbra Formation) of Praia da Concha, near São Pedro de Moel in central west Portugal. The specimen represents a new genus and species, Plesiopharos moelensis gen. et sp. nov. Phylogenetic analysis places this taxon at the base of Plesiosauroidea. Its position is based on this exclusive combination of characters: presence of a straight preaxial margin of the radius; transverse processes of mid-dorsal vertebrae horizontally oriented; ilium with sub-circular cross section of the shaft and subequal anteroposterior expansion of the dorsal blade; straight proximal end of the humerus; and ventral surface of the humerus with an anteroposteriorly long shallow groove between the epipodial facets. In addition, the new taxon has the following autapomorphies: iliac blade with less expanded, rounded and convex anterior flank; highly developed ischial facet of the ilium; apex of the neural spine of the first pectoral vertebra inclined posterodorsally with a small rounded tip. This taxon represents the most complete and the oldest plesiosaur species in the Iberian Peninsula.
    [Show full text]
  • Mesozoic Marine Reptile Palaeobiogeography in Response to Drifting Plates
    ÔØ ÅÒÙ×Ö ÔØ Mesozoic marine reptile palaeobiogeography in response to drifting plates N. Bardet, J. Falconnet, V. Fischer, A. Houssaye, S. Jouve, X. Pereda Suberbiola, A. P´erez-Garc´ıa, J.-C. Rage, P. Vincent PII: S1342-937X(14)00183-X DOI: doi: 10.1016/j.gr.2014.05.005 Reference: GR 1267 To appear in: Gondwana Research Received date: 19 November 2013 Revised date: 6 May 2014 Accepted date: 14 May 2014 Please cite this article as: Bardet, N., Falconnet, J., Fischer, V., Houssaye, A., Jouve, S., Pereda Suberbiola, X., P´erez-Garc´ıa, A., Rage, J.-C., Vincent, P., Mesozoic marine reptile palaeobiogeography in response to drifting plates, Gondwana Research (2014), doi: 10.1016/j.gr.2014.05.005 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT Mesozoic marine reptile palaeobiogeography in response to drifting plates To Alfred Wegener (1880-1930) Bardet N.a*, Falconnet J. a, Fischer V.b, Houssaye A.c, Jouve S.d, Pereda Suberbiola X.e, Pérez-García A.f, Rage J.-C.a and Vincent P.a,g a Sorbonne Universités CR2P, CNRS-MNHN-UPMC, Département Histoire de la Terre, Muséum National d’Histoire Naturelle, CP 38, 57 rue Cuvier,
    [Show full text]
  • Sauropterygia I Placodontia, Pachypleurosauria, Nothosauroidea, Pistosauroidea
    Teil 12A / Part 12A Sauropterygia I Placodontia, Pachypleurosauria, Nothosauroidea, Pistosauroidea by O. RlEPPEL With 80 Figures Verlag Dr. Friedrich Pfeil • Munchen 2000 ISBN 3-931516-78-4 Contents Foreword (P. WELLNHOFER) V Acknowledgements VI Institutional Acronyms VII Figure Abbreviations VIII Introduction: History of the Concept of Sauropterygia 1 Phylogenetic Relationships of Stem-Group Sauropterygia 4 Stratigraphic and Geographic Distribution of Stem-Group Sauropterygia 6 General Skeletal Anatomy of Stem-Group Sauropterygia 10 Systematic Review 16 Superorder Sauropterygia OWEN, 1860 16 Order Placodontia COPE, 1871 16 Suborder Placodontoidea COPE, 1871 16 Family Paraplacodontidae PEYER & KUHN-SCHNYDER, 1955 17 Anatomy of Paraplacodontidae 17 Genus Paraplacodus PEYER, 1931 18 Family Placodontidae COPE, 1871 19 Anatomy of Placodontidae 19 Genus Placodus AGASSIZ, 1933 21 Suborder Cyamodontoidea NOPCSA, 1923 23 Anatomy of Cyamodontoidea 23 Interrelationships of Cyamodontoidea 25 Superfamily Cyamodontida NOPCSA, 1923 25 Family Henodontidae F. v. HUENE, 1948 26 Genus Henodus F. v. HUENE, 1936 26 Family Cyamodontidae NOPCSA, 1923 27 Genus Cyamodus MEYER, 1863 27 Superfamily Placochelyida ROMER, 1956 32 Family Macroplacidae nov. fam 32 Genus Macroplacus SCHUBERT-KLEMPNAUER, 1975 32 Family Protenodontosauridae nov. fam 33 Genus Protenodontosaurus PINNA, 1990 33 Family Placochelyidae ROMER, 1956 34 Genus Placochelys JAEKEL, 1902 34 Genus Psephoderma MEYER, 1858 36 Genus Psephosaurus E. FRAAS, 1896 38 Cyamodontoidea indet 39 IX Order Eosauropterygia
