Thermal Stress Affects Zooxanthellae Density and Chlorophyll-A Concentration of the Solitary Mushroom Coral, Heliofungia Actiniformis

Total Page:16

File Type:pdf, Size:1020Kb

Thermal Stress Affects Zooxanthellae Density and Chlorophyll-A Concentration of the Solitary Mushroom Coral, Heliofungia Actiniformis Philippine Journal of Science 143 (1): 35-42, June 2014 ISSN 0031 - 7683 Date Received: 30 September 2013 Thermal Stress Affects Zooxanthellae Density and Chlorophyll-a Concentration of the Solitary Mushroom Coral, Heliofungia actiniformis Senona A. Cesar1*,3, Homer Hermes Y. De Dios2, 3, Naomi B. Amoin3 and Danilo T. Dy3 1Visayas State University, Visca, Baybay City, Leyte 2Southern Leyte State University, Bontoc, Southern Leyte 3University of San Carlos, Cebu City Corals lose their pigments or cell symbionts with prolonged exposure to temperatures higher by 1°C than the reef ambient temperature, leading to bleaching. Heliofungia actiniformis, a top traded coral was subjected to lower (24-26°C), ambient (27-29°C), and higher (30-32°C) thermal conditions to determine the resilience of its zooxanthellae to thermal stress. The experiment followed a complete randomized design with three different temperatures and eight replicates per treatment level. Evaluations were done in terms of density of expelled zooxanthellae, biomass of expelled chlorophyll-a, and using a coral color reference card. Thermal stress had a significant effect on the density (F2,21=3.691; p=0.042) and chlorophyll-a biomass (F2,21=10.711; p=0.001) of expelled zooxanthellae of H. actiniformis. Density and chlorophyll-a biomass of expelled zooxanthellae in the 30-32°C treatment doubled and tripled, respectively, compared to ambient conditions. However, these were still lower compared to published values for branching corals. The capability of H. actiniformis for downward migration to seek refuge, and its thick gastrodermis that harbors the zooxanthellae are possible adaptive mechanisms to survive the changing thermal conditions of tropical reefs. Key Words: bleaching, color index card, live coral aquarium trade, Philippines, temperature INTRODUCTION importance being among the top five traded aquarium species in Indonesia (Knittweis et al. 2009; Knittweis & The ‘long tentacle mushroom coral’, Heliofungia Wolff 2010), information on its thermal stress response actiniformis is a large-polyped discoidal coral whose is still scanty. While optimal coral reef growth occurs tentacles are extended even during day time (Hoeksema between 25°S and 25°N corresponding at a 18°C and 30°C 1989; Gittenberger et al. 2011). It is a rich host to 23 temperature range (Hoegh-Guldberg 1999), and persists in associated fauna including 14 shrimp species (Hoeksema the Persian Gulf where temperature fluctuates from 13°C et al. 2012). Together with other free-living fungiid corals, in winter to 38°C in summer (Wells & Hannah 1992), they act as nuclei for the formation of new patch reefs temperature thresholds are species-specific (Berkelmans (Chadwick-Furman et al. 2000). Its high recruitment & van Oppen 2006). Studies of thermal tolerance in corals rate attributed to both sexual and asexual reproduction are very relevant since 70% of bleaching, the expulsion modes could be among the mechanisms that sustains of symbiotic zooxanthellae in the host coral or the loss of the Heliofungia fishery albeit its high exploitation rate photosynthetic pigment from the zooxanthellae following in the live coral aquarium trade in Indonesia. Despite its a dysfunction of the alga-coral symbiotic relationship, *Corresponding author: [email protected] point to temperature as the primary factor (Buddemeier 35 Philippine Journal of Science Cesar et al: Thermal Stress Affects Zooxanthellae Density Vol. 143 No. 1, June 2014 and Chlorophyll-a Concentration of H.actiniformis & Fautin 1993; Goreau & Hayes 1994; Weis 2008). MATERIALS AND METHODS However, maintaining the right amount of zooxanthellae is necessary to support the nutritional exchange of the Free-living solitary mushroom corals Heliofungia host-symbiont relationship (Yellowless 2008; Weis 