Towards Emphasis As a Mechanism to Harden Networking Security in Android Apps

Total Page:16

File Type:pdf, Size:1020Kb

Towards Emphasis As a Mechanism to Harden Networking Security in Android Apps emphaSSL: Towards Emphasis as a Mechanism to Harden Networking Security in Android Apps Xuetao Weiy, Michael Wolfy, Lei Guo∗, Kyu Hyung Leez, Ming-Chun Huang◦, and Nan Niuy yUniversity of Cincinnati ∗Northeastern University zUniversity of Georgia ◦Case Western Reserve University Abstract—The use of secure HTTP calls is a first and critical making network calls to Internet web servers. Mistakes in step toward securing the Android application data when the code can be caused by leftover debug code or testing-time app interacts with the Internet. However, one of the major workarounds such as custom trust managers and skipping causes for the unencrypted communication is app developer’s errors or ignorance. Could the paradigm of literally repetitive hostname verification [4]. Overrides of security errors are and ineffective emphasis shift towards emphasis as a mecha- also pervasive. Developers have been observed to use code nism? This paper introduces emphaSSL, a simple, practical snippets in order to clear error messages without resolving and readily-deployable way to harden networking security in the certificate trust issue [4], [7]. Furthermore, in the case Android applications. Our emphaSSL could guide app devel- of developers using ‘http://’ when the ‘https://’ version of a oper’s security development decisions via real-time feedback, informative warnings and suggestions. At its core of emphaSSL, web service is readily available, the mistake may be caused we use a set of rigorous security rules, which are obtained by developer ignorance, apathy, or frustration with HTTPS- through an in-depth SSL/TLS security analysis based on security style transport-layer security. Concerns for application speed, requirements engineering techniques. We implement emphaSSL functionality, and interoperability with legacy systems may via the PMD and evaluate it against 75 open-source Android also play a role in the decision to leave applications without the applications. Our results show that emphaSSL is effective at detecting security violations in HTTPS calls with a very low highest layer of protection [5]. Rather than literally repetitive false positive rate, around 2%. Furthermore, we identified 164 and ineffective emphasis [7], could our focus shift towards substantial SSL mistakes in these testing apps, 40% of which emphasis as a mechanism? A more informative methodology are potentially vulnerable to man-in-the-middle attacks. In each to aid in adding security considerations in Android apps is of these instances, the vulnerabilities could be quickly resolved desired. Therefore, it is imperative for developers of HTTPS- with the assistance of our highlighting messages in emphaSSL. Upon notifying developers of our findings in their applications, ready apps to seek a solution that serves as an assistant in we received positive responses and interest in this approach. the proper creation of SSL connections with more emphasis. Approaching the problem from this developer-centric position I. INTRODUCTION presented challenging issues in the mechanism for determining the most pressing security issues, properly identifying these A. Motivation issues before compile-time, and determining the most prudent Though Android platform is the most popular platform in phrasing of error messages. the world, the authorship of Android applications (apps) has been notably insecure [1]–[3]. In the appified world, Android B. Contribution apps faced many challenges in the safe implementation of In this paper, we present emphaSSL, a simple, practical security. Beyond malware and theft, the use of smartphones and readily-deployable way to solve this problem via real- on insecure wireless access points remains as a dangerous time feedback, informative warnings and suggestions. Through reality in day-to-day data consumption. Previous studies have real-time highlighting of unsafe methods, the developer could shown that holes exist in a wide range of popular Android correct their errors once they understand the implications. Our applications and libraries, including banking applications, e- emphaSSL directly enables developers to fix the mistakes of commerce libraries used to conduct transactions through third- HTTPS development before compiling their app code. At its party servers, and social media clients that are shown to be core of emphaSSL, a set of rules are utilized, which are vulnerable [4]–[6]. These holes leave the end-user without the derived from the in-depth analysis of security requirements benefits of the HTTPS (Hypertext Transfer Protocol Secure) engineering techniques on Android apps. This includes a protocol. However, this basic encrypted security is a reason- process of determining user and system assets, application able expectation of all non-trivial applications. functions, threats, and limitations to a secure environment. The causes for the disparity between the theoretical and This foundation gives our ruleset validity and focus. We design realized security of SSL implementations can be attributed and implement emphaSSL via the PMD source-code parsing to a number of factors including library vulnerabilities, project [8], which would serve to point out insecure source complications and shortcomings of the TLS protocol itself, code to developers as they write their applications. We evaluate server misconfiguration, and end users [5]. However, the this design through a combination of automated testing and most pervasive reason why these implementations are not manual review of the test results. Our ruleset’s