    [Show full text]
  • Tesis Doctoral 2018
    TESIS DOCTORAL 2018 HISTORIA EVOLUTIVA DE SIMOSAURIDAE (SAUROPTERYGIA). CONTEXTO SISTEMÁTICO Y BIOGEOGRÁFICO DE LOS REPTILES MARINOS DEL TRIÁSICO DE LA PENÍNSULA IBÉRICA CARLOS DE MIGUEL CHAVES PROGRAMA DE DOCTORADO EN CIENCIAS FRANCISCO ORTEGA COLOMA ADÁN PÉREZ GARCÍA RESUMEN Los sauropterigios fueron un exitoso grupo de reptiles marinos que vivió durante el Mesozoico, apareciendo en el Triásico Inferior y desapareciendo a finales del Cretácico Superior. Este grupo alcanzó su máxima disparidad conocida durante el Triásico Medio e inicios del Triásico Superior, diversificándose en numerosos grupos con distintos modos de vida y adaptaciones tróficas. El registro fósil de este grupo durante el Triásico es bien conocido a nivel global, habiéndose hallado abundantes restos en Norteamérica, Europa, el norte de África, Oriente Próximo y China. A pesar del relativamente abundante registro de sauropterigios triásicos ibéricos, los restos encontrados son, por lo general, elementos aislados y poco informativos a nivel sistemático en comparación con los de otros países europeos como Alemania, Francia o Italia. En la presente tesis doctoral se realiza una puesta al día sobre el registro ibérico triásico de Sauropterygia, con especial énfasis en el clado Simosauridae, cuyo registro ibérico permanecía hasta ahora inédito. Además de la revisión de ejemplares de sauropterigios previamente conocidos, se estudian numerosos ejemplares inéditos. De esta manera, se evalúan hipótesis previas sobre la diversidad peninsular de este clado y se reconocen tanto formas definidas en otras regiones europeas y de Oriente Próximo, pero hasta ahora no identificadas en la península ibérica, como nuevos taxones. La definición de nuevas formas y el incremento de la información sobre otras previamente conocidas permiten la propuesta de hipótesis filogenéticas y la redefinición de varios taxones.
    [Show full text]
  • Abstracts (Pdf)
    63RD SYMPOSIUM FOR VERTEBRATE PALAEONTOLOGY AND COMPARATIVE ANATOMY & 24TH SYMPOSIUM OF PALAEONTOLOGICAL PREPARATION AND CONSERVATION WITH THE GEOLOGICAL CURATORS’ GROUP 1 CONTENTS Meeting Schedule 4 Abstracts SPPC talks 10 SVPCA talks 14 SVPCA posters 78 Delegate List 112 2 ACKNOWLEDGEMENTS The organisers would like to thank the Palaeontological Association for their support of this meeting, and also for their continued management of the Jones Fenleigh Memorial Fund. A huge amount of the work putting the meeting together was co-ordinated by Mark Young, including editing this Abstract volume, handling abstract submissions and overall organisation. We also thank Stu Pond and Jessica Lawrence Wujek for designing this year's SVPCA logo. Liz Martin-Silverstone and Jessica Lawrence Wujek co-ordinated most of the behind-the- scenes management for this meeting while Stu Pond designed this year’s Conference circulars. Our logo represents a local fossil, Polacanthus from the Isle of Wight (based on a fossil collected by Martin Simpson and Lyn Spearpoint). Finally, we thank Richard Forrest for working on the website and providing general information and support. This year’s meetings are supported by the Hampshire Cultural Trust, Dinosaur Isle, Geological Curators Group, Siri Scientific Press, Palaeocast and Frontiers in Earth Science. HOST COMMITTEE Ocean and Earth Science, University of Southampton, National Oceanography Centre Gareth Dyke John Marshall Darren Naish Mark Young Jessica Lawrence Wujek Liz Martin-Silverstone Stu Pond Aubrey Roberts James Hansford Hampshire Cultural Trust Christine Taylor Dinosaur Isle Gary Blackwell Geological Curator's Group Kathryn Riddington 3 MEETING SCHEDULE Monday 31st August 9:00-9:45 SPPC/GCG registration at NOC Security desk (4th floor) Session — SPPC Chair — Mark Young 10:00-10:20 Mark Graham Fossils, Footprints & Fakes 10:20-10:40 Emma Bernard A brief history of the best collection of fossil fish in the world – probably… 10:40-11:00 Jeff Liston et al.