2008), actiniformis, were collected (ca. 10m depth) using and the algae-derived coloration is sought in the live coral SCUBA in the fringing reef off eastern Mactan Island aquarium industry (Olivotto et al. 2011), of which the of Cebu, Central Philippines. The 24 individuals of green colormorph demands a higher price. H. actiniformis which included both brown and green colormorphs (29%) were submerged in seawater while Anomalous fluctuations of sea surface temperature in transit to the laboratory. Acclimatization was done for (SST) had been coupled with bleaching events (Hoegh- eight hours with individual corals in the plastic containers Guldberg 1999; Hoeksema & Matthews 2010; Weis 2008; with seawater and provided with constant moderate Hoeksema et al. 2012). While some reefs were able to aeration from an aquarium pump. recover, catastrophic irreversible damage is attributed to recurrent massive bleaching events, the most potent threat The experiment followed a complete randomized design to maintenance of biodiversity in the marine tropical (CRD) with three different temperatures as treatment seas (Goreau & Hayes 1994; Baker et al. 2008). In situ levels, and eight replicates per treatment level. The 27- observations (Berkelmans & van Oppen 2006; Mattan- 29°C temperature was the control based on the ambient Moorgawa et al. 2012) and laboratory thermal induced temperature of the collection site while 24-26°C and 30- bleachings (Jones 1997; Bhagooli & Hidaka 2004; Mieog 32°C represented the lower and upper thermal stressors, et al. 2009) are employed to screen resilient corals, respectively. The experimental unit consisted of one that could withstand the predicted change in seawater polyp of H. actiniformis, immersed in 4L plastic container temperature. H. actiniformis was among the bleach-resistant filled with filtered seawater from the collection reef (33-34 ppt). The corals used had a mean surface area of corals in Indonesian reefs where 2°C higher than ambient 2 temperature occurred (Hoeksema 1991; Loya et al. 2009) 109.87±8.06 cm (as measured using Image J software). and also in Koh Tao, Gulf of Thailand (Hoeksema & The two temperature levels (27-29°C, and 30-32°C) were Matthews 2011). While abrupt exposure but in shorter maintained using Odysea® thermostat heaters while the duration may not be the mechanism in the field (Bhagooli 24-26°C level was maintained manually using icewater & Hidaka 2004), since reefs bleached at least one month bags. The experiment was done in an indoor laboratory exposure to an elevated temperature of at least 1°C (Donner setting with constant lighting from two ceiling-mounted et al. 2005), such a scenario is prevalent in the live coral white flourescent lamps, 40 watts each. aquarium industry. Thermal studies are especially important The density of zooxanthellae and biomass of chl-a in the supply chain for internationally traded corals of expelled by mushroom corals were measured after 24 h which 90% are harvested from the wild (Borneman exposure to the thermal treatments. After exposure, 15 mL 2001). Once subjected to logistic processings, 80% is lost, of seawater samples from each of the 24 plastic containers starting with collections from a tropical reef to its final were kept in labeled amber bottles with a drop of Lugol’s destination in an aquarium of a hobbyist who probably live solution as preservative. The zooxanthellae of each polyp in a temperate country (Hoeksema 1989; Olivotto 2011). were counted (5 replicate counts) using a Neubauer The coral aquarium fishery, when regulated, may have a haemacytometer under 400x magnification. Density was lesser effect to coral reef degradation (Trautwein 2001), expressed as number of zooxanthellae cm-2 with the area of but the percentage of loss can be significantly reduced the polyp being factored in (Equation 1). For chlorophyll-a when information on optimal temperature along with other content as proxy to the biomass of the photosynthetic factors, are provided during shipment or freight (Borneman pigment (referred as biomass hereafter), 1L water sample 2001; Olivotto et al. 2011). was collected