results were effective is due to application developer’s mistakes when verified for accuracy through an investigation of the tool’s output. We provide context to the ruleset by reading over the offending lines of code by hand and comparing them to security best practices. The evaluation results show our emphaSSL is effective at determining user errors with a very low false positive rate (around 2%) before an application is compiled, which ultimately hardens the networking security for Android apps in the wild. Specifically, we make the following contributions: • We propose a simple, practical, and readily-deloyable approach to combating developer misuse of Internet- based security connections based on source-code parsing and coding-time feedback. Our approach works with developers to fix issues immediately. By simply installing emphaSSL, developers can begin catching their mis- takes. This design is also useful in applications beyond the scope of HTTPS-specific security and can be extended to include future guidelines of next-generation protocols and concerns. Furthermore, this work can be applied to numerous environments. • We provide practical rules to assist Android app devel- opers in the proper creation of SSL connections. These rules are informed by our design for text-parsing violation checking and were produced through a process rooted in security requirements engineering. The objective of emphaSSL is to verify that major HTTPS overrides are not in place within the application source code. This Fig. 1. The architecture of our emphaSSL ruleset includes checks for the use of HTTPS, integrity of hostname verification, security of trust management, and transparency of error reporting. messages briefly explain the flaw which was discovered and • We perform a well-proportioned study of 75 open source then present a link to further reading and remediation. Android applications that use the INTERNET permission totaling over 100,000 lines of code, which demonstrates At its core of emphaSSL, a ruleset is built on top of the effectiveness of our ruleset with a very low false the open-source PMD source-code parsing project [8]. PMD positive rate, around 2%. Furthermore, we find that 30 allows for custom rules to be applied to the project as seen in of these applications can be considered vulnerable and Figure 1. The ruleset for emphaSSL is derived from a process nine that have serious HTTPS overriding capabilities of security requirements engineering and common mistakes that leave these applications open to man-in-the-middle discovered by the Android security community. These mis- attacks. We present a discussion of developer response to takes are generally exhibited by unsafe methods or literals our follow-up notifications on their project issues. We find which compromise the identity validation system of HTTPS. several cases of application owners taking our suggestions The ruleset of emphaSSL is then compared against source seriously and amending their code to properly conform code by PMD either printing out a list of errors into the to HTTPS standards. terminal or placing a marker next to the line of code which has violated a rule in the IDE. II. OVERVIEW OF emphaSSL Due to the enormous combinations of Java source code Our emphaSSL, as shown in Figure 1, is an early-warning methods, variables, and logic, the ruleset we present with approach to Android application security. In our approach, we emphaSSL is not all-inclusive. Thus, emphaSSL is designed attempt to educate the developer in a noninvasive way on the as an extensible, but still substantial implementation of our basics of HTTPS on Android, and solve for security errors design for authorship-time code validation can be effective in in real-time. Instead of relying on external organizations or networking security environments. In this paper, we test the install-time static-code scanners, we present the belief that effectiveness of emphaSSL through automation and manual developer will fix their mistakes in
Recommended publications
  • Quick Start Guide: Migrating to Always-On
    QUICK START GUIDE: MIGRATING TO ALWAYS-ON SSL Now that Google has added a rank boost for Always-On SSL (AOSSL), it makes sense to enable HTTPS across your entire Website. But where do you start? DigiCert created this guide to give you an in-depth look on how AOSSL can help you and to get you started with implementing AOSSL on your own Website. GET YOUR COMPANY ON TOP WITH AOSSL We know you’re always looking for new ways to users immediately recognize them to mean security. make your company stick out—whether that’s in By ranking higher in Google, you will be driving search engine rankings or in your customer’s minds. more traffic; and with the added security benefits of And with Google’s recent announcement that HTTPS SSL your new users will feel confident on your site, everywhere is a factor in their ranking algorithm, SSL positively affecting conversion rates. can be part of your solution. HOW AOSSL BENEFITS YOU Unlike many of the ranking factors in Google’s search The HTTPS everywhere ranking signal is standalone algorithm that are vague or difficult to measure, and is independent from any of Google’s other ranking having HTTPS everywhere is a guaranteed way to get signals or algorithms. As soon as a new HTTPS page your site ranked above your competitors. And though is indexed by Google, you get a boost in your search it’s starting out as a lightweight signal, Google has ranking just because of the HTTPS URL. While this promised that the weight of SSL as a ranking factor doesn’t mean that your page will automatically jump will increase once webmasters have time to migrate up a few ranks in search results, it does mean that you their sites.