    [Show full text]
  • Lab 5: Mollusks
    Geos 223 Introductory Paleontology Spring 2006 Lab 5: Mollusks Name: Section: AIMS: This lab will introduce you to the eutrochozoan protostome phylum Mollusca. You will become familiar with the basic anatomy of the three mollusk groups which are most abundant in the fossil record: gastropods, bivalves, and cephalopods. Emphasis is placed on the various modes of life adopted by different members of each group, and how the form of the organism has been evolutionarily modified to suit each mode. You will also use a computer database to identify “mystery fossils”. By the end of this lab, you should have a good knowledge of the anatomy of the three most diverse groups of mollusks, an appreciation for how organismal form reflects function, and an understanding of how innovations in ecology and anatomy resulted in the evolutionary radiation of each group. INTRODUCTION: Mollusks are unsegmented protostomes with a trochophore larval stage during early development, and are one of the most diverse metazoan phyla. The basic mollusk body plan consists of a muscular foot, a visceral mass (containing the digestive tract and associated organs), a mantle cavity containing gills, a radula for feeding, and a calcareous shell protecting the visceral mass. The shell has a high preservation potential, and mollusks are common in the fossil record. There may be as many as ten classes of mollusks (depending on which text book you read). Each class has modified the basic body plan to some degree, allowing the group to radiate into different ecological niches. We will here focus on just three classes, which are common as fossils and exemplify the evolutionary diversification of mollusks.
    [Show full text]
  • A Cladistic Analysis and Taxonomic Revision of the Plesiosauria (Reptilia: Sauropterygia) F
    Marshall University Marshall Digital Scholar Biological Sciences Faculty Research Biological Sciences 12-2001 A Cladistic Analysis and Taxonomic Revision of the Plesiosauria (Reptilia: Sauropterygia) F. Robin O’Keefe Marshall University, [email protected] Follow this and additional works at: http://mds.marshall.edu/bio_sciences_faculty Part of the Aquaculture and Fisheries Commons, and the Other Animal Sciences Commons Recommended Citation Frank Robin O’Keefe (2001). A cladistic analysis and taxonomic revision of the Plesiosauria (Reptilia: Sauropterygia). ). Acta Zoologica Fennica 213: 1-63. This Article is brought to you for free and open access by the Biological Sciences at Marshall Digital Scholar. It has been accepted for inclusion in Biological Sciences Faculty Research by an authorized administrator of Marshall Digital Scholar. For more information, please contact [email protected], [email protected]. Acta Zool. Fennica 213: 1–63 ISBN 951-9481-58-3 ISSN 0001-7299 Helsinki 11 December 2001 © Finnish Zoological and Botanical Publishing Board 2001 A cladistic analysis and taxonomic revision of the Plesiosauria (Reptilia: Sauropterygia) Frank Robin O’Keefe Department of Anatomy, New York College of Osteopathic Medicine, Old Westbury, New York 11568, U.S.A Received 13 February 2001, accepted 17 September 2001 O’Keefe F. R. 2001: A cladistic analysis and taxonomic revision of the Plesio- sauria (Reptilia: Sauropterygia). — Acta Zool. Fennica 213: 1–63. The Plesiosauria (Reptilia: Sauropterygia) is a group of Mesozoic marine reptiles known from abundant material, with specimens described from all continents. The group originated very near the Triassic–Jurassic boundary and persisted to the end- Cretaceous mass extinction. This study describes the results of a specimen-based cladistic study of the Plesiosauria, based on examination of 34 taxa scored for 166 morphological characters.