from the incubating media and was filtered We subjected specimens of H. actiniformis to three using Whatman GF/C filter (Aminot & Rey 2000). Each levels of thermal conditions and quantified the amount filter was cut into small pieces and grounded in the mortar of released zooxanthellae, Symbiodinium, in terms of with 10 ml 90% acetone. This was then centrifuged at 3000 cell density and biomass of photosynthetic chlorophyll-a rpm for 3 minutes to separate the residue from the filtrate. pigment. Qualitative assessment used a color reference The absorbance of the supernatant solution was read using card first introduced by Seibeck et al. (2006). The resulting a Spectrumlab 752S spectrophotometer. The equation information should be primarily relevant to the aquarium industry and secondarily, on the potential impact of thermal Equation 1. Determination of density of stress on coral species on top of the mesoscale events zooxanthellae of Heliofungia actiniformis. brought about by El Niño Southern Oscillation (ENSO) -2 -1 and global warming events resulting to anomalous seasonal Density of zooxanthellae (cm ) = (cell mL * volume -2 changes in seawater temperature (Donner et al. 2005). (mL) of incubating water)/ surface area of polyp (cm ) 36 Philippine Journal of Science Cesar et al: Thermal Stress Affects Zooxanthellae Density Vol. 143 No. 1, June 2014 and Chlorophyll-a Concentration of H.actiniformis of Jeffrey & Humphrey (1975) for trichromatic method was used to calculate the chlorophyll-a concentration ) -2 -2 standardized to µg cm , with the surface area of the polyp 2E6 being factored in (Equation 2). Color index, based on photographs of corals taken 1.5E6 before and after exposure to different temperatures, was determined using the coral health monitoring card of 1E6 Equation 2. Determination of the biomass of chlorophyll-a of Heliofungia actiniformis modified 5E6 from Aminot & Ray (2000). (cm Density of zooxanthellae 0 Biomass µg cm-2 = 11.85*(E664-E750)-1.54*(E647- ) E750)-0.08(E630-E750)] *Ve/L*Vf -2 4.5 -3 -2 4.0 the unit is in mg m so the need to convert to µg cm / g.cm -2 μ the surface area (cm ) ( 3.5 a 3.0 Where : 2.5 Ve (extraction volume in ml)= 10mL 2.0 L(cuvette length path in cm) = 1cm Vf (filtered volume in Liter) =1L 1.5 1.0 0.5 Siebeck et al.
Recommended publications
  • Checklist of Fish and Invertebrates Listed in the CITES Appendices
    JOINTS NATURE \=^ CONSERVATION COMMITTEE Checklist of fish and mvertebrates Usted in the CITES appendices JNCC REPORT (SSN0963-«OStl JOINT NATURE CONSERVATION COMMITTEE Report distribution Report Number: No. 238 Contract Number/JNCC project number: F7 1-12-332 Date received: 9 June 1995 Report tide: Checklist of fish and invertebrates listed in the CITES appendices Contract tide: Revised Checklists of CITES species database Contractor: World Conservation Monitoring Centre 219 Huntingdon Road, Cambridge, CB3 ODL Comments: A further fish and invertebrate edition in the Checklist series begun by NCC in 1979, revised and brought up to date with current CITES listings Restrictions: Distribution: JNCC report collection 2 copies Nature Conservancy Council for England, HQ, Library 1 copy Scottish Natural Heritage, HQ, Library 1 copy Countryside Council for Wales, HQ, Library 1 copy A T Smail, Copyright Libraries Agent, 100 Euston Road, London, NWl 2HQ 5 copies British Library, Legal Deposit Office, Boston Spa, Wetherby, West Yorkshire, LS23 7BQ 1 copy Chadwick-Healey Ltd, Cambridge Place, Cambridge, CB2 INR 1 copy BIOSIS UK, Garforth House, 54 Michlegate, York, YOl ILF 1 copy CITES Management and Scientific Authorities of EC Member States total 30 copies CITES Authorities, UK Dependencies total 13 copies CITES Secretariat 5 copies CITES Animals Committee chairman 1 copy European Commission DG Xl/D/2 1 copy World Conservation Monitoring Centre 20 copies TRAFFIC International 5 copies Animal Quarantine Station, Heathrow 1 copy Department of the Environment (GWD) 5 copies Foreign & Commonwealth Office (ESED) 1 copy HM Customs & Excise 3 copies M Bradley Taylor (ACPO) 1 copy ^\(\\ Joint Nature Conservation Committee Report No.