    [Show full text]
  • Designing Secure Systems That People Can
    15- SSL, PKIs, and Secure Communication Engineering & Public Policy Lorrie Cranor, Blase Ur, and Rich Shay March 3, 2015 05-436 / 05-836 / 08-534 / 08-734 Usable Privacy and Security 1 Today! • An introduction to SSL/TLS • An introduction to PKIs • Recent developments in this area • Usability issues • An activity to make it better 2 Overview • Secure Sockets Layer (SSL) and its successor, Transport Layer Security (TLS) enable secure communication • Frequently encountered with web browsing (HTTPS) and more behind the scenes in app, VOIP, etc. 3 What we want to defend against • People snooping on our communications – The contents of what we’re sending – Session tokens (see, e.g., Firesheep) • Man-in-the-middle attacks – We want to authenticate that we are talking to the right site, not an imposter – Use certificates inside a public-key infrastructure 4 How we could obtain trust • Web of trust – People you already trust introduce you to people they trust – Can get complicated, doesn’t scale well – Less frequently seen in practice • Public-Key Infrastructure (PKI) – Certificates are issued by certificate authorities that bind cryptographic keys to identities 5 Public-Key Infrastucture • Binding of keys to identities can be done automatically or by humans 6 What does SSL look like to users? • Compare, e.g., the following: – https://www.google.com (normal certificate) – Go to Google images and then click on an image and see what happens (mixed content) – https://otalliance.org (EV certificate) 7 What does PKI look like to browsers? • Hundreds
    [Show full text]
  • The Tor Browser
    TOR By: Qui Hao (Frank) Yu and Haseeb Choudhary Agenda What is Tor? The Tor Browser What does Tor provide its users? Tor with command line apps The history of Tor Tor vs. VPN What makes up the Tor network? What NOT to do with Tor How does Tor work? - Clients perspective - Onion service perspective What is Tor? Tor stands for The Onion Router It is a open source network run by volunteers which provides its users with enhanced privacy and security on the Internet. Guard Middle Exit Node Server Node What does Tor Provide its Users? ● Who are the users of Tor? Anyone who would like to enhance their privacy and security on the Internet ● What does Tor do to provide more privacy and security for its users? ● Tor prevents websites and other services from knowing your location ● Tor prevents someone monitoring your Internet traffic (e.g. ISP, someone on your home network) from learning where you’re going and what you’re receiving from where you go ● Tor routes your traffic through more than one Tor relay so that no single relay will know both who you are and where you’re going The History of Tor ● Principle of “Onion Routing” ○ Developed by Paul Syverson, Michael G. Reed and David Goldschlag at the United States Naval Research Laboratory. ○ Developed in mid-1990’s ○ Purpose: protecting U.S. intelligence communication Online ● Alpha version of Tor - The Onion Routing Project ○ Developed by Roger Dingledine, Paul Syverson, and Nick Mathewson ○ Launched on Sept 20th, 2002 ○ Releases a year later ● The Tor Project, Inc, founded in Dec, 2006 What
    [Show full text]
  • Web Privacy Beyond Extensions