    [Show full text]
  • Revision of the Genus Styxosaurus and Relationships of the Late Cretaceous Elasmosaurids (Sauropterygia: Plesiosauria) of the Western Interior Seaway
    Marshall University Marshall Digital Scholar Theses, Dissertations and Capstones 2020 Revision of the Genus Styxosaurus and Relationships of the Late Cretaceous Elasmosaurids (Sauropterygia: Plesiosauria) of the Western Interior Seaway Elliott Armour Smith Follow this and additional works at: https://mds.marshall.edu/etd Part of the Biology Commons, Paleobiology Commons, and the Paleontology Commons REVISION OF THE GENUS STYXOSAURUS AND RELATIONSHIPS OF THE LATE CRETACEOUS ELASMOSAURIDS (SAUROPTERYGIA: PLESIOSAURIA) OF THE WESTERN INTERIOR SEAWAY A thesis submitted to the Graduate College of Marshall University In partial fulfillment of the requirements for the degree of Master of Science In Biological Sciences by Elliott Armour Smith Approved by Dr. F. Robin O’Keefe, Committee Chairperson Dr. Habiba Chirchir, Committee Member Dr. Herman Mays, Committee Member Marshall University May 2020 ii © 2020 Elliott Armour Smith ALL RIGHTS RESERVED iii DEDICATION Dedicated to my loving parents for supporting me on my journey as a scientist. iv ACKNOWLEDGEMENTS I would like to thank Dr. Robin O’Keefe for serving as my advisor, and for his constant mentorship and invaluable contributions to this manuscript. I would like to thank Dr. Herman Mays and Dr. Habiba Chirchir for serving on my committee and providing immensely valuable feedback on this manuscript and the ideas within. Thanks to the Marshall University Department of Biological Sciences for travel support. I would like to thank curators Ross Secord (University of Nebraska), Chris Beard (University of Kansas), Tylor Lyson (Denver Museum of Nature and Science), and Darrin Paginac (South Dakota School of Mines and Technology) for granting access to fossil specimens. Thanks to Joel Nielsen (University of Nebraska State Museum), Megan Sims (University of Kansas), Kristen MacKenzie (Denver Museum of Nature and Science) for facilitating access to fossil specimens.
    [Show full text]
  • Sauropterygia from the Middle Triassic of Makhtesh Ramon, Negev, Israel
    cttWOOfUBRMtt J Qex FIELDIANA Geology NEW SERIES, NO. 40 Sauropterygia from the Middle Triassic of Makhtesh Ramon, Negev, Israel Olivier Rieppel Jean-Michel Mazin Eitan Tchernov February 26, 1999 ^lblication 1499 § PUBLISHED BY FIELD MUSEUM OF NATURAL HISTORY Si Information for Contributors to Fieldiana General: Fieldiana is primarily a journal for Field Museum staff members and research associates, although manuscripts from nonaffiliated authors may be considered as space permits. The Journal carries a page charge of $65.(X) per printed page or fraction thereof. Payment of at least 50% of page charges qualifies a paper for expedited processing, which reduces the publication time. Contributions from staff, research associates, and invited authors will be considered for publication regardless of ability to pay page charges, however, the full charge is mandatory for nonaffiliated authors of unsolicited manuscripts. Three complete copies of the text (including title page and abstract) and of the illustrations should be submitted (one original copy plus two review copies which may be machine copies). No manuscripts will be considered for publication or submitted to reviewers before all materials are complete and in the hands of the Scientific Editor. Manuscripts should be submitted to Scientific Editor, Fieldiana, Field Museum of Natural History, Chicago, Illinois 60605-2496, U.S.A. Text: Manuscripts must be typewritten double-spaced on standard-weight, SVi- by 11 -inch paper with wide margins on all four sides. If typed on an IBM-compatible computer using MS-DOS, also submit text on 5V4-inch diskette (WordPerfect 4.1, 4.2, or 5.0, MultiMate, Displaywrite 2, 3 & 4, Wang PC, Samna.
    [Show full text]
  • Ammonite Diversity on the Jurassic
    Ammonite Diversity Parkinsonia (pictured below) is perhaps the classic ammonite that you think of when imagining an Ammonite from the Jurassic Coast. However, there are many different types of ammonite so give you an idea of the variety, we have picked some of our Jurassic Coast favourites. Ammonites have a spiral shell divided into chambers. It could control its buoyancy in the water by filling the chambers with gas and water. The soft body of the ammonite only took up the last half whorl of the shell. Ammonites moved by sucking water through the mouth, pumping it over the gills, then squirting it out again. This propelled the animal through the water – backwards! Only the shells of ammonites have ever been found as fossils. How ammonites help us tell the time The ammonite species pictured right is one of the ‘zonal’ ammonites which help up work out the relative age of rocks. Ammonites evolved rapidly through time so if you find the same ammonite in two different locations, the rocks that they are found in must be the same age (unless the ammonite has been eroded and moved by rivers etc). So this fossil, Rasenia, gets its name from Market Rasen in Lincolnshire but this specimen was actually found 260 miles away near Ringstead, east of Weymouth. The rocks at both places are exactly the same age, dating back about 155 million years. Mariella rasenia Zonal fossils also help to tell the relative age of other fossils, such as the large marine reptiles. This is really important because it allows us to understand how they evolved through time.
