Hydrol. Earth Syst. Sci., 17, 225–251, 2013 www.hydrol-earth-syst-sci.net/17/225/2013/ Hydrology and doi:10.5194/hess-17-225-2013 Earth System © Author(s) 2013. CC Attribution 3.0 License. Sciences Thermodynamics, maximum power, and the dynamics of preferential river flow structures at the continental scale A. Kleidon1, E. Zehe2, U. Ehret2, and U. Scherer2 1Max-Planck Institute for Biogeochemistry, Hans-Knoll-Str.¨ 10, 07745 Jena, Germany 2Institute of Water Resources and River Basin Management, Karlsruhe Institute of Technology – KIT, Karlsruhe, Germany Correspondence to: A. Kleidon (
[email protected]) Received: 14 May 2012 – Published in Hydrol. Earth Syst. Sci. Discuss.: 11 June 2012 Revised: 14 December 2012 – Accepted: 22 December 2012 – Published: 22 January 2013 Abstract. The organization of drainage basins shows some not randomly diffuse through the soil to the ocean, but rather reproducible phenomena, as exemplified by self-similar frac- collects in channels that are organized in tree-like structures tal river network structures and typical scaling laws, and along topographic gradients. This organization of surface these have been related to energetic optimization principles, runoff into tree-like structures of river networks is not a pe- such as minimization of stream power, minimum energy ex- culiar exception, but is persistent and can generally be found penditure or maximum “access”. Here we describe the or- in many different regions of the Earth. Hence, it would seem ganization and dynamics of drainage systems using thermo- that the evolution and maintenance of these structures of river dynamics, focusing on the generation, dissipation and trans- networks is a reproducible phenomenon that would be the ex- fer of free energy associated with river flow and sediment pected outcome of how natural systems organize their flows.