    [Show full text]
  • Biomineralisation in Reef-Building Corals: from Molecular Mechanisms to Environmental Control
    C. R. Palevol 3 (2004) 453–467 General Palaeontology (Palaeobiochemistry) Biomineralisation in reef-building corals: from molecular mechanisms to environmental control Denis Allemand a,b,*, Christine Ferrier-Pagès a, Paola Furla a,1, Fanny Houlbrèque a, Sandrine Puverel a,b, Stéphanie Reynaud a, Éric Tambutté a, Sylvie Tambutté a, Didier Zoccola a a Centre scientifique de Monaco, avenue Saint-Martin, 98000 Monaco, principauté de Monaco b UMR 1112 INRA–UNSA, faculté des sciences, université Nice–Sophia-Antipolis, parc Valrose, BP 71, 06108 Nice cedex 2, France Received 7 October 2003; accepted after revision 12 July 2004 Available online 30 September 2004 Written on invitation of the Editorial Board Abstract Coral reefs constitute real oasis sheltering for about one third of the identified fishes, representing a major advantage for the economy and tourism of many tropical countries. However it is paradoxical to notice that their formation at the cellular level or even at the scale of the organism is still poorly known. Effectively, biomineralisation, the process that is at the basis of their edification, is always the subject of numerous researches. Two combined mechanisms lead to the formation of a biomineral, the synthesis/secretion of macromolecules referred to as ‘organic matrix’, and the transport of ions (calcium, bicarbonates and protons in the case of calcification) to the mineralising site. This review shows a view of the works carried out on biominerali- sation in scleractinian corals, including some aspects on the control of calcification by environmental parameters. It also gives insights into the biological basis of the use of coral skeletons as environmental archives in palaeo-oceanography.
    [Show full text]
  • Resurrecting a Subgenus to Genus: Molecular Phylogeny of Euphyllia and Fimbriaphyllia (Order Scleractinia; Family Euphylliidae; Clade V)
    Resurrecting a subgenus to genus: molecular phylogeny of Euphyllia and Fimbriaphyllia (order Scleractinia; family Euphylliidae; clade V) Katrina S. Luzon1,2,3,*, Mei-Fang Lin4,5,6,*, Ma. Carmen A. Ablan Lagman1,7, Wilfredo Roehl Y. Licuanan1,2,3 and Chaolun Allen Chen4,8,9,* 1 Biology Department, De La Salle University, Manila, Philippines 2 Shields Ocean Research (SHORE) Center, De La Salle University, Manila, Philippines 3 The Marine Science Institute, University of the Philippines, Quezon City, Philippines 4 Biodiversity Research Center, Academia Sinica, Taipei, Taiwan 5 Department of Molecular and Cell Biology, James Cook University, Townsville, Australia 6 Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan 7 Center for Natural Sciences and Environmental Research (CENSER), De La Salle University, Manila, Philippines 8 Taiwan International Graduate Program-Biodiversity, Academia Sinica, Taipei, Taiwan 9 Institute of Oceanography, National Taiwan University, Taipei, Taiwan * These authors contributed equally to this work. ABSTRACT Background. The corallum is crucial in building coral reefs and in diagnosing systematic relationships in the order Scleractinia. However, molecular phylogenetic analyses revealed a paraphyly in a majority of traditional families and genera among Scleractinia showing that other biological attributes of the coral, such as polyp morphology and reproductive traits, are underutilized. Among scleractinian genera, the Euphyllia, with nine nominal species in the Indo-Pacific region, is one of the groups Submitted 30 May 2017 that await phylogenetic resolution. Multiple genetic markers were used to construct Accepted 31 October 2017 Published 4 December 2017 the phylogeny of six Euphyllia species, namely E. ancora, E. divisa, E.