    [Show full text]
  • Abbreviation Kiel S. 2005, New and Little Known Gastropods from the Albian of the Mahajanga Basin, Northwestern Madagaskar
    1 Reference (Explanations see mollusca-database.eu) Abbreviation Kiel S. 2005, New and little known gastropods from the Albian of the Mahajanga Basin, Northwestern Madagaskar. AF01 http://www.geowiss.uni-hamburg.de/i-geolo/Palaeontologie/ForschungImadagaskar.htm (11.03.2007, abstract) Bandel K. 2003, Cretaceous volutid Neogastropoda from the Western Desert of Egypt and their place within the noegastropoda AF02 (Mollusca). Mitt. Geol.-Paläont. Inst. Univ. Hamburg, Heft 87, p 73-98, 49 figs., Hamburg (abstract). www.geowiss.uni-hamburg.de/i-geolo/Palaeontologie/Forschung/publications.htm (29.10.2007) Kiel S. & Bandel K. 2003, New taxonomic data for the gastropod fauna of the Uzamba Formation (Santonian-Campanian, South AF03 Africa) based on newly collected material. Cretaceous research 24, p. 449-475, 10 figs., Elsevier (abstract). www.geowiss.uni-hamburg.de/i-geolo/Palaeontologie/Forschung/publications.htm (29.10.2007) Emberton K.C. 2002, Owengriffithsius , a new genus of cyclophorid land snails endemic to northern Madagascar. The Veliger 45 (3) : AF04 203-217. http://www.theveliger.org/index.html Emberton K.C. 2002, Ankoravaratra , a new genus of landsnails endemic to northern Madagascar (Cyclophoroidea: Maizaniidae?). AF05 The Veliger 45 (4) : 278-289. http://www.theveliger.org/volume45(4).html Blaison & Bourquin 1966, Révision des "Collotia sensu lato": un nouveau sous-genre "Tintanticeras". Ann. sci. univ. Besancon, 3ème AF06 série, geologie. fasc.2 :69-77 (Abstract). www.fossile.org/pages-web/bibliographie_consacree_au_ammon.htp (20.7.2005) Bensalah M., Adaci M., Mahboubi M. & Kazi-Tani O., 2005, Les sediments continentaux d'age tertiaire dans les Hautes Plaines AF07 Oranaises et le Tell Tlemcenien (Algerie occidentale).
    [Show full text]
  • Stratigraphy and Ammonoids from the Middle Triassic Botneheia Formation (Daonella Shales) of Spitsbergen
    Mitt. Geol.-Paläont. Inst. S. 27-54 Univ. Hamburg Heft 54 Hamburg, Dezember 1983 Stratigraphy and ammonoids from the Middle Triassic Botneheia Formation (Daonella Shales) of Spitsbergen WOLFGANG WEITSCHAT & ULRICH LEHMANN*) With plates 1-6, 2 tables and 9 text-figures Contents Abstract 27 Zusammenfassung 28 I. Introduction 28 II. Stratigraphy 28 a) Previous work 28 b) Descriptionof thesections 30 c) Age and correlation 33 III. Systematic Paleontology 36 IV. References 53 Abstract Sections of the Middle Triassic Daonella Shales (Botneheia Formation) of the Is- fjorden region of Spitsbergen are measured and their fossil contents of ammonoids are described and stratigraphically analyzed. A revised biostratigraphical Interpretation of this sequence is given. The Daonella Shales yield f ossilif erous nodule layers with dif f er- ent ammonoid f aunas which permit a threef old subdivision into the f ollowing ammonoid zonation: T T ^;„;^„ zone of Indigirites tozeri Lower Ladinian zpne pf Tsvetkovites vaHus Upper Anisian zone of Frechites laqueatus A correlation of this zonal sequence with the Middle Triassic beds of Taymyr Penin- sula, NE USSR, and NE British Columbia is discussed. Seven genera with eight species are described in detail. Tsvetkovites varius n. sp. and Indigirites tozeri n. sp. are new to science. A special attention is given to the ex- tremely high infraspecific Variation of the ammonoid faunas investigated. *) Address of authors: Dr. W. WEITSCHAT and Prof. Dr. U. LEHMANN, Geologisch-Paläon­ tologisches Institut und Museum der Universität Hamburg, Bundesstr. 55, D-2000 Hamburg 13, Germany (F.R.) 27 Zusammenfassung Profile der Mitteltriassischen Daonellen-Schiefer der Eisfjord-Region Spitzber­ gens wurden vermessen und die in ihnen enthaltenen Ammoniten beschrieben und stra- tigraphisch ausgewertet.
    [Show full text]