    Web Privacy Beyond Extensions: New Browsers Are Pursuing Deep Privacy Protections Peter Snyder <[email protected]> Privacy Researcher at Brave Software In a slide… • Web privacy is a mess. • Privacy activists and researchers are limited by the complexity of modern browsers. • New browser vendors are eager to work with activists to deploy their work. Outline 1. Background Extension focus in practical privacy tools 2. Present Privacy improvements require deep browser modifications 3. Next Steps Call to action, how to keep improving Outline 1. Background Extension focus in practical privacy tools 2. Present Privacy improvements require deep browser modifications 3. Next Steps Call to action, how to keep improving Browsers are Complicated uBlock PrivacyBadger Disconnect AdBlock Plus Firefox Safari Privacy concern Chrome Edge / IE Browser maintenance experience Extensions as a Compromise uBlock PrivacyBadger Disconnect AdBlock Plus Runtime Extensions modifications Firefox Safari Privacy concern Chrome Edge / IE Browser maintenance experience Privacy and Browser Extensions � • Successes! uBlock Origin, HTTPS Everywhere, Ghostery, Disconnect, Privacy Badger, EasyList / EasyPrivacy, etc… • Appealing Easy(er) to build, easy to share • Popular Hundreds of thousands of extensions, Millions of users Browser Extension Limitations � • Limited Capabilities Networking, request modification, rendering, layout, image processing, JS engine, etc… • Security and Privacy Possibly giving capabilities to malicious parties • Performance Limited to JS, secondary access Extensions vs Runtime uBlock PrivacyBadger Disconnect AdBlock Plus Runtime Extensions modifications Firefox Safari Privacy concern Chrome Edge / IE Browser maintenance experience Under Explored Space uBlock PrivacyBadger Disconnect ? AdBlock Plus Runtime Extensions modifications Firefox Safari Privacy concern Chrome Edge / IE Browser maintenance experience Outline 1. Background Extension focus in practical privacy tools 2.
    [Show full text]
  • The BEAST Wins Again: Why TLS Keeps Failing to Protect HTTP Antoine Delignat-Lavaud, Inria Paris Joint Work with K
    The BEAST Wins Again: Why TLS Keeps Failing to Protect HTTP Antoine Delignat-Lavaud, Inria Paris Joint work with K. Bhargavan, C. Fournet, A. Pionti, P.-Y. Strub INTRODUCTION Introduction Cookie Cutter Virtual Host Confusion Crossing Origin Boundaries Shared Session Cache Shared Reverse Proxies SPDY Connection Pooling Triple Handshake Conclusion Why do we need TLS? 1. Authentication – Must be talking to the right guy 2. Integrity – Our messages cannot be tampered 3. Confidentiality – Messages are only legible to participants 4. Privacy? – Can’t tell who we are and what we talk about Why do we need TLS? 1. Authentication – Must be talking to the right guy Active Attacks 2. Integrity (MitM) – Our messages cannot be tampered 3. Confidentiality – Messages are only legible to participants Passive Attacks 4. Privacy? (Wiretapping) – Can’t tell who we are and what we talk about What websites expect of TLS • Web attacker – Controls malicious websites – User visits honest and malicious sites in parallel – Web/MitB attacks: CSRF, XSS, Redirection… • Network attacker – Captures (passive) and tampers (active) packets What websites expect of TLS • Web attacker – Controls malicious websites – User visits honest and malicious sites in parallel – Web/MitB attacks: CSRF, XSS, Redirection… • Network attacker Strictly stronger – Captures (passive) and tampers (active) packets What websites expect of TLS If a website W served over HTTP is secure against a Web attacker, then serving W over HTTPS makes it secure against a network attacker. What websites expect of TLS If a website W served over HTTP is secure against a Web attacker, then serving W over HTTPS makes it secure against a network attacker.