    [Show full text]
  • Scleractinian Reef Corals: Identification Notes
    SCLERACTINIAN REEF CORALS: IDENTIFICATION NOTES By JACKIE WOLSTENHOLME James Cook University AUGUST 2004 DOI: 10.13140/RG.2.2.24656.51205 http://dx.doi.org/10.13140/RG.2.2.24656.51205 Scleractinian Reef Corals: Identification Notes by Jackie Wolstenholme is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. TABLE OF CONTENTS TABLE OF CONTENTS ........................................................................................................................................ i INTRODUCTION .................................................................................................................................................. 1 ABBREVIATIONS AND DEFINITIONS ............................................................................................................. 2 FAMILY ACROPORIDAE.................................................................................................................................... 3 Montipora ........................................................................................................................................................... 3 Massive/thick plates/encrusting & tuberculae/papillae ................................................................................... 3 Montipora monasteriata .............................................................................................................................. 3 Massive/thick plates/encrusting & papillae ...................................................................................................
    [Show full text]
  • Volume 2. Animals
    AC20 Doc. 8.5 Annex (English only/Seulement en anglais/Únicamente en inglés) REVIEW OF SIGNIFICANT TRADE ANALYSIS OF TRADE TRENDS WITH NOTES ON THE CONSERVATION STATUS OF SELECTED SPECIES Volume 2. Animals Prepared for the CITES Animals Committee, CITES Secretariat by the United Nations Environment Programme World Conservation Monitoring Centre JANUARY 2004 AC20 Doc. 8.5 – p. 3 Prepared and produced by: UNEP World Conservation Monitoring Centre, Cambridge, UK UNEP WORLD CONSERVATION MONITORING CENTRE (UNEP-WCMC) www.unep-wcmc.org The UNEP World Conservation Monitoring Centre is the biodiversity assessment and policy implementation arm of the United Nations Environment Programme, the world’s foremost intergovernmental environmental organisation. UNEP-WCMC aims to help decision-makers recognise the value of biodiversity to people everywhere, and to apply this knowledge to all that they do. The Centre’s challenge is to transform complex data into policy-relevant information, to build tools and systems for analysis and integration, and to support the needs of nations and the international community as they engage in joint programmes of action. UNEP-WCMC provides objective, scientifically rigorous products and services that include ecosystem assessments, support for implementation of environmental agreements, regional and global biodiversity information, research on threats and impacts, and development of future scenarios for the living world. Prepared for: The CITES Secretariat, Geneva A contribution to UNEP - The United Nations Environment Programme Printed by: UNEP World Conservation Monitoring Centre 219 Huntingdon Road, Cambridge CB3 0DL, UK © Copyright: UNEP World Conservation Monitoring Centre/CITES Secretariat The contents of this report do not necessarily reflect the views or policies of UNEP or contributory organisations.
    [Show full text]
  • Vrije Universiteit Brussel Genetic Structure of Heliofungia Actiniformis
    Vrije Universiteit Brussel Genetic structure of Heliofungia actiniformis (Scleractinia: Fungiidae) populations in the Indo- Malay Archipelago: implications for live coral trade management efforts Knittweis, L.; W.S., Kraemer,; Timm, J.; Kochzius, Marc Published in: Conservation Genetics DOI: 10.1007/s10592-008-9566-5 Publication date: 2009 Document Version: Final published version Link to publication Citation for published version (APA): Knittweis, L., W.S., K., Timm, J., & Kochzius, M. (2009). Genetic structure of Heliofungia actiniformis (Scleractinia: Fungiidae) populations in the Indo-Malay Archipelago: implications for live coral trade management efforts. Conservation Genetics, 10, 241-249. https://doi.org/10.1007/s10592-008-9566-5 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 06. Oct. 2021 Conserv Genet (2009) 10:241–249 DOI 10.1007/s10592-008-9566-5 RESEARCH ARTICLE Genetic structure of Heliofungia actiniformis (Scleractinia: Fungiidae) populations in the Indo-Malay Archipelago: implications for live coral trade management efforts Leyla Knittweis Æ Wiebke Elsbeth Kraemer Æ Janne Timm Æ Marc Kochzius Received: 14 September 2007 / Accepted: 11 March 2008 / Published online: 8 May 2008 Ó Springer Science+Business Media B.V.
    [Show full text]
  • The Global Trade in Marine Ornamental Species
    From Ocean to Aquarium The global trade in marine ornamental species Colette Wabnitz, Michelle Taylor, Edmund Green and Tries Razak From Ocean to Aquarium The global trade in marine ornamental species Colette Wabnitz, Michelle Taylor, Edmund Green and Tries Razak ACKNOWLEDGEMENTS UNEP World Conservation This report would not have been The authors would like to thank Helen Monitoring Centre possible without the participation of Corrigan for her help with the analyses 219 Huntingdon Road many colleagues from the Marine of CITES data, and Sarah Ferriss for Cambridge CB3 0DL, UK Aquarium Council, particularly assisting in assembling information Tel: +44 (0) 1223 277314 Aquilino A. Alvarez, Paul Holthus and and analysing Annex D and GMAD data Fax: +44 (0) 1223 277136 Peter Scott, and all trading companies on Hippocampus spp. We are grateful E-mail: [email protected] who made data available to us for to Neville Ash for reviewing and editing Website: www.unep-wcmc.org inclusion into GMAD. The kind earlier versions of the manuscript. Director: Mark Collins assistance of Akbar, John Brandt, Thanks also for additional John Caldwell, Lucy Conway, Emily comments to Katharina Fabricius, THE UNEP WORLD CONSERVATION Corcoran, Keith Davenport, John Daphné Fautin, Bert Hoeksema, Caroline MONITORING CENTRE is the biodiversity Dawes, MM Faugère et Gavand, Cédric Raymakers and Charles Veron; for assessment and policy implemen- Genevois, Thomas Jung, Peter Karn, providing reprints, to Alan Friedlander, tation arm of the United Nations Firoze Nathani, Manfred Menzel, Julie Hawkins, Sherry Larkin and Tom Environment Programme (UNEP), the Davide di Mohtarami, Edward Molou, Ogawa; and for providing the picture on world’s foremost intergovernmental environmental organization.
    [Show full text]
  • Cop16 Inf. 32 (English Only / Únicamente En Inglés / Seulement En Anglais)
    CoP16 Inf. 32 (English only / Únicamente en inglés / Seulement en anglais) CONVENTION ON INTERNATIONAL TRADE IN ENDANGERED SPECIES OF WILD FAUNA AND FLORA ____________________ Sixteenth meeting of the Conference of the Parties Bangkok (Thailand), 3-14 March 2013 CITES TRADE: RECENT TRENDS IN INTERNATIONAL TRADE IN APPENDIX II-LISTED SPECIES (1996-2010) The attached document* has been submitted by the Secretariat in relation to agenda item 21 on Capacity building. * The geographical designations employed in this document do not imply the expression of any opinion whatsoever on the part of the CITES Secretariat or the United Nations Environment Programme concerning the legal status of any country, territory, or area, or concerning the delimitation of its frontiers or boundaries. The responsibility for the contents of the document rests exclusively with its author. CoP16 Inf. 32 – p. 1 CITES Trade: recent trends in international trade in Appendix II‐listed species (1996‐2010) CITES Project No. S‐383 Prepared for the CITES Secretariat by United Nations Environment Programme World Conservation Monitoring Centre December 2012 PREPARED FOR CITES Secretariat, Geneva, Switzerland. This report was made possible as a result of the generous CITATION financial support by the European Commission. CITES Secretariat (2012). CITES Trade: recent trends in international trade in Appendix II‐listed species This publication may be reproduced for educational (1996‐2010). Prepared by UNEP‐WCMC, Cambridge. or non‐profit purposes without special permission, provided acknowledgement to the source is made. Reuse of any figures is subject to permission from the original rights holders. No use of this publication © Copyright: 2012, CITES Secretariat may be made for resale or any other commercial purpose without permission in writing from CITES.