    [Show full text]
  • Be Library Smart: Protecting Your Privacy
    BE LIBRARY SMART: PROTECTING YOUR PRIVACY Browsers and Search Engines duckduckgo.com This search engine doesn’t track your activity, and their mobile app that assigns grades based on sites’ privacy offers more secure mobile browsing. startpage.com This search engine uses Google’s results but does not track your IP address or use cookies. brave.com Brave is a browser that blocks trackers and ads and automatically upgrades to https when available. Their mobile app features the same protections. torproject.org The Tor browser routes users’ activity through proxies all over the world to help provide anonymity. Add-ons/extensions disconnect.me This browser extension blocks third-party trackers. Available for Chrome, Firefox, and Opera, with laptop/desktop and mobile versions. noscript.net This browser extension disables JavaScript, Flash, and other elements of websites that can be used to track or infect a computer. Available for Firefox and Chrome. HTTPS Everywhere If a secure version of a website exists, this extension will automatically connect to it over the insecure default version. Available for Firefox, Chrome, and Opera. eff.org/https-everywhere Privacy Badger This add-on prevents websites from using invisible trackers. It learns from trackers’ behavior to block tracking across multiple sites. Available for Firefox, Chrome, and Opera. eff.org/privacybadger uBlock Origin This add-on blocks ads, trackers, and malware. Available for Firefox, Chrome, Microsoft Edge, and Safari. github.com/gorhill/uBlock Brought to you by the Maryland Library Association's Intellectual Freedom Panel and the Ruth Enlow Library. BE LIBRARY SMART: PROTECTING YOUR PRIVACY Apps and Services VPN Short for Virtual Private Network, this will route your internet connection through different IP addresses to better protect your privacy.
    [Show full text]
  • Certificate Authority – Registration Authority (Verifies Cert Requests) – Validation Authority (Handles Revocation)
    11. Trust on the Web Blase Ur and David Cash February 5th, 2020 CMSC 23200 / 33250 Overview • Secure Sockets Layer (SSL) and its successor, Transport Layer Security (TLS) enable secure communication • Frequently encountered with web browsing (HTTPS) and more behind the scenes in app, VOIP, etc. What we want to defend against • People snooping on our communications – The contents of what we’re sending – Session tokens (see, e.g., Firesheep) • Person-in-the-middle attacks – We want to authenticate that we are talking to the right site, not an imposter – Use certificates inside a public-key infrastructure How we could obtain trust • Web of trust – People you already trust introduce you to people they trust – Can get complicated, doesn’t scale well – Infrequently seen in practice • Public-Key Infrastructure (PKI) – Certificates are issued by certificate authorities that bind cryptographic keys to identities Public-Key Infrastucture • Binding of keys to identities – Certificate authority – Registration authority (verifies cert requests) – Validation authority (handles revocation) Image from Wikimedia Foundation What does SSL look like to users? • Compare, e.g., the following: – https://www.google.com (normal certificate) – Go to Google images and then click on an image and see what happens (mixed content) – https://www.thawte.com (EV certificate) What does SSL look like to users? (From Felt et al. SOUPS 2016) How does PKI look to browsers? • Hundreds of trusted certificate authorities – Certificate authorities (CAs) sign the certificates binding
    [Show full text]
  • Online Security 101
    Online Security 101 Presented by Brad Frank http://people.hmdc.harvard.edu/~bfrank/techtalk Threats and attacks Social engineering A "Microsoft technician" cold calling and asking for money is never legit. Phishing scams A Nigerian prince offering you millions of dollars is never legit. Malware A website that claims your computer is infected with viruses is never legit. Legitimate protection Wisdom in general Keep everything (OS, browsers, software) up-to-date. If it looks suspicious (bad spelling and grammar), don't click on it. Encrypt your computer: Bitlocker (Windows), FileVault (Mac), LUKS (Linux) Windows specific Upgrade to Windows 7 or 8, ditch XP. Research anti-virus at www.av-test.org/en/tests/home-user. Harvard ESET available at www.eset.com/us/harvard. Malwarebytes Pro is worth paying for. If unsure about anything, search Google or ask an IT person! Browsing securely Use a modern browser Chrome, Firefox, Safari, or IE9+ are excellent choices. Disable built-in password managers Passwords are rarely encrypted. Only use official add-ons chrome.google.com, addons.mozilla.org, extensions.apple.com, iegallery.com It's like an app store for your browser. They are legitimate and vetted. Enhancing security Uninstall Flash Chrome and IE10 "Metro" (Windows 8) include built-in Flash. Switch to HTML5 wherever possible (e.g. youtube.com/html5). Use Incognito, Private Browsing, InPrivate No information about your browsing history is saved. Consider these add-ons Web of Trust: http://www.mywot.com/ DoNotTrackMe: https://www.abine.com/dntdetail.php HTTPS Everywhere: https://www.eff.org/https-everywhere NoScript: http://noscript.net/ OpenDNS Blocking compromised websites Malware, botnet, and phishing websites are blocked.
    [Show full text]
  • Understanding the Performance Costs and Benefits of Privacy-Focused
    Understanding the Performance Costs and Benefits of Privacy-focused Browser Extensions Kevin Borgolte Nick Feamster [email protected] [email protected] Princeton University University of Chicago ABSTRACT 1 INTRODUCTION Advertisements and behavioral tracking have become an invasive The online advertisement (ad) industry has been one of the fastest nuisance on the Internet in recent years. Indeed, privacy advocates growing industries in the recent years, growing from over 108 and expert users consider the invasion signifcant enough to war- billion US dollars in 2018 to an estimated 129 billion US dollars rant the use of ad blockers and anti-tracking browser extensions. in 2019 in the United States [34], and to estimated 333 billion US At the same time, one of the largest advertisement companies in dollars in 2019 globally [12]. This growth has sparked numerous the world, Google, is developing the most popular browser, Google academic studies of various angles of online ads, from understand- Chrome. This confict of interest, that is developing a browser (a ing the underlying economics, the overall scale of it, mechanisms user agent) and being fnancially motivated to track users’ online and techniques used, as well as how miscreants are abusing it to behavior, possibly violating their privacy expectations, while claim- proft. ing to be a "user agent," did not remain unnoticed. As a matter of Academic and industry studies on the techniques that online fact, Google recently sparked an outrage when proposing changes ads are relying on have led to privacy advocates and expert users to Chrome how extensions can inspect and modify requests to "im- arguing that the ad companies’ tracking and data collection, which prove extension performance and privacy," which would render provides the foundation for the most prevalent online ads today, existing privacy-focused extensions inoperable.
    [Show full text]
  • Understanding Flaws in the Deployment and Implementation of Web Encryption
    Understanding Flaws in the Deployment and Implementation of Web Encryption Suphannee Sivakorn Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2018 © 2018 Suphannee Sivakorn All rights reserved ABSTRACT Understanding Flaws in the Deployment and Implementation of Web Encryption Suphannee Sivakorn In recent years, the web has switched from using the unencrypted HTTP protocol to using encrypted communications. Primarily, this resulted in increasing deployment of TLS to mitigate information leakage over the network. This development has led many web service operators to mistakenly think that migrating from HTTP to HTTPS will magically protect them from information leakage without any additional effort on their end to guar- antee the desired security properties. In reality, despite the fact that there exists enough infrastructure in place and the protocols have been “tested” (by virtue of being in wide, but not ubiquitous, use for many years), deploying HTTPS is a highly challenging task due to the technical complexity of its underlying protocols (i.e., HTTP, TLS) as well as the complexity of the TLS certificate ecosystem and this of popular client applications suchas web browsers. For example, we found that many websites still avoid ubiquitous encryption and force only critical functionality and sensitive data access over encrypted connections while allowing more innocuous functionality to be accessed over HTTP. In practice, this approach is prone to flaws that can expose sensitive information or functionality tothird parties. Thus, it is crucial for developers to verify the correctness of their deployments and implementations.