    [Show full text]
  • NCSU GBR Formation
    The Great Barrier Reef : How was it formed? Tyrone Ridgway Australia’s marine jurisdiction Under the United Nations Convention on the Law of the Sea, Australia has rights and responsibilities over some 16 million square kilometers of ocean. This is more than twice the area of the Australian continent. 1 Australia’s large marine ecosystems North Australian Shelf Northeast Australian Shelf/ Northwest Australian Shelf Great Barrier Reef West-Central Australian Shelf East-Central Australian Shelf Southwest Australian Shelf Southeast Australian Shelf Antarctica The Great Barrier Reef 2 Established in 1975 Great Barrier Reef Marine Park Act 345 000 km2 > 2 000 km long 2 800 separate reefs > 900 islands Importance to the Australian community The Great Barrier Reef contributes $5.8 billion annually to the Australian economy: $ 5.1 billion from the tourism industry $ 610 million from recreational fishing $ 149 million from commercial fishing Thus the GBR generates about 63,000 jobs, mostly in the tourism industry, which brings over 1.9 million visitors to the Reef each year. 3 It is not just about the fish and corals!! There are an estimated 1,500 species of fish and more than 300 species of hard, reef-building corals. More than 4,000 mollusc species and over 400 species of sponges have been identified. 4 Invertebrates Porifera Cnidaria Annelida Crustacea Mollusca Echinodermata Vertebrates Osteichthyes Chondrichthyes Reptilia Aves Mammalia bony fish cartilaginous fish reptiles birds mammals 5 The Great Barrier Reef The reef contains nesting grounds of world significance for the endangered green and loggerhead turtles. It is also a breeding area for humpback whales, which come from the Antarctic to give birth to their young in the warm waters.
    [Show full text]
  • Conservation of Reef Corals in the South China Sea Based on Species and Evolutionary Diversity
    Biodivers Conserv DOI 10.1007/s10531-016-1052-7 ORIGINAL PAPER Conservation of reef corals in the South China Sea based on species and evolutionary diversity 1 2 3 Danwei Huang • Bert W. Hoeksema • Yang Amri Affendi • 4 5,6 7,8 Put O. Ang • Chaolun A. Chen • Hui Huang • 9 10 David J. W. Lane • Wilfredo Y. Licuanan • 11 12 13 Ouk Vibol • Si Tuan Vo • Thamasak Yeemin • Loke Ming Chou1 Received: 7 August 2015 / Revised: 18 January 2016 / Accepted: 21 January 2016 Ó Springer Science+Business Media Dordrecht 2016 Abstract The South China Sea in the Central Indo-Pacific is a large semi-enclosed marine region that supports an extraordinary diversity of coral reef organisms (including stony corals), which varies spatially across the region. While one-third of the world’s reef corals are known to face heightened extinction risk from global climate and local impacts, prospects for the coral fauna in the South China Sea region amidst these threats remain poorly understood. In this study, we analyse coral species richness, rarity, and phylogenetic Communicated by Dirk Sven Schmeller. Electronic supplementary material The online version of this article (doi:10.1007/s10531-016-1052-7) contains supplementary material, which is available to authorized users. & Danwei Huang [email protected] 1 Department of Biological Sciences and Tropical Marine Science Institute, National University of Singapore, Singapore 117543, Singapore 2 Naturalis Biodiversity Center, PO Box 9517, 2300 RA Leiden, The Netherlands 3 Institute of Biological Sciences, Faculty of
    [Show full text]
  • Diversity of Seahorse Species (Hippocampus Spp.) in the International Aquarium Trade
    diversity Review Diversity of Seahorse Species (Hippocampus spp.) in the International Aquarium Trade Sasha Koning 1 and Bert W. Hoeksema 1,2,* 1 Groningen Institute for Evolutionary Life Sciences, University of Groningen, P.O. Box 11103, 9700 Groningen, The Netherlands; [email protected] 2 Taxonomy, Systematics and Geodiversity Group, Naturalis Biodiversity Center, P.O. Box 9517, 2300 Leiden, The Netherlands * Correspondence: [email protected] Abstract: Seahorses (Hippocampus spp.) are threatened as a result of habitat degradation and over- fishing. They have commercial value as traditional medicine, curio objects, and pets in the aquarium industry. There are 48 valid species, 27 of which are represented in the international aquarium trade. Most species in the aquarium industry are relatively large and were described early in the history of seahorse taxonomy. In 2002, seahorses became the first marine fishes for which the international trade became regulated by CITES (Convention for the International Trade in Endangered Species of Wild Fauna and Flora), with implementation in 2004. Since then, aquaculture has been developed to improve the sustainability of the seahorse trade. This review provides analyses of the roles of wild-caught and cultured individuals in the international aquarium trade of various Hippocampus species for the period 1997–2018. For all species, trade numbers declined after 2011. The proportion of cultured seahorses in the aquarium trade increased rapidly after their listing in CITES, although the industry is still struggling to produce large numbers of young in a cost-effective way, and its economic viability is technically challenging in terms of diet and disease. Whether seahorse aqua- Citation: Koning, S.; Hoeksema, B.W.
    [Show full text]
  • Downloaded from Brill.Com10/11/2021 12:50:19PM Via Free Access 202 RAUCH ET AL
    Contributions to Zoology 88 (2019) 201-235 CTOZ brill.com/ctoz Shrimps of the genus Periclimenes (Crustacea, Decapoda, Palaemonidae) associated with mushroom corals (Scleractinia, Fungiidae): linking DNA barcodes to morphology Cessa Rauch Department of Taxonomy & Systematics, Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands Department of Natural History, Section of Taxonomy and Evolution, University Museum of Bergen, University of Bergen, PB7800, 5020 Bergen, Norway Bert W. Hoeksema Department of Taxonomy & Systematics, Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands Bambang Hermanto Technical Implementation Unit for Marine Biota Conservation, Research Centre for Oceanog- raphy (RCO-LIPI), Bitung, Indonesia Charles H.J.M. Fransen Department of Taxonomy & Systematics, Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands [email protected] Abstract Most marine palaemonid shrimp species live in symbiosis with invertebrates of various phyla. These as- sociations range from weak epibiosis to obligatory endosymbiosis and from restricted commensalism to semi-parasitism. On coral reefs, such symbiotic shrimps can contribute to the associated biodiversity of reef corals. Among the host taxa, mushroom corals (Cnidaria: Anthozoa: Fungiidae) are known to harbour various groups of symbionts, including shrimps. Some but not all of these associated species are host-specific. Because data on the host specificity of shrimps on mushroom corals are scarce, shrimp spe- cies of the genus Periclimenes were collected from mushroom corals during fieldwork in Lembeh Strait, © RAUCH ET AL., 2019 | doi:10.1163/18759866-20191357 This is an open access article distributed under the terms of the prevailing cc-by license at the time of publication.
    [Show full text]