    [Show full text]
  • X41 D-SEC Gmbh Dennewartstr
    Browser Security White PAPER Final PAPER 2017-09-19 Markus VERVIER, Michele Orrù, Berend-Jan WEVER, Eric Sesterhenn X41 D-SEC GmbH Dennewartstr. 25-27 D-52068 Aachen Amtsgericht Aachen: HRB19989 Browser Security White PAPER Revision History Revision Date Change Editor 1 2017-04-18 Initial Document E. Sesterhenn 2 2017-04-28 Phase 1 M. VERVIER, M. Orrù, E. Sesterhenn, B.-J. WEVER 3 2017-05-19 Phase 2 M. VERVIER, M. Orrù, E. Sesterhenn, B.-J. WEVER 4 2017-05-25 Phase 3 M. VERVIER, M. Orrù, E. Sesterhenn, B.-J. WEVER 5 2017-06-05 First DrAFT M. VERVIER, M. Orrù, E. Sesterhenn, B.-J. WEVER 6 2017-06-26 Second DrAFT M. VERVIER, M. Orrù, E. Sesterhenn, B.-J. WEVER 7 2017-07-24 Final DrAFT M. VERVIER, M. Orrù, E. Sesterhenn, B.-J. WEVER 8 2017-08-25 Final PAPER M. VERVIER, M. Orrù, E. Sesterhenn, B.-J. WEVER 9 2017-09-19 Public Release M. VERVIER, M. Orrù, E. Sesterhenn, B.-J. WEVER X41 D-SEC GmbH PAGE 1 OF 196 Contents 1 ExECUTIVE Summary 7 2 Methodology 10 3 Introduction 12 3.1 Google Chrome . 13 3.2 Microsoft Edge . 14 3.3 Microsoft Internet Explorer (IE) . 16 4 Attack Surface 18 4.1 Supported Standards . 18 4.1.1 WEB TECHNOLOGIES . 18 5 Organizational Security Aspects 21 5.1 Bug Bounties . 21 5.1.1 Google Chrome . 21 5.1.2 Microsoft Edge . 22 5.1.3 Internet Explorer . 22 5.2 Exploit Pricing . 22 5.2.1 ZERODIUM . 23 5.2.2 Pwn2Own .
    [Show full text]
  • Stronger NYC Communities Organizational Digital Security Guide
    Stronger NYC Communities Organizational Digital Security Guide For Trainers and Participants Build Power - not Paranoia! NYC Stronger Communities | Toolkit 1 Creative Commons Attribution-ShareAlike 4.0 International, July 2018 This work supported by Mozilla Foundation, the NYC Mayor’s Office of Immigrant Affairs, NYC Mayor’s Office of the CTO, and Research Action Design. CREDITS Project designed and lead by Sarah Aoun and Bex Hong Hurwitz. Curriculum lead writing by Rory Allen. Workshops, activities, and worksheets were developed by Nasma Ahmed, Rory Allen, Sarah Aoun, Rebecca Chowdhury, Hadassah Damien, Harlo Holmes, Bex Hong Hurwitz, David Huerta, Palika Makam (WITNESS), Kyla Massey, Sonya Reynolds, and Xtian Rodriguez. This Guide was arranged and edited by Hadassah Damien, and designed by Fridah Oyaro, Summer 2018. More at: https://strongercommunities.info NYC Stronger Communities | Toolkit 2 Table of Contents ORGANIZATIONAL DIGITAL SECURITY GUIDE This guide provides tools and ideas to help organizational digital security workshop leaders approach the work including a full facilitator’s guide with agendas and activities; for learners find a participant guide with homework, exercises, and a resource section. 01 03 INTRODUCTION ............................................ 4 PARTICIPANT WORKBOOK ........................................ 110 • Organizational Digital Security Right Now Introduction to the Stronger Communities • Roadmap Workshop series Self-assessment: Digital • Workshop Overview Security Bingo • Series Story • How to coordinate and plan a Stronger Workshop Participant Guides Communities workshop series • Design and facilitation tools 1. Stronger NYC Communities Workshop: • Evaluate and assess Our work is political. • Handout and activity glossary 2. Stronger Communities Workshop: Our work is both individual and collective. 3. Stronger Communities Workshop: Our 02 work is about learning from and taking care of each other.
    [